Loading worker... 61%

xxxxxxxxxx### Welcome to JsCoqβ- You can edit this document as you please- Coq will recognize the code snippets as Coq- You will be able to save the document and link to other documents soonβWe can also add some random math:β$$\sum_i a_i * b_i$$βI *love* random math $x \cdot y \approx y \cdot x$.β```coqFrom Coq Require Import List.Import ListNotations.βFrom Waterproof Require Import Tactics.```β```coqLemma rev_snoc_cons A : forall (x : A) (l : list A), rev (l ++ [x]) = x :: rev l.Proof. induction l. - reflexivity. - simpl. rewrite IHl. simpl. reflexivity.Qed.```βTry to update _above_ and **below**:```coqTheorem rev_rev A : forall (l : list A), rev (rev l) = l.Proof. induction l. - reflexivity. - simpl. rewrite rev_snoc_cons. rewrite IHl. reflexivity.Qed.```βPlease edit your code here!ββLoading worker... 61%
