
 1 / 43

Coq Fundamentals

Emilio Jesús Gallego Arias – Inria Paris

Real World Coq Course
Sabancı University, Istanbul, August 12th 2022

 2 / 43

Hoşgeldiniz!
Welcome all to the 2022 Real World Coq course at Sabancı.
Before we start, some administrativia:

● Course is split in two main sessions:
- Morning (8:40 – 12:10): presentation of core material
- Afternoon (13:10 – 15:30): assisted exercise time

● Both sessions have a 30 mins break
● Advanced topics for the last day to be chosen by you!

● Day 1: Coq and Type theory
● Day 2: Proof tactics and libraries
● Day 3: Mathematics
● Day 4: Software verification

Online asynchronous help forum
https://coq.zulipchat.com/#narrow/stream/341461-Sabanc.C4.B1-Coq-Course---Sept-2022

Let me know ASAP if
you have trouble with

the jsCoq demo
page

https://coq.zulipchat.com/#narrow/stream/341461-Sabanc.C4.B1-Coq-Course---Sept-2022

 3 / 43

Software that works: a hard task

 4 / 43

Formal Methods: Successes
Formal Methods: Application of a broad set of techniques to
problems in software and hardware verification and specification.

Many Success Stories: Verified compilers, Algorithms, OS kernels,
Hardware, Protocols, Mathematical Proofs, …

More than 50 years of history, but what’s next?

 5 / 43Credits: Kathleen Fisher

 6 / 43

Formal Methods: Challenges
Key Challenges: Deep specification, new computing models
(permision-less, quantum), effort, scalability, automation, education.

Common trend:
● Horizontal scaling: systems use more components
● Vertical scaling: components grow larger

Complete Understanding of Systems Harder and Harder

2016-2019: Kernel +3.000.000 lines

 7 / 43

The Growth of Scientific Knowledge
AMS: 3% increase in math production per year
400.000 papers per year by 2045

“If you think your job is getting harder, you are correct.
The mathematics literature is growing relentlessly, and

becoming harder to figure out along the way”

4,067,699 publications
1,117,951 authors

E. Dunne

 8 / 43

Collaborative Mathematical Writing

Wikis / online editors very popular
New writing media brings new opportunities

More than 8.000.000 active Jupyter Notebooks on GitHub.com !

WWW: diversification in knowledge production

 9 / 43

Coq and Type Theory: 2019-2022
2019: Environments for Large-Scale Proof Development
Focus on advanced proof engineers, multi-system

● Coq’s Continuous Integration & Industrial Build Systems (creator & maintainer)

> 3 million lines of Specs and Proofs
● Complex interop with Mach. Learning / Soft. Eng. : document matters!

Online Collaboration + Formal Mathematics more important!
● From advanced proof engineers to advanced mathematicians
● Essential feedback from Inria/IRIF, nLab and teaching community

2022: From mathematical to formal documents
Focus on collaboration, evolution of documents

 10 / 43

Collaborative Mathematical Writing

Wikis / online editors very popular
New writing media brings new opportunities

More than 8.000.000 active Jupyter Notebooks on GitHub.com !

WWW: diversification in knowledge production

 11 / 43

Timeline of Type Theory

● 19th century: Cantor, Frege, Peano, Pierce, Brouwer
● 1903: Russel’s Type Theory
● 1930s: Gentzen, Gödel; consistency and incompleteness
● 1940: Church’s simple theory of types; lambda-calculus
● 1950: Gödel’s System T; Dialectica Interpretation
● 1970: Girard’s System F, Martin-Lof Type Theory
● 1980: Coquand’s Calculus of Constructions

Goal: Build a foundation for mathematics!

A stunning pace of development in a short period of time
(Many others Heyting, Kolmogorov, Kleene, Curry, Howard)

 12 / 43

Coq: Foundational Theorem Proving

● A milestone of 20th century logic and computer science

● Enabled a very high degree of confidence on many key
mathematical results and critical software

● The Coq Proof Assistant: field leader
(Inria, 1984-now) (myself: 2015-now)

● 2013: ACM System Software Award
● 2022: Open Science Award (collab dev)

Proofs as programs: very well suited
for both math and software validation

Foundational: Proofs written in Minimal yet Expressive Calculus
Verification: Proofs automatically checked by trusted small kernels

What’s
next?

 13 / 43

The Coq Proof Assistant

Developed at Inria by T. Coquand, G. Huet, C. Paulin

● First usable version in 1985
● Powerful logical framework, programming language
● Goal: mechanically-verified programs and mathematical

proofs in a constructive meta-theory
● See “Early history of Coq” in the Coq’s reference manual
● Constructing proofs mainly in “interactive nature”

Very successful project

 14 / 43

The Calculus of Constructions
 Theoretical basis of Coq
 Higher-order dependently-typed calculus

● Γ p : T⊢ “program p has type T under assumptions Γ”

● T is a type, or proposition to prove, examples:

– ∃ (x : nat) , Turing_machine₃₂(x) = 33
– ∀ (t t : st)₁ ₂ , t ₁ ≈ t ₂ ⇒ t' t'∃ ₁ ₂, t t' t t' t' ₁ ↦ ₁ ∧ ₂ ↦ ₂ ∧ ₁ ≈ t'₂

● p is a program, or proof for T

– “p : A B⇒ ” for any input of type A, output a B
– “p : x , P(x)∃ ” pair with a witness w and proof “P(w)”
– “p : A B∧ ” pair with proofs “p : A₁ ” and “p : B₂ ”

 15 / 43

The Calculus of Constructions
Given a proof p and a goal T, Coq will check “p : T”
Type-checking is described using “inference” rules

 16 / 43

The Coq Proof Assistant
Core development team: 12 developers

● A few dozens of external contributors
● Free software, open development model @ Github

● 1.000-10.000 regular users, including all target groups

● 10-100 active research projects in the world

● > 3.000.000 lines tested in the CI, in the wild 1 order more

● Fairly high degree of maturity, but active development

 17 / 43

High-level Goals of Coq for 2020s

Improve how we

Produce
Organize
Interact with
Evolve
Collaborate on
Validate

scientific documents

Core Hypothesis:

Programming Languages
&

Interactive Theorem Provers

 have reached a maturity point
where we can build upon them

formal, verifiable, hybrid documents
& theory for collaboration and evolution

We aim to develop a document model is
designed to enable many interesting

interactions with other research fields

 18 / 43

Proving and verifying in the CoC

● Programs and proofs live at the same level

● Small, reliable kernel, good “Trusted Computing Base”

● Foundational character
● PL and theorem proving ideas do apply

Strong points:

Challenges:

Strong points:

● Writing programs proofs is very verbose, requires automation

● Language is low-level, notations and encoding needed

● Underlying logic very general, but not necessarily adapted to
all domains

 19 / 43

Beyond Programs: Data
The Calculus of Inductive Constructions

● Coq also provides a powerful data-definition mechanism

● “Inductive” data types can encode arbitrary relations

● Well beyond safety, etc...

● However they have no computational content

● Commonly used to encode transition systems, rules, ...

● Also the base for most logical connectives

Key to being friendly for PL verification.

 20 / 43

Organization of Coq

Plugins

Libraries

Type Inference
Program Synthesis

Proof Search
Engine

Kernel Frontend
Parsing

UI

Tactics

Notation
System

TCB

● Users input documents in a high-level
mathematical proof language

● High-level language is elaborated to the
core calculus

● Tactics and type inference perform
program search.

● Kernel checks correctness of the proofs

● System is extensible

The Interactive Proof Cycle

200.000 lines of OCaml code
120.000 lines of Coq code
5.000 lines of C
TCB ~ 10.000 lines

 21 / 43

Success Stories

● Fundamental maths: 4-color theorem, Feit-Thompson

 22 / 43

Success Stories

● Software Verification: CompCert, Fiat-Crypto, Deepspec,
IRIS, blockchain, great impact at PL venues

 23 / 43

Success Stories

● Teaching: Software Foundations, CPDT, many schools and
tutorials

Links to resources
In the course

Webpage

 24 / 43

Coq vs Other Systems

Coq both a PL and an Interactive Theorem Prover

● vs traditional PL:

Notations, elaboration, implicit arguments, tactics, higher-order unif,
partial evaluation, fp, interactive development, slower

● vs Isabelle: Different logic ; Isabelle interface much more user-friendly
● vs Lean:

different development model and user base, different strengths
implementation & compatibility. Punch with math community.

● Vs Adga: impredicativity, trust-base, tactics, less experimental features

Development needs to adapt, or risk becoming obsolete.
Huge legacy codebase difficults progress => research topic

 25 / 43

Coq’s Ecosystem

Large work in the last years to build a community

● Zulip Forum: Main forum, both users and devs
● Coq Community: collective maintenance
● StackOverflow, mailing lists
● GitHub project
● Events: 2 Workshops, 1 user and dev meetings,

diversity, misc hackathons, schools….

Development model pretty unique among interactive theorem
Provers, has pros and cons.

 26 / 43

Coq’s Vernacular Language
Type theory is a very bare language
Coq provides many user-level constructions to do math

Record abelian (V : Type) :=
 Mixin {
 zero : V;
 opp : V -> V;
 add : V -> V -> V;
 _ : associative add;
 _ : commutative add;
 _ : left_id zero add;
 _ : left_inverse zero opp add
 }.

Instance abelian int :=
 {
 zero := 0;
 opp : -;
 add : +;
 addiA;
 addiC;
 add0i;
 ...
 }.

Of particular interest are notations, tactics, structures,
hints, definitions and modules, … (over 200 vernaculars)

Lemma mulrnDl (T:abType) (x y:T) n: {morph (x => x *+ n) : x y / x + y}.
Proof. move=> x y; elim: n => [|n IHn]; rewrite ?addr0 // !mulrS.
by rewrite addrCA -!addrA -IHn -addrCA.
Qed.

 27 / 43

Doing Proofs: What is Hard?

Franco Donatoni – Babài Notations (c) John Cage

Interpretation

With high confidence comes high cost
Proof assistants notoriously difficult to use

Human vs Machine impedance

 28 / 43

Doing Proofs: What is Hard?

(c) The Stacks Project

Manual Translation + Interactive Interpretation

With high confidence comes high cost
Proof assistants notoriously difficult to use

Human side: rich natural, mathematical, graphical language
Computer side: minimal “assembler” language of proof terms

Coq Document (Text-based)

Kernel-level Proof Term

 29 / 43

Other Important Challenges
 Installing things!
 Libraries that don’t work / outdated proofs

● Searching for things without success

● Bad display / notations
● Boilerplate / trivial proofs

● Synchronization / merging problems

● Lack of documentation
● Dumb or outdated interfaces

A mix of Social, Research, and Engineering Problems!

 30 / 43

Have we reached a Critical Point?

● LaTeX / Literate Programming: Stacks
● Education for Maths: Edukera, WaterProof
● Semantic-Aware, Interactive: Nota, ScholarPhi
● Structure-Aware: Hazelnut, Actema
● Interactive Documentation: Alectryon
● Self-contained formal documents: jsCoq, Holbert

How far from an integral solution?

Recent times have seen a proliferation of formal and
semi-formal collaborative math writing systems

 31 / 43

We have reached a Critical Point

Current solutions don’t address current needs

● Jupyter Notebooks: Great for computational content, falls
short for general verified math and software

● Overleaf, Wikis, Stacks: Don’t integrate with tools that
can understand and validate content

● Traditional ITPs (Coq, Lean, Isabelle,...): Lack
accessibility, collaboration features

The area has become a very hot topic in the last year

 32 / 43

jscoq.wiki: a formally-verifiable Wiki!
jsCoq: Towards Hybrid Interfaces for Theorem Proving (UITP2016)

 33 / 43

jscoq.wiki: a formally-verifiable Wiki!
jsCoq: Towards Hybrid Interfaces for Theorem Proving (UITP2016)

Try it!
jscoq.github.io

 34 / 43

Formal Hybrid Documents

We now show that + is commutative:

Coq’s
Kernel
State

 Lemma addnC : commutative +.
 Proof. elim=> [//|n iHn]. Qed.

Interpretation

The document calculus knows 3 kinds of objects,
and organizes them by containment:
● semi-structured text: free form, metadata

can be updated and extracted
● meta-logical objects: objects that are

formal, but are not seen by the kernel
● logical objects: objects that will be sent to

the kernel, after interpretation

Theorem (soundness): The interpretation
function respects the logical structure in the
document.

We cannot skip sending a logical definition or
theorem to the kernel.Formally:

I(L1 L2,M) = I(L1,M) I(L2,M)⊕ ⊕

Definition and soundness of interpretation

Note the document is not checking correctly, as the proof is incorrect

❌

 35 / 43

Formal Hybrid Documents

We now show that + is commutative:

Coq’s
Kernel
State

 Lemma addnC : commutative +.
 Proof. elim=> [//|n iHn]. Qed.

 Definition bar := addnC.

Interpretation

Proof development is best done by gradually
refining human-style specs to their formal
counterpart.

In this example, the proof of addnC is replaced
by an unknown ?, which may only error if used.
Error propagation can be contained
structurally, to produce a better user
experience. And bar can still be checked.

Gradual typing for Dependently Typed
Systems is a very new area, and we will use it
to formally model the continuous process
where a formal document evolves towards
full validation.

Gradual Document Interpretation: A formal theory of Error Recovery

Theoretical Challenge: relation with interpretation soundness

❌

✓

 36 / 43

Formal Hybrid Documents

We now show that + is commutative:

Coq’s
Kernel
State

 Lemma addnC : commutative +.
 Proof. elim=> [//|n iHn]. Qed.

 Definition bar := addnC.

Interpretation

Incremental Interpretation: Avoid Re-Doing Work

Shift from study of proofs to the study of evolution of proofs

We now show that + is commutative:

Coq’s
Kernel
State

 Lemma addnC : commutative +.
 Proof. elim=> [//|n ->]. Qed.

 Definition bar := addnC.
Δ=[iHn,->]

I(Δ=[iHn,->])

Incremental checking an essential
property for all our applications.

Soundness comes from the
commuting diagram.

Open: Incrementality + Structure

❌ ✓✓

 37 / 43

Enabling Document-based Research

● Documents as source: Indexing, Dataset Extraction

● Documents as target: Automatic “fuzzy” translation of
mathematical texts, with feedback!

● More: Structured access provides an abstraction layer

● Foundation for M.L. / S.E. collaboration

A more fancy example: constraint-aided conflict resolution,
SMT finds the best resolution w.r.t. doc soundness

Document theory: validity, distance “Mutation Testing for Coq”

Use checker as Oracle in “soft” experiments (ASE2019)

A more fancy example: constraint-aided conflict resolution,
SMT finds the best resolution w.r.t. doc soundness

 38 / 43

SerAPI: Communicating with Coq
Enable other tools to interact easily with Coq

Not easy due to extensible nature; design constraints:

● Low-effort: cannot justify a large time sink

● Lightweight: neither can the users

● Maintenable: no use if it will stop working in 6 months

● Robust: API for clients should “resist change”

● Machine-oriented: Main use case is to talk to tools

● User-driven: convenience for users triumphs ideology

● Should be easy to install, work on unmodified Coq

Extensive use of OCaml’s meta-programming system
PPX

 39 / 43

SerAPI: Interaction Protocol

type cmd =
 | NewDoc of newdoc_opts
 | Add of add_opts * string
 | Cancel of Stateid.t list
 | Exec of Stateid.t
 | Query of query_opt * query_cmd
 | Print of print_opt * coq_object

type coq_object =
 | CoqPp of Pp.t
 | CoqLoc of Loc.t
 | CoqTok of Tok.t list
 | CoqAst of Vernacexpr.vernac_control Loc.located

type query_cmd =
 | Option (** List of options Coq knows about *)
 | Goals (** Current goals, in kernel form *)
 | Ast (** Ast for the current sentence *)
 | TypeOf of string

control and query protocols

Then, these object definitions are serialized to JSON or Sexps
(Add ((ontop 3) (limit 3)) “Definition foo := 3.”) (Query ((sid 3)) Ast)

 40 / 43

Improving Coq’s Printing
Coq’s current printing system still textual
Roots on console-based interaction

Main problems: 1-dimensional layout, lack of meta-data

 41 / 43

The BoxModel.t printer

type t =
 | Variable of string
 | Constant of string
 | Identifier of Id.t
 | Sort of string list
 | App of { fn : t
 ; impl : t list
 ; argl : t list
 }
 | Abs of { kind : abs_kind; binderl : t list; v : t }
 | Let of { lhs : t; rhs : t; typ : t option; v : t }
 | Notation of
 { key : string
 ; args : t list
 ; raw : t
 }

module Id : sig
 type t =
 { relative : string
 ; absolute : string option
 }
end

Adopt as output a LaTeX/HTML box model
Plus attach semantic information à la Isabelle

 42 / 43

Rendering to Web Components

Standard by Google, 2015, well supported
Allows to define custom tags in the DOM

● <coq-notation raw=”...”></coq-notation>
● <coq-app>...</coq-app>
● <coq-binder-list> ... </coq-binder-list>
● Reusable components, shadow-DOM
● Class based: extend <coq-notation> for your purposes!

● Programmable with JavaScript / TypeScript

In alpha stage, collaboration with Actema as to define
an interactive, 2-way model

 43 / 43

Summary

● Bringing together mathematical writing, formal logic, and
collaboration research

● Trying to match today’s demands

● Important little step to improve validation in science
● Co-enrichment between PL and a few other fields
● State of the art PL proposals (gradual, incremental, differential)...

A wide-scope project, potentially large impact
Great opportunity to collaborate with several CS areas

Reflecting the reality of a more and more multidisciplinary
setup in computer science.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43

