y 4
y 4 ° °
&ZW | l | |. II)NEs;IELUHTERCHE ..Saban.czl .
FONDAMENTALE Universitesi

Real World Coq Course
Sabanci University, Istanbul, August 12t 2022

Cog Fundamentals

Emilio Jesus Gallego Arias - Inria Paris) aa

I Hosgeldiniz!

Welcome all to the 2022 Real World Coqg course at Sabanci.
Before we start, some administrativia:

Course Is split in two main sessions:

- Morning (8:40 — 12:10): presentation of core material
- Afternoon (13:10 — 15:30): assisted exercise time
Both sessions have a 30 mins break

Advanced topics for the last day to be chosen by you!

Let me know ASAP if £
you have trouble with <
the jsCoq demo <

page <

 Day 1: Cog and Type theory
Day 2: Proof tactics and libraries
* Day 3: Mathematics

* Day 4: Software verification

Online asynchronous help forum
https://cog.zulipchat.com/#narrow/stream/341461-Sabanc.C4.B1-Coqg-Course---Sept-2022

https://coq.zulipchat.com/#narrow/stream/341461-Sabanc.C4.B1-Coq-Course---Sept-2022

Software that works: a hard task

fim
Common Compiler .y and whﬂt we can

{’i
« the C11 Ment —
Ariane 5 rocket

The rocket self-destructed 37 seconds after launch
Reason: A control software bug that went undetected

Conversion from 64-bit floating point to 16-bit signed integer valuc T
an exception
The floating point number was larger than 32767 (max 16-bit signed integer)
Efficiency considerations had led to the disabling of the exception handler.
Program crashed rocket crashed

Total Cost: over $1 billion

Formal Methods: Successes

Formal Methods: Application of a broad set of techniques to
problems in software and hardware verification and specification.

Many Success Stories: Verified compilers, Algorithms, OS kernels,
Hardware, Protocols, Mathematical Proofs, ...

C source program Step 1 Steps 2-3

. AWARDS

Software System Award

language & program logi analysis ! . == === ! |
° 1 L]

“ Sther \ .
Verifiable C } B R R
c i

1
R _tooli o

VST retargetable J A ‘-E_._Llfl

Separation Logic

Step 5 Steps 6-7
h 4 h 4 A 4 ¥ --m=-p
COMPCERT | o .
verified C compiler : M Ll
(from INRIA) I_I :
¥ ¥ L 4 L 4 :
verified machine language program]

More than 50 years of history, but what’s next?

Formal Method Based Tools

seL4 Microkernal (NICTA)
CompCert (INRIA)

QUARK (UCSD)
HMAC/SHA-256 (Princeton)

FSCQMIT) nteractive Proof Assistants

(ACLZ2, Coq, Isabelle)
OSEK-Certified Vehicle OS (China)

Nucleus Garbage Collector (Microsoft)

Functional
Correctness

Automatic Theorem Provers
(Alt-Ergo, VCC, Z3)
Browser Sandbox (Google)
Verified Runtime Monitoring
(RockSalt)

Aviation Software (Airbus)
SSL Stack (PolarSSL)

Mobile Applications (Facebook) Sound Static Analyzers
(Astrée, Frama-C, INFER)

Distributed System Protocols (Amazon)
Device Drivers (Microsoft)

v
b
=
<
T
=
QO
e
o
=
o
o
0
B
N

Model Checkers
(SLAM, TLC)

Bind, QEMU : :
Symbolic Execution

(FuzzBALL, KLEE)
Type systems (C, Java, Haskell, ...)

Automatic/Unlimited PhD Years/Kloc
Level of User Effort/Scalability

Credits: Kathleen Fisher

I Formal Methods: Challenges

Key Challenges: Deep specification, new computing models
(permision-less, quantum), effort, scalability, automation, education.

Common trend:
e Horizontal scaling: systems use more components
* Vertical scaling: components grow larger

v 2016-2019: Kernel +3.000.000 lines
ZEZE Year Linux Kernel GCC
s 1996 640.000 100.000
- 2006 5.000.000 2.000.000
2000 | 2016 20.000.000 15.000.000

§ 3 3 8888888888825 8 Figure — Core Software: Lines per Year

Complete Understanding of Systems Harder and Harder

The Growth of Scientific Knowledge

AMS: 3% increase in math production per year
400.000 papers per year by 2045

The proof that wasn’t

140,000 Nick Scott explains the story of a mathematical proof that has

sparked controversy, questioning how extremely complicated work

Growth of Mathematics Literature can be validated if few understand it

120,000 1940-2017
100,000 @a)
. ; AMERICAN MATHEMATICAL SOCIETY
80,000 4 LA CLIN
0:«, MATHEMATICAL REVIEWS
60,000 .
40,000 4,067,699 publications
— 1,117,951 authors
2 ‘*.‘:.‘;;;’;:'l
0 M
1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030
~* Journals <~ All How to Resolve Merge Conflicts In Git?

E. Dunne, "Looking at the mathematics literature”, Notices of the American Mathematical Society,
vol. 66, no. 2, pp. 227-230, 2019. ams.org/journals/notices/201902/rnoti-p227.pdf.

“If you think your job is getting harder, you are correct.
The mathematics literature is growing relentlessly, and
becoming harder to figure out along the way” E. Dunne

I Collaborative Mathematical Writing

WWW: diversification in knowledge production

Goreiew | e @ submic

Jjupyter Lorenz Differential EGUAIONS mussen A

66 For the authors" nanes, indicate different affiliations) E ¢+ x B 4 ¢ P B C|Co i Cell Toolbar: | Mere
with the sysbols: S\asts, S\daggers, S\ddaggers, s\ss. EVON «© Q sve
Afcer four authors, the Sysbols double, iple.
cuadeupe, and 5o forth as reauired.

. “ Jupyter weicometoP Exploring the Lorenz System
R o At In this Neteook wa explons the Lonng Systerm of differsntial equations:
70 In addition to the guidelines provided in the example - &

abstract above, your abstract should deally: x=aly-x)

B &« xR + + 1

begingitenize)

y=px—y—1z
en provide a synopsis of the entire article;

7 begin with the broad context of the study t==fip+xy
follomed by specific backaround for the study;
51 \ite ‘f“:”“’* ‘:* PW:"SE- '“:"‘“45‘"4 P'“;W;ES- This is one of the classic systems in non-inear differential equations. It exhibits a range of
iyt s u te r complax behaviors as the paramaters (0, f, 2) are varied, including what are known as chaotic
Rl 1500 Stk oF SRodrHine ARG cha J p y solutions. The system was onginally developed as a simplified mathematical model for

ten engage the broad readership of GENETICS and be
understandable to a diverse audience (avoid using
sargon;

atmospheric convection in 1963

78 \iten be a single paragraph of less than 250 wards; Welcome to the In [7): interact(Lorens, H=fixed(10), angla=(0.,3
75 iten contain the full name of the organien studied e 0,0,80,0) B=i0, 51, p=i0.0,8
& s This Notebook Server wat
2
83~ ction{Introduction} . 2082
54 WARNIN
8 . max_time 12
87 1In individual organisms where a mutant is being 1
studied, the rationale for the study of that mutant e 10
particular organisn. sinilarly, study of particular Your server is hosted thal] 26
phenotypes should be Juscified broadly and ot an the
backoround on the inportance of the genetic puthiay s 28

and/or phenotype should be provided i 3 sinole
WeTl-ressoned paragraph near the beginning of che Run some Python {

incroduction

)
s] - . b
89 Authors are encouraged to: . - To run the code below
1. Click on the cail 1o 8¢
:
C v ncatlab.org/nlab/showjtrace > % A 2 2 Poamn gtsrsnendl
Aplicaciones Lista de lectura

A full tutorial for using the

2. Definition]

The idea of the trace operation is easily seen in string diagram notation: essentially one takes

In [): \matplotlib inline

import pandas as pd
the endomorphism a X a, “bends it around” using the duality and the symmetry and connects :::: :_;‘fi"o“ -
its output to its input.

B e ¥ New writing media brings new opportunities

This definition makes sense in any braided monoidal category, but often in non-symmetric
cases one wants instead a slightly modified version which requires the extra structure of a
balancing.

More than 8.000.000 active Jupyter Notebooks on GitHub.com !

Coq and Type Theory: 2019-2022

2019: Environments for Large-Scale Proof Development
Focus on advanced proof engineers, multi-system

* Coqg’s Continuous Integration & Industrial Build Systems (creator & maintainer)
> 3 million lines of Specs and Proofs

* Complex interop with Mach. Learning / Soft. Eng. . document matters!

Andrej Bauer @andrejbauer - 21h

The mdny 'chei‘s OIF Nel'worked Mcﬂ'hemdﬁcs Building the Mathematical Library Of the o Am | correctly counting four Fields medalists who are seriously taking

computer-assisted mathematics? When the first one came along it creat

by Valeria de Paiva TOPOS Monday, 18 Apr 202%
QP NSTITUTE

F a small revolution. Can't wait to see what the combined power of three c
lltlll'e them can do.

Online Collaboration + Formal Mathematics more important!

* From advanced proof engineers to advanced mathematicians
* Essential feedback from Inria/IRIF, nLab and teaching community

2022: From mathematical to formal documents
Focus on collaboration, evolution of documents

I Collaborative Mathematical Writing

WWW: diversification in knowledge production

Goreiew | e @ submic

Jjupyter Lorenz Differential EGUAIONS mussen A

66 For the authors" nanes, indicate different affiliations) E ¢+ x B 4 ¢ P B C|Co i Cell Toolbar: | Mere
with the sysbols: S\asts, S\daggers, S\ddaggers, s\ss. EVON «© Q sve
Afcer four authors, the Sysbols double, iple.
cuadeupe, and 5o forth as reauired.

. “ Jupyter weicometoP Exploring the Lorenz System
R o At In this Neteook wa explons the Lonng Systerm of differsntial equations:
70 In addition to the guidelines provided in the example - &

abstract above, your abstract should deally: x=aly-x)

B &« xR + + 1

begingitenize)

y=px—y—1z
en provide a synopsis of the entire article;

7 begin with the broad context of the study t==fip+xy
follomed by specific backaround for the study;
51 \ite ‘f“:”“’* ‘:* PW:"SE- '“:"‘“45‘"4 P'“;W;ES- This is one of the classic systems in non-inear differential equations. It exhibits a range of
iyt s u te r complax behaviors as the paramaters (0, f, 2) are varied, including what are known as chaotic
Rl 1500 Stk oF SRodrHine ARG cha J p y solutions. The system was onginally developed as a simplified mathematical model for

ten engage the broad readership of GENETICS and be
understandable to a diverse audience (avoid using
sargon;

atmospheric convection in 1963

78 \iten be a single paragraph of less than 250 wards; Welcome to the In [7): interact(Lorens, H=fixed(10), angla=(0.,3
75 iten contain the full name of the organien studied e 0,0,80,0) B=i0, 51, p=i0.0,8
& s This Notebook Server wat
2
83~ ction{Introduction} . 2082
54 WARNIN
8 . max_time 12
87 1In individual organisms where a mutant is being 1
studied, the rationale for the study of that mutant e 10
particular organisn. sinilarly, study of particular Your server is hosted thal] 26
phenotypes should be Juscified broadly and ot an the
backoround on the inportance of the genetic puthiay s 28

and/or phenotype should be provided i 3 sinole
WeTl-ressoned paragraph near the beginning of che Run some Python {

incroduction

)
s] - . b
89 Authors are encouraged to: . - To run the code below
1. Click on the cail 1o 8¢
:
C v ncatlab.org/nlab/showjtrace > % A 2 2 Poamn gtsrsnendl
Aplicaciones Lista de lectura

A full tutorial for using the

2. Definition]

The idea of the trace operation is easily seen in string diagram notation: essentially one takes

In [): \matplotlib inline

import pandas as pd
the endomorphism a X a, “bends it around” using the duality and the symmetry and connects :::: :_;‘fi"o“ -
its output to its input.

B e ¥ New writing media brings new opportunities

This definition makes sense in any braided monoidal category, but often in non-symmetric
cases one wants instead a slightly modified version which requires the extra structure of a
balancing.

More than 8.000.000 active Jupyter Notebooks on GitHub.com !

I Timeline of Type Theory

Goal: Build a foundation for mathematics!

* 19th century: Cantor, Frege, Peano, Pierce, Brouwer

* 1903: Russel's Type Theory

* 1930s: Gentzen, Godel; consistency and incompleteness
* 1940: Church’'s simple theory of types; lambda-calculus

* 1950: Godel's System T, Dialectica Interpretation

* 1970: Girard’'s System F, Martin-Lof Type Theory

* 1980: Coquand'’s Calculus of Constructions

A stunning pace of development in a short period of time
(Many others Heyting, Kolmogorov, Kleene, Curry, Howard)

I Coq: Foundational Theorem Proving

Foundational: Proofs written in Minimal yet Expressive Calculus
Verification: Proofs automatically checked by trusted small kernels

* A milestone of 20t century logic and computer science What;s
next:

* Enabled a very high degree of confidence on many key
mathematical results and critical software . AWARDS

Software System Award

* The Coq Proof Assistant: field leader
(Inria, 1984-now) (myself: 2015-now)

* 2013: ACM System Software Award

* 2022: Open Science Award (collab dev)

. Verifying the
Proofs as programs: very well suited | Four Colour Theorem

for both math and software validation | geores onthier

I The Coqg Proof Assistant

Developed at Inria by T. Coquand, G. Huet, C. Paulin

* First usable version in 1985

* Powerful logical framework, programming language

* Goal: mechanically-verified programs and mathematical
proofs in a constructive meta-theory

* See “Early history of Cog” in the Coq's reference manual

* Constructing proofs mainly in “interactive nature”

Very successful project

I The Calculus of Constructions

Theoretical basis of Coq
Higher-order dependently-typed calculus

* THp:T “program p has type T under assumptions I'”
* Tis a type, or proposition to prove, examples:

- 3 (x: nat), Turing_machinesz(x) = 33

- V(tatz:st), i=tz=2Jtht,ipth Azt At =t
* pisaprogram, or proof for T

- “p: A= B"for any input of type A, outputa B

- “p: A x, P(X)” pair with a witness w and proof “P(w)"

- “p:A A B" pair with proofs “p1: A" and “pz2: B”

14743

I The Calculus of Constructions

Given a proof p and a goal T, Coq will check “p : T"
Type-checking is described using “inference” rules

1'F|—P:T
R 'HFA: K

Tz:AFz: A

z:AFB: K 'z:A-N:B

' '-(A:A.N):(Vx: A.B): K
4I‘|—M:(Vm:A.B) '-N:A

' MN : B[z := N]
'-EM:A A= B I'B: K

5.
I'M:B

ex:=T|P|xz|ee|Ax:e.e|Vxe.e

I The Coqg Proof Assistant

Core development team: 12 developers

A few dozens of external contributors

* Free software, open development model @ Github

1.000-10.000 regular users, including all target groups

10-100 active research projects in the world

> 3.000.000 lines tested in the Cl, in the wild 1 order more

Fairly high degree of maturity, but active development

I High-level Goals of Coq for 2020s

Improve how we

Produce
Organize
Interact with
Evolve
Collaborate on
Validate

scientific documents

Core Hypothesis:

Programming Languages
&
Interactive Theorem Provers

have reached a maturity point
where we can build upon them
formal, verifiable, hybrid documents
& theory for collaboration and evolution

We aim to develop a document model is
designed to enable many interesting
Interactions with other research fields

I Proving and verifying in the CoC

Strong points:

* Programs and proofs live at the same level
* Small, reliable kernel, good “Trusted Computing Base”
* Foundational character

* PL and theorem proving ideas do apply
Challenges:
* Writing pregrams proofs is very verbose, requires automation

* Language is low-level, notations and encoding needed

* Underlying logic very general, but not necessarily adapted to
all domains 18/43

I Beyond Programs: Data

The Calculus of Inductive Constructions

* Coq also provides a powerful data-definition mechanism
* “Inductive” data types can encode arbitrary relations

* Well beyond safety, etc...

* However they have no computational content

* Commonly used to encode transition systems, rules, ...

* Also the base for most logical connectives

Key to being friendly for PL verification.

Organization of Coq

TCB
Kernel
Type Inference
Program Synthesiy
\j
D
Proof S_earch Tactics
Engine

The Interactive Proof Cycle

Users input documents in a high-level
mathematical proof language

High-level language is elaborated to the
core calculus

Tactics and type inference perform
program search.

Kernel checks correctness of the proofs

System is extensible

200.000 lines of OCaml code
120.000 lines of Coq code
5.000 lines of C

TCB ~ 10.000 lines

Libraries

I success Stories

* Fundamental maths: 4-color theorem, Feit-Thompson

ﬁheOrem Feit Thompson (gT : finGroupType) (G : {group gT}) :
odd #|G| -> solvable G.
Proof. : (minSimpleOdd ind no minSimple odd group). Qed.

Theorem simple odd group prime (gT : finGroupType) (G : {group gT}
odd #|G| -> simple G -> prime #|G]|.
Proof. : (minSimpleOdd prime no minSimple odd group). Qed.

21743

success Stories

* Software Verification: CompCert, Fiat-Crypto, Deepspec,

IRIS, blockchain, great impact at PL venues
(3 b : bool, 1 » #b * 1f b then True else R)%I. 1 subgoal (ID 534)

(** Invariants in Iris are named by a *namespace* so that s» I : gFunctors
can be opened at the same time, while guaranteeing that no » heapG@ : heapG X
twice at the same time (which would be unsound). Here, this» R : iProp X
since acquiring and releasing a lock only requires to open » ¢ : val - uPred (iResUR I)
The namespace [lockN] of the lock invariant:
Definition lockN : namespace := nroot .@ "lock".
Definition is lock (lk : val) (R : iProp X) : iProp I :=

(3 1: loc, " 1k = #1 ™ A inv lockN (lock inv 1 R))%I.

B [={T}= @ #1

(** The main proofs. *]
Lemma newlock spec (R : iProp I):

{{{ R }}} newlock #() {{{ 1k, RET 1lk; is lock 1k R }}}.
Proof.

iIntros (@) "HR H®". iApply wp fupd.

wp lam. wp alloc 1 as "HL".

(** Use the Iris rule [inv_alloc] for allocating a lock. »

resources [HR : R] and the points-to [l » #false] into th»

iMod (inv_alloc lockN (lock inv 1 R) with "[HR HL]") as»

{ iNext. iExists false. iFrame. }{]

iModIntro. 1Apply "Hé". 1Exists L.
Qed.

success Stories

* Teaching: Software Foundations, CPDT, many schools and
¢

tUtO ria lS Circular Convolution of two Signals

N—
(x@yl = z:x(m}}'(n — m)

"I I I Il """"" II :Ilﬂreaund:arf[:]gﬁ-:)l'
: : : f(x)
: : S : —gi-1)
D.ﬁ-; --------- freee Ferrdreses R AR e R (f*qt)
l] 1 1 l 1 :
15 1 0.5 0 05 . 1 1.5 z 15 3
1 Definition convs x y :=\col. n \summ xm @ * y (n-m) 0.|
N—=1 n—{N-1)
Links to resources @@ =) xmy(n—m) = Y x(n— Dy
In the course R, DD =
= yil)xin —
Webpage —
= (y@x),

Lemma convsC : commutative conwvs.

2 Proof.
23/43

move=> X y; apply/matrixP=> n k; rewrite 'mxE {k}.
rewrite (reindex inj (inj comp (addrI n) oppr inj)).

= L)

I Coqg vs Other Systems

Coqg both a PL and an Interactive Theorem Prover

* vs traditional PL;

Notations, elaboration, implicit arguments, tactics, higher-order unif,
partial evaluation, fp, interactive development, slower

* vs Isabelle: Different logic ; Isabelle interface much more user-friendly
* Vs Lean:

different development model and user base, different strengths
implementation & compatibility. Punch with math community.

Vs Adga: impredicativity, trust-base, tactics, less experimental features

Development needs to adapt, or risk becoming obsolete.
Huge legacy codebase difficults progress => research topic

I Cog’'s Ecosystem

Large work in the last years to build a community

* Zulip Forum: Main forum, both users and devs
* Coq Community: collective maintenance
 StackOverflow, mailing lists

* GitHub project

* Events: 2 Workshops, 1 user and dev meetings,
diversity, misc hackathons, schools....

Development model pretty unique among interactive theorem
Provers, has pros and cons.

Cog’'s Vernacular Language

Type theory is a very bare language
Coq provides many user-level constructions to do math

Record abelian (V : Type) := Instance abelian int :=
Mixin { {

zero : V; zero := 0;

opp : V ->V,; opp : -,

add : V ->V -> V; add : +;

_: associative add; addiA;

_: commutative add; addiC;

_ ¢ left_id zero add; addoi;

_ ¢ left_inverse zero opp add e

}. }.

Lemma mulrnDl (T:abType) (x y:T) n: {morph (x => X *+ n) : xXy / X + y}.
Proof. move=> x y; elim: n => [|n IHn]; rewrite ?addro // !mulrS.

by rewrite addrCA -l!addrA -IHn -addrCA.

Qed.

Of particular interest are notations, tactics, structures,
hints, definitions and modules, ... (over 200 vernaculars)

I Doing Proofs: What is Hard?

With high confidence comes high cost
Proof assistants notoriously difficult to use

‘ :G): ‘oﬂN . E]
- H 9 | Z‘D nz‘\ =
ok M W -
5 oS n P i
¥ .] LA N\ |
L ‘kﬁi‘,(N4
| . VN Interpretation
f % e | "7‘ = ! \ o !
r \~l \x'u \“Lﬂ\ﬂ RN “/ S : 00l
| :] \(y |
‘ mﬁ\\wug o [-m -
| | q
i N]
| » _ % E 3 ‘1 . ‘
! 900 1 e Zm“m %
Franco Donatoni - Babai Notations (¢) John Cage

Human vs Machine impedance

I Doing Proofs: What is Hard?

With high confidence comes high cost
Proof assistants notoriously difficult to use

MK:
M\ 'M_'P -> \kappa(M).-Hall(M) K ->
exists2 Mstar, Mstar \ 'M_'P /\ gval Mstar \notin M :~: G
& Kstar := 'C_(M _\sigma) (K)
Z := K <*> Kstar Zhat := Z :\: (K :|: Kstar)

[\ { " "E"L(K), » 'M('C(X)) = [set Mstar]},
Lemma 8.2.3. Let F : S| — S, be a 1-morphism of fibred categories over the cate, \kappa(Mstar).-Hall(Mstar) Kstar /\ \sigma(M).-Hall(Mstar) Kstar 4
U € Ob(C) andx,y € Ob((S})y). Then F defines a canonical morphism of presheave; 'C (Mstar \s;Lgma)(Kstar) = K /\ \kappa(M) =i \taul(M), . nat =

Mors, (x,y) — Mors,(F(x), F(y)) [/\ cyclic Z, M :&: Mstar = Z, k : @eq nat (addn m (addn n 0)) (addn nm) =>
. { K~#, , "C_M[x] = Z}, lflnd nat (addn n 0) ot o
{ Kstar™#, , 'C_Mstar[y] = Z} deq nat (addn m pattern value) (addn n m)) evar 0 nfi
Proof. By Categories, Definition 4.33.9 the functor F* maps strongly cartesian morphisms| & { K # & Kstar™#, , 'CIx * y] = Z}] faddn6 n))
cartesian morphisms, Hence.iff 1V — U is a morphism in C, then there are canonil|g, [/\ [/\ normedTI Zhat G Z, { ~: M, " [dlSJ01nt Zhat & M :~ A o t: (@zg nat((ggdn noia)xddn m 0)) (addn n m) =>
phismsax{:f’F(X)'—>F.(f*X),ﬁvif*F(y).—’.F(f*)’) such that f* F(x) —’.F(f*x) & (#]G|%:R / 2%:R < #|class_support Zhat G|%:R :> rat)oR 1, ‘e?fln St S a ngtm=>
O R 1= G = JEA) Sk S Gt e TSR i M\ 'M_'P2 /\ prime #|K| \/ Mstar \'© 'M_'P2 /\ prime #|Kstar| Geq nat pattern value (addn n m)) _evar o_
Mors,(&.y)(f : V = U) —————Mors, (/*x.f"») £ 'M_'P, , gval H \'" M :*: G :|: Mstar :*: G} B eor 8 - o Mot (SAAR B & (addn 5) =5
& M~ (1) ><| K = M]]. @eq_ind r nat m
(: nat =>
. * * dd 1 dd 0
Mors,(F&) FON/ : V — U) ——Mors, (" F(.f"FO) Coq Document (Text-based) (G 81 0) (a0in6) TQLSLcses ForL Nat (e o ST
bth—»/};l o F(¢) » ay. We omit the verification that this is compatible with the restriction map- :commutative nat nat addn
pings. O = = : @commutative nat nat addn
(c) The Stacks Project Kernel-level Proof Term

Manual Translation + Interactive Interpretation

Human side: rich natural, mathematical, graphical language
Computer side: minimal “assembler’ language of proof terms

I Other Important Challenges

Installing things!

Libraries that don’t work / outdated proofs
* Searching for things without success

* Bad display / notations

* Boilerplate / trivial proofs

* Synchronization / merging problems

 Lack of documentation

* Dumb or outdated interfaces

A mix of Social, Research, and Engineering Problems!

I Have we reached a Critical Point?

Recent times have seen a proliferation of formal and
semi-formal collaborative math writing systems

* LaTeX / Literate Programming: Stacks

* Education for Maths: Edukera, WaterProof

* Semantic-Aware, Interactive: Nota, ScholarPhi

e Structure-Aware: Hazelnut, Actema

* Interactive Documentation: Alectryon

* Self-contained formal documents: jsCoq, Holbert

How far from an integral solution?

I We have reached a Critical Point

Current solutions don’t address current needs

* Jupyter Notebooks: Great for computational content, falls
short for general verified math and software

* Overleaf, Wikis, Stacks: Don't integrate with tools that
can understand and validate content

* Traditional ITPs (Coq, Lean, Isabelle,...): Lack
accessibility, collaboration features

The area has become a very hot topic in the last year

jscoqg.wiki: a formally-verifiable Wiki!
jsCoq: Towards Hybrid Interfaces for Theorem Proving (UITP2016)

C @& x80.org/rhino-cog/v8.11/examples/dft.html < w 4 0 a

wirvuialr wulivuiuuuvll vl wvyu \)IHIIGID))
@) +¥¥exDd Readme @ €}
N &

-1
x®y), = ZX(m)y(n—m) Goals =
m=0 1 goal
1 1 1 [
1+ 1 N' : nat
#eea under f -
I_Jf() (08-1) R : comRingType
- .. T,
: : o8-%) X,y : 'cV_N
LK 1 3 (fegt) a s
\\ \summ xm®O*y (n-m)O=\summ ymO=*x(n-m)o
. . . . s P—— . .
0 1 : 1 |]
-1.5 -1 0.5 0 0.5 1 1.5 2 295 3
&t
Credits: Wikipedia/Brian Amberg
Definition convs x y := \col_n \sum_m xm @ * y (n-m) 0.
Now we can do our first non-trivial proof using Coq! Let's see how the paper proof compares:
N-1 n—(N-1)
@@y, =) x(mpyn—m) = Y x(n— by
m=0 I=n
N-1
=Y yxtn—1D
=0
— M [0 /| b]
- (y®x)'1 elzza?IeISLUIIII’p. h:LVdU Le.cutmuLdLutr Luducu. A
th .solvable. ter loaded.
"In the first step we made the change of summation variable | = n — m, and in the second step, we 22th2222 zglx:blz ;iz r(iags ?iased
made use of the fact that any sum over all N terms is equivalent to a sum fromOto N — 1", mathcomp.solvable.nilpotent loaded.
mathcomp.solvable.sylow loaded.
) . mathcomp.field.falgebra loaded.
59 Lemma convsC : commutative convs. mathcomp. field.fieldext loaded.
) Proof. mathcomp.algebra.polyXY loaded.
L move=> x y; apply/matrixP=> n k; rewrite !mxE {k}. mathcomp.field.separable loaded.
2 rewrite (reint'jexiinj (injicor‘np (addrI n) oppr_inj)). mathcomp. field.galois loaded.
2 bydapply/eqiblgr=> m _; rewrite opprD addNKr opprK mulrC. mathcomp.field.algebraics_fundamentals loaded.
Qed. Dsp.dspsupport loaded.
mathcomp. field.cyclotomic loaded.

jscoqg.wiki: a formally-verifiable Wiki!
jsCoq: Towards Hybrid Interfaces for Theorem Proving (UITP2016)

> & x80.org/rhino-cog/v8.11/examples/dft.html < w A 0O &

wirvuial wulivuiuuuvln vl wyu \.)I\‘_’IIGUO) ’
. . js+4p A¥¥e x Readme@G
x@y), = Zx(m)y(n —m) Goals =
m=0 1 goal
- - ! N' : nat
Fee der f -1) [
: s I_]f(‘; et fCeot-x) R : comRingType
s 90-1) X,y : 'cV_N
) : (fegt) i n: LN
\ \summ xm®O*y (n-m)O=\summ ymO=*x(n-m)o

-15 -1 -0.5 0 05 1 15 2 25 3
v &t
Credits: Wikipedia/Brian Amberg

57 Definition convs x y := \col_n \sum_m xm @ * y (n-m) 0.
58

Now we can do our first non-trivial proof using Coq! Let's see how the pape:

N—1 n—(N—1)

xX@y), = Zx(m)y(n —-m) = Z

m=0 I=n

N—1
= D yhxn—1D

=0
=(®x), v MG LHLUIP, SULVAU LE, LUNIU LA LUT LUdued ., ‘

"In the first step we made the change of summation variable | = n — m, and in the second step, we z:::gg:}g ESR:E{E ;ig:i;sl?igggé.

made use of the fact that any sum over all N terms is equivalent to a sum from0to N — 1" mathcomp.solvable.nilpotent loaded.
mathcomp.solvable.sylow loaded.
mathcomp.field.falgebra loaded.

59 Lemma convsC : commutative convs. mathcomp. field.fieldext loaded.

60 Proof. mathcomp.algebra.polyXY loaded.

61 move=> x y; apply/matrixP=> n k; rewrite !mxE {k}. mathcomp. field.separable loaded.

62 rewrite (reindex inj (inj comp (addrI n) oppr inj)). mathcomp.field.galois loaded.

63 by apply/eq_bigr=>m _; rewrite opprD addNKr opprK mulrC. mathcomp. field.algebraics_fundamentals loaded.

64 Qed. Dsp.dspsupport loaded.
mathcomp. field.cyclotomic loaded.

Formal Hybrid Documents

Definition and soundness of interpretation

The document calculus knows 3 kinds of objects,
: and organizes them by containment:
tﬁggg agg‘_g;:; ‘[:‘/)'}'Tﬁt?;fl;‘]'e +- - semi-structured text: free form, metadata
; ; can be updated and extracted

* meta-logical objects: objects that are

formal, but are not seen by the kernel
I * logical objects: objects that will be sent to
the kernel, after interpretation

We now show that + is commutative:

Interpretation Theorem (soundness). The interpretation
function respects the logical structure in the
document.

A4
Coq's We cannot skip sending a logical definition or
Kernel theorem to the kernel.Formally:
State I(L1eL2,M) = I(L1,M) @ I(L2,M)

Note the document is not checking correctly, as the proof is incorrect

Formal Hybrid Documents

Gradual Document Interpretation: A formal theory of Error Recovery

We now show that + is commutative:

Lemma addnC : commutative +.
Proof. elim=> [//|n iHn]. QEdN

Definition bar := addnC.

Interpretation

YV
Coqg's
Kernel
State

Proof development is best done by gradually
refining human-style specs to their formal
counterpart.

In this example, the proof of addnC is replaced
by an unknown ?, which may only error if used.
Error propagation can be contained
structurally, to produce a better user
experience. And bar can still be checked.

Gradual typing for Dependently Typed
Systems is a very new area, and we will use it
to formally model the continuous process
where a formal document evolves towards
full validation.

Theoretical Challenge: relation with interpretation soundness

I Formal Hybrid Documents

Incremental Interpretation: Avoid Re-Doing Work

We now show that + is commutative; We now show that + is commutative;
Lemma addnC : commutative +. Lemma addnC : commutative +.
Proof. elim=> [//|n iHn]. QEdE : Proof. elim=> [//|n ->]. Qed.

A=[IHn,->]
Definition bar := addnC. —_— Definition bar := addnC.

1
| : |
| I |
Incremental checking an essential

property for all our applications.

Interpretation _
Soundness comes from the
\ V4 commuting diagram. \ v
Coqg's Open: Incremen'tality + Structure Coqg's
Kernel y > Kernel
State I(A=[iEn, 1) State

Shift from study of proofs to the study of evolution of proofs

Enabling Document-based Research

Document theory: validity, distance “Mutation Testing for Coq”
Use checker as Oracle in “soft” experiments (ASE2019)

* Documents as source: Indexing, Dataset Extraction

* Documents as target: Automatic “fuzzy” translation of
mathematical texts, with feedback!

* More: Structured access provides an abstraction layer

* Foundation for M.L. / S.E. collaboration

A more fancy example: constraint-aided conflict resolution,
SMT finds the best resolution w.r.t. doc soundness

I SerAPl: Communicating with Coq

Enable other tools to interact easily with Coq

Not easy due to extensible nature; design constraints:
* Low-effort: cannot justify a large time sink
* Lightweight: neither can the users
* Maintenable: no use if it will stop working in 6 months
* Robust: API for clients should “resist change”
* Machine-oriented: Main use case is to talk to tools
* User-driven: convenience for users triumphs ideology

* Should be easy to install, work on unmodified Coq

Extensive use of OCaml's meta-programming system
PPX

SerAPI: Interaction Protocol

control and query protocols

type cmd =
NewDoc of newdoc_opts
Add of add opts * string

Cancel of Stateid.t list

Exec of Stateid.t

Query of query opt * query cmd
Print of print opt * coq_object

type coqg_object =

CogPp of Pp.t

CogLoc of Loc.t

CogqTok of Tok.t list

CogAst of Vernacexpr.vernac_control Loc.located

type query cmd =

Option (** List of options Cog kRnows about *)
Goals (** Current goals, in Rernel form *)
Ast (** Ast for the current sentence *)
TypeOf of string

Then, these object definitions are serialized to JSON or Sexps

(Add ((ontop 3) (limit 3)) “Definition foo := 3.”) (Query ((sid 3)) Ast)

I Improving Coq'’s Printing

Coqg's current printing system still textual
Roots on console-based interaction

T'heorem 14.7. Suppose M € .#» and K is a Hall x(M 71'1“0,.&"\ Ptype_embedding : forall M K,
Let K* = Cp, (K), k= |K|,k* = |K*|,Z = KxK",and M \in "M_'P -> \kappa(M).-Hall(M) K ->
Fhen, for some other M* € .#» not conjugate to M, exists2 Mstar, Mstar \in "M_'P /\ gval Mstar \notin M :": 6

(a) #(Cg(X)) = {M*} for every X € £}(K), & let Kstar := "C_(M" _\sigma)(K) in
(b) K* is a Hall x(M*)-subgroup of M* and a Hall ¢! Z := K <™ Kstar in let Zhat := Z :\: (K :|: Kstar) in
Me, ; %) = K (M [/\ ("a*) {in "E"I(K), forall X, "M('C(X)) = [set Mstar]},
(c) K = CM', (K*) and IC(M) = (M), (*b*) \kOPpO(MSYOP).jHO|I(M$"OP) Kstar /\ \sigma(M).-Hall(Mstar) Kstar,
(d) Z is cyclic and for every z € K* and y € K" (*c*) 'C_(Mstar’ _\sigma)(Kstar) = K /\ \kappa(M) =i \taul(M),
Cm(z) = Cu-(v) = Calzv), (SO Lo e Tis Petonr
(e) Z is a T1I-subset of G with Ng(Z) = Z, Z n {in K*#, forall x, 'C_M[x] = Z}, {in Kstar"#, fordll y, 'C_Mstar{y] = Z)
9€G- M, and s &{in K" # & Kstar™#, forall xy, "C[x * y]= Z}]

p & [/\ ("e*) [/\ trivIiset (Zhat :": G), 'N(Zhat) = Z,
| - 1 1 1 | {in ~: M, forall g, [disjoint Zhat & M :” g]}
e 1¥6(2)] = (1 =zt kk.) G| : & (#16|%R / 2%:R « #|class_support Zhat 6|%:R > gnum)%R],
(*f*) M \in "M_"P2 /\ prime #|K| \/ Mstar \in ‘"M_'P2 /\ prime #|Kstar|,
(f) M or M* lies in .# %, and, accordingly, K or K (*g*) {in '"M_'P, forall H, gval H \in M :*: & :|: Mstar :": 6}
(g) every H € A is conjugate to M or M* in G,: & (*h*) M™" (1) »<| K= M]].

Main problems: 1-dimensional layout, lack of meta-data

The BoxModel.t printer

Adopt as output a LaTeX/HTML box model
Plus attach semantic information a /a Isabelle

type t = module Id : sig
Variable of string type t =
Constant of string { relative : string
Identifier of Id.t ; absolute : string option
Sort of string list }
App of { fn : t end

; impl : t list
; argl : t list
}
Abs of { kind : abs _kind; binderl : t list; v : t }
Let of { lhs : t; rhs : t; typ : t option; v : t }
Notation of
{ key : string
; args : t list
; raw : t

¥

I Rendering to Web Components

Standard by Google, 2015, well supported
Allows to define custom tags in the DOM

e <coq-notation raw="...”></cog-notation>
e <COQ-app>...</coq-app>
e <cog-binder-list> ... </cog-binder-list>

* Reusable components, shadow-DOM
* Class based: extend <cog-notation> for your purposes!

* Programmable with JavaScript / TypeScript

In alpha stage, collaboration with Actema as to define
an interactive, 2-way model

Summary

A wide-scope project, potentially large impact
Great opportunity to collaborate with several CS areas

* Bringing together mathematical writing, formal logic, and
collaboration research

* Trying to match today’s demands
* Important little step to improve validation in science

* Co-enrichment between PL and a few other fields

 State of the art PL proposals (gradual, incremental, differential)...

Reflecting the reality of a more and more multidisciplinary
setup in computer science.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43

