1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* La tactique Fourier ne fonctionne de manière sûre que si les coefficients des inéquations et équations sont entiers. En attendant la tactique Field. *) open Constr open Tactics open Names open Globnames open Fourier open Contradiction open Proofview.Notations (****************************************************************************** Opérations sur les combinaisons linéaires affines. La partie homogène d'une combinaison linéaire est en fait une table de hash qui donne le coefficient d'un terme du calcul des constructions, qui est zéro si le terme n'y est pas. *) module Constrhash = Hashtbl.Make(Constr) type flin = {fhom: rational Constrhash.t; fcste:rational};; let flin_zero () = {fhom=Constrhash.create 50;fcste=r0};; let flin_coef f x = try Constrhash.find f.fhom x with Not_found -> r0;; let flin_add f x c = let cx = flin_coef f x in Constrhash.replace f.fhom x (rplus cx c); f ;; let flin_add_cste f c = {fhom=f.fhom; fcste=rplus f.fcste c} ;; let flin_one () = flin_add_cste (flin_zero()) r1;; let flin_plus f1 f2 = let f3 = flin_zero() in Constrhash.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom; Constrhash.iter (fun x c -> let _=flin_add f3 x c in ()) f2.fhom; flin_add_cste (flin_add_cste f3 f1.fcste) f2.fcste; ;; let flin_minus f1 f2 = let f3 = flin_zero() in Constrhash.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom; Constrhash.iter (fun x c -> let _=flin_add f3 x (rop c) in ()) f2.fhom; flin_add_cste (flin_add_cste f3 f1.fcste) (rop f2.fcste); ;; let flin_emult a f = let f2 = flin_zero() in Constrhash.iter (fun x c -> let _=flin_add f2 x (rmult a c) in ()) f.fhom; flin_add_cste f2 (rmult a f.fcste); ;; (*****************************************************************************) type ineq = Rlt | Rle | Rgt | Rge let string_of_R_constant kn = match Constant.repr3 kn with | ModPath.MPfile dir, sec_dir, id when sec_dir = DirPath.empty && DirPath.to_string dir = "Coq.Reals.Rdefinitions" -> Label.to_string id | _ -> "constant_not_of_R" let rec string_of_R_constr c = match Constr.kind c with Cast (c,_,_) -> string_of_R_constr c |Const (c,_) -> string_of_R_constant c | _ -> "not_of_constant" exception NoRational let rec rational_of_constr c = match Constr.kind c with | Cast (c,_,_) -> (rational_of_constr c) | App (c,args) -> (match (string_of_R_constr c) with | "Ropp" -> rop (rational_of_constr args.(0)) | "Rinv" -> rinv (rational_of_constr args.(0)) | "Rmult" -> rmult (rational_of_constr args.(0)) (rational_of_constr args.(1)) | "Rdiv" -> rdiv (rational_of_constr args.(0)) (rational_of_constr args.(1)) | "Rplus" -> rplus (rational_of_constr args.(0)) (rational_of_constr args.(1)) | "Rminus" -> rminus (rational_of_constr args.(0)) (rational_of_constr args.(1)) | _ -> raise NoRational) | Const (kn,_) -> (match (string_of_R_constant kn) with "R1" -> r1 |"R0" -> r0 | _ -> raise NoRational) | _ -> raise NoRational ;; exception NoLinear let rec flin_of_constr c = try( match Constr.kind c with | Cast (c,_,_) -> (flin_of_constr c) | App (c,args) -> (match (string_of_R_constr c) with "Ropp" -> flin_emult (rop r1) (flin_of_constr args.(0)) | "Rplus"-> flin_plus (flin_of_constr args.(0)) (flin_of_constr args.(1)) | "Rminus"-> flin_minus (flin_of_constr args.(0)) (flin_of_constr args.(1)) | "Rmult"-> (try let a = rational_of_constr args.(0) in try let b = rational_of_constr args.(1) in flin_add_cste (flin_zero()) (rmult a b) with NoRational -> flin_add (flin_zero()) args.(1) a with NoRational -> flin_add (flin_zero()) args.(0) (rational_of_constr args.(1))) | "Rinv"-> let a = rational_of_constr args.(0) in flin_add_cste (flin_zero()) (rinv a) | "Rdiv"-> (let b = rational_of_constr args.(1) in try let a = rational_of_constr args.(0) in flin_add_cste (flin_zero()) (rdiv a b) with NoRational -> flin_add (flin_zero()) args.(0) (rinv b)) |_-> raise NoLinear) | Const (c,_) -> (match (string_of_R_constant c) with "R1" -> flin_one () |"R0" -> flin_zero () |_-> raise NoLinear) |_-> raise NoLinear) with NoRational | NoLinear -> flin_add (flin_zero()) c r1 ;; let flin_to_alist f = let res=ref [] in Constrhash.iter (fun x c -> res:=(c,x)::(!res)) f; !res ;; (* Représentation des hypothèses qui sont des inéquations ou des équations. *) type hineq={hname:constr; (* le nom de l'hypothèse *) htype:string; (* Rlt, Rgt, Rle, Rge, eqTLR ou eqTRL *) hleft:constr; hright:constr; hflin:flin; hstrict:bool} ;; (* Transforme une hypothese h:t en inéquation flin<0 ou flin<=0 *) exception NoIneq let ineq1_of_constr (h,t) = let h = EConstr.Unsafe.to_constr h in let t = EConstr.Unsafe.to_constr t in match (Constr.kind t) with | App (f,args) -> (match Constr.kind f with | Const (c,_) when Array.length args = 2 -> let t1= args.(0) in let t2= args.(1) in (match (string_of_R_constant c) with |"Rlt" -> [{hname=h; htype="Rlt"; hleft=t1; hright=t2; hflin= flin_minus (flin_of_constr t1) (flin_of_constr t2); hstrict=true}] |"Rgt" -> [{hname=h; htype="Rgt"; hleft=t2; hright=t1; hflin= flin_minus (flin_of_constr t2) (flin_of_constr t1); hstrict=true}] |"Rle" -> [{hname=h; htype="Rle"; hleft=t1; hright=t2; hflin= flin_minus (flin_of_constr t1) (flin_of_constr t2); hstrict=false}] |"Rge" -> [{hname=h; htype="Rge"; hleft=t2; hright=t1; hflin= flin_minus (flin_of_constr t2) (flin_of_constr t1); hstrict=false}] |_-> raise NoIneq) | Ind ((kn,i),_) -> if not (eq_gr (IndRef(kn,i)) Coqlib.glob_eq) then raise NoIneq; let t0= args.(0) in let t1= args.(1) in let t2= args.(2) in (match (Constr.kind t0) with | Const (c,_) -> (match (string_of_R_constant c) with | "R"-> [{hname=h; htype="eqTLR"; hleft=t1; hright=t2; hflin= flin_minus (flin_of_constr t1) (flin_of_constr t2); hstrict=false}; {hname=h; htype="eqTRL"; hleft=t2; hright=t1; hflin= flin_minus (flin_of_constr t2) (flin_of_constr t1); hstrict=false}] |_-> raise NoIneq) |_-> raise NoIneq) |_-> raise NoIneq) |_-> raise NoIneq ;; (* Applique la méthode de Fourier à une liste d'hypothèses (type hineq) *) let fourier_lineq lineq1 = let nvar=ref (-1) in let hvar=Constrhash.create 50 in (* la table des variables des inéquations *) List.iter (fun f -> Constrhash.iter (fun x _ -> if not (Constrhash.mem hvar x) then begin nvar:=(!nvar)+1; Constrhash.add hvar x (!nvar) end) f.hflin.fhom) lineq1; let sys= List.map (fun h-> let v=Array.make ((!nvar)+1) r0 in Constrhash.iter (fun x c -> v.(Constrhash.find hvar x)<-c) h.hflin.fhom; ((Array.to_list v)@[rop h.hflin.fcste],h.hstrict)) lineq1 in unsolvable sys ;; (*********************************************************************) (* Defined constants *) let get = Lazy.force let cget = get let eget c = EConstr.of_constr (Lazy.force c) let constant path s = Universes.constr_of_global @@ Coqlib.coq_reference "Fourier" path s (* Standard library *) open Coqlib let coq_sym_eqT = lazy (build_coq_eq_sym ()) let coq_False = lazy (Universes.constr_of_global @@ build_coq_False ()) let coq_not = lazy (Universes.constr_of_global @@ build_coq_not ()) let coq_eq = lazy (Universes.constr_of_global @@ build_coq_eq ()) (* Rdefinitions *) let constant_real = constant ["Reals";"Rdefinitions"] let coq_Rlt = lazy (constant_real "Rlt") let coq_Rgt = lazy (constant_real "Rgt") let coq_Rle = lazy (constant_real "Rle") let coq_Rge = lazy (constant_real "Rge") let coq_R = lazy (constant_real "R") let coq_Rminus = lazy (constant_real "Rminus") let coq_Rmult = lazy (constant_real "Rmult") let coq_Rplus = lazy (constant_real "Rplus") let coq_Ropp = lazy (constant_real "Ropp") let coq_Rinv = lazy (constant_real "Rinv") let coq_R0 = lazy (constant_real "R0") let coq_R1 = lazy (constant_real "R1") (* RIneq *) let coq_Rinv_1 = lazy (constant ["Reals";"RIneq"] "Rinv_1") (* Fourier_util *) let constant_fourier = constant ["fourier";"Fourier_util"] let coq_Rlt_zero_1 = lazy (constant_fourier "Rlt_zero_1") let coq_Rlt_zero_pos_plus1 = lazy (constant_fourier "Rlt_zero_pos_plus1") let coq_Rle_zero_pos_plus1 = lazy (constant_fourier "Rle_zero_pos_plus1") let coq_Rlt_mult_inv_pos = lazy (constant_fourier "Rlt_mult_inv_pos") let coq_Rle_zero_zero = lazy (constant_fourier "Rle_zero_zero") let coq_Rle_zero_1 = lazy (constant_fourier "Rle_zero_1") let coq_Rle_mult_inv_pos = lazy (constant_fourier "Rle_mult_inv_pos") let coq_Rnot_lt0 = lazy (constant_fourier "Rnot_lt0") let coq_Rle_not_lt = lazy (constant_fourier "Rle_not_lt") let coq_Rfourier_gt_to_lt = lazy (constant_fourier "Rfourier_gt_to_lt") let coq_Rfourier_ge_to_le = lazy (constant_fourier "Rfourier_ge_to_le") let coq_Rfourier_eqLR_to_le = lazy (constant_fourier "Rfourier_eqLR_to_le") let coq_Rfourier_eqRL_to_le = lazy (constant_fourier "Rfourier_eqRL_to_le") let coq_Rfourier_not_ge_lt = lazy (constant_fourier "Rfourier_not_ge_lt") let coq_Rfourier_not_gt_le = lazy (constant_fourier "Rfourier_not_gt_le") let coq_Rfourier_not_le_gt = lazy (constant_fourier "Rfourier_not_le_gt") let coq_Rfourier_not_lt_ge = lazy (constant_fourier "Rfourier_not_lt_ge") let coq_Rfourier_lt = lazy (constant_fourier "Rfourier_lt") let coq_Rfourier_le = lazy (constant_fourier "Rfourier_le") let coq_Rfourier_lt_lt = lazy (constant_fourier "Rfourier_lt_lt") let coq_Rfourier_lt_le = lazy (constant_fourier "Rfourier_lt_le") let coq_Rfourier_le_lt = lazy (constant_fourier "Rfourier_le_lt") let coq_Rfourier_le_le = lazy (constant_fourier "Rfourier_le_le") let coq_Rnot_lt_lt = lazy (constant_fourier "Rnot_lt_lt") let coq_Rnot_le_le = lazy (constant_fourier "Rnot_le_le") let coq_Rlt_not_le_frac_opp = lazy (constant_fourier "Rlt_not_le_frac_opp") (****************************************************************************** Construction de la preuve en cas de succès de la méthode de Fourier, i.e. on obtient une contradiction. *) let is_int x = (x.den)=1 ;; (* fraction = couple (num,den) *) let rational_to_fraction x= (x.num,x.den) ;; (* traduction -3 -> (Ropp (Rplus R1 (Rplus R1 R1))) *) let int_to_real n = let nn=abs n in if nn=0 then get coq_R0 else (let s=ref (get coq_R1) in for _i = 1 to (nn-1) do s:=mkApp (get coq_Rplus,[|get coq_R1;!s|]) done; if n<0 then mkApp (get coq_Ropp, [|!s|]) else !s) ;; (* -1/2 -> (Rmult (Ropp R1) (Rinv (Rplus R1 R1))) *) let rational_to_real x = let (n,d)=rational_to_fraction x in mkApp (get coq_Rmult, [|int_to_real n;mkApp(get coq_Rinv,[|int_to_real d|])|]) ;; (* preuve que 0<n*1/d *) let tac_zero_inf_pos gl (n,d) = let get = eget in let tacn=ref (apply (get coq_Rlt_zero_1)) in let tacd=ref (apply (get coq_Rlt_zero_1)) in for _i = 1 to n - 1 do tacn:=(Tacticals.New.tclTHEN (apply (get coq_Rlt_zero_pos_plus1)) !tacn); done; for _i = 1 to d - 1 do tacd:=(Tacticals.New.tclTHEN (apply (get coq_Rlt_zero_pos_plus1)) !tacd); done; (Tacticals.New.tclTHENS (apply (get coq_Rlt_mult_inv_pos)) [!tacn;!tacd]) ;; (* preuve que 0<=n*1/d *) let tac_zero_infeq_pos gl (n,d)= let get = eget in let tacn=ref (if n=0 then (apply (get coq_Rle_zero_zero)) else (apply (get coq_Rle_zero_1))) in let tacd=ref (apply (get coq_Rlt_zero_1)) in for _i = 1 to n - 1 do tacn:=(Tacticals.New.tclTHEN (apply (get coq_Rle_zero_pos_plus1)) !tacn); done; for _i = 1 to d - 1 do tacd:=(Tacticals.New.tclTHEN (apply (get coq_Rlt_zero_pos_plus1)) !tacd); done; (Tacticals.New.tclTHENS (apply (get coq_Rle_mult_inv_pos)) [!tacn;!tacd]) ;; (* preuve que 0<(-n)*(1/d) => False *) let tac_zero_inf_false gl (n,d) = let get = eget in if n=0 then (apply (get coq_Rnot_lt0)) else (Tacticals.New.tclTHEN (apply (get coq_Rle_not_lt)) (tac_zero_infeq_pos gl (-n,d))) ;; (* preuve que 0<=(-n)*(1/d) => False *) let tac_zero_infeq_false gl (n,d) = let get = eget in (Tacticals.New.tclTHEN (apply (get coq_Rlt_not_le_frac_opp)) (tac_zero_inf_pos gl (-n,d))) ;; let exact = exact_check;; let tac_use h = let get = eget in let tac = exact (EConstr.of_constr h.hname) in match h.htype with "Rlt" -> tac |"Rle" -> tac |"Rgt" -> (Tacticals.New.tclTHEN (apply (get coq_Rfourier_gt_to_lt)) tac) |"Rge" -> (Tacticals.New.tclTHEN (apply (get coq_Rfourier_ge_to_le)) tac) |"eqTLR" -> (Tacticals.New.tclTHEN (apply (get coq_Rfourier_eqLR_to_le)) tac) |"eqTRL" -> (Tacticals.New.tclTHEN (apply (get coq_Rfourier_eqRL_to_le)) tac) |_->assert false ;; (* let is_ineq (h,t) = match (Constr.kind t) with App (f,args) -> (match (string_of_R_constr f) with "Rlt" -> true | "Rgt" -> true | "Rle" -> true | "Rge" -> true (* Wrong:not in Rdefinitions: *) | "eqT" -> (match (string_of_R_constr args.(0)) with "R" -> true | _ -> false) | _ ->false) |_->false ;; *) let list_of_sign s = let open Context.Named.Declaration in List.map (function LocalAssum (name, typ) -> name, typ | LocalDef (name, _, typ) -> name, typ) s;; let mkAppL a = let l = Array.to_list a in mkApp(List.hd l, Array.of_list (List.tl l)) ;; exception GoalDone (* Résolution d'inéquations linéaires dans R *) let rec fourier () = Proofview.Goal.nf_enter begin fun gl -> let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in Coqlib.check_required_library ["Coq";"fourier";"Fourier"]; let goal = Termops.strip_outer_cast sigma concl in let goal = EConstr.Unsafe.to_constr goal in let fhyp=Id.of_string "new_hyp_for_fourier" in (* si le but est une inéquation, on introduit son contraire, et le but à prouver devient False *) try match (Constr.kind goal) with App (f,args) -> let get = eget in (match (string_of_R_constr f) with "Rlt" -> (Tacticals.New.tclTHEN (Tacticals.New.tclTHEN (apply (get coq_Rfourier_not_ge_lt)) (intro_using fhyp)) (fourier ())) |"Rle" -> (Tacticals.New.tclTHEN (Tacticals.New.tclTHEN (apply (get coq_Rfourier_not_gt_le)) (intro_using fhyp)) (fourier ())) |"Rgt" -> (Tacticals.New.tclTHEN (Tacticals.New.tclTHEN (apply (get coq_Rfourier_not_le_gt)) (intro_using fhyp)) (fourier ())) |"Rge" -> (Tacticals.New.tclTHEN (Tacticals.New.tclTHEN (apply (get coq_Rfourier_not_lt_ge)) (intro_using fhyp)) (fourier ())) |_-> raise GoalDone) |_-> raise GoalDone with GoalDone -> (* les hypothèses *) let hyps = List.map (fun (h,t)-> (EConstr.mkVar h,t)) (list_of_sign (Proofview.Goal.hyps gl)) in let lineq =ref [] in List.iter (fun h -> try (lineq:=(ineq1_of_constr h)@(!lineq)) with NoIneq -> ()) hyps; (* lineq = les inéquations découlant des hypothèses *) if !lineq=[] then CErrors.user_err Pp.(str "No inequalities"); let res=fourier_lineq (!lineq) in let tac=ref (Proofview.tclUNIT ()) in if res=[] then CErrors.user_err Pp.(str "fourier failed") (* l'algorithme de Fourier a réussi: on va en tirer une preuve Coq *) else (match res with [(cres,sres,lc)]-> (* lc=coefficients multiplicateurs des inéquations qui donnent 0<cres ou 0<=cres selon sres *) (*print_string "Fourier's method can prove the goal...";flush stdout;*) let lutil=ref [] in List.iter (fun (h,c) -> if c<>r0 then (lutil:=(h,c)::(!lutil)(*; print_rational(c);print_string " "*))) (List.combine (!lineq) lc); (* on construit la combinaison linéaire des inéquation *) (match (!lutil) with (h1,c1)::lutil -> let s=ref (h1.hstrict) in let t1=ref (mkAppL [|get coq_Rmult; rational_to_real c1; h1.hleft|]) in let t2=ref (mkAppL [|get coq_Rmult; rational_to_real c1; h1.hright|]) in List.iter (fun (h,c) -> s:=(!s)||(h.hstrict); t1:=(mkAppL [|get coq_Rplus; !t1; mkAppL [|get coq_Rmult; rational_to_real c; h.hleft|] |]); t2:=(mkAppL [|get coq_Rplus; !t2; mkAppL [|get coq_Rmult; rational_to_real c; h.hright|] |])) lutil; let ineq=mkAppL [|if (!s) then get coq_Rlt else get coq_Rle; !t1; !t2 |] in let tc=rational_to_real cres in (* puis sa preuve *) let get = eget in let tac1=ref (if h1.hstrict then (Tacticals.New.tclTHENS (apply (get coq_Rfourier_lt)) [tac_use h1; tac_zero_inf_pos gl (rational_to_fraction c1)]) else (Tacticals.New.tclTHENS (apply (get coq_Rfourier_le)) [tac_use h1; tac_zero_inf_pos gl (rational_to_fraction c1)])) in s:=h1.hstrict; List.iter (fun (h,c)-> (if (!s) then (if h.hstrict then tac1:=(Tacticals.New.tclTHENS (apply (get coq_Rfourier_lt_lt)) [!tac1;tac_use h; tac_zero_inf_pos gl (rational_to_fraction c)]) else tac1:=(Tacticals.New.tclTHENS (apply (get coq_Rfourier_lt_le)) [!tac1;tac_use h; tac_zero_inf_pos gl (rational_to_fraction c)])) else (if h.hstrict then tac1:=(Tacticals.New.tclTHENS (apply (get coq_Rfourier_le_lt)) [!tac1;tac_use h; tac_zero_inf_pos gl (rational_to_fraction c)]) else tac1:=(Tacticals.New.tclTHENS (apply (get coq_Rfourier_le_le)) [!tac1;tac_use h; tac_zero_inf_pos gl (rational_to_fraction c)]))); s:=(!s)||(h.hstrict)) lutil; let tac2= if sres then tac_zero_inf_false gl (rational_to_fraction cres) else tac_zero_infeq_false gl (rational_to_fraction cres) in tac:=(Tacticals.New.tclTHENS (cut (EConstr.of_constr ineq)) [Tacticals.New.tclTHEN (change_concl (EConstr.of_constr (mkAppL [| cget coq_not; ineq|] ))) (Tacticals.New.tclTHEN (apply (if sres then get coq_Rnot_lt_lt else get coq_Rnot_le_le)) (Tacticals.New.tclTHENS (Equality.replace (EConstr.of_constr (mkAppL [|cget coq_Rminus;!t2;!t1|] )) (EConstr.of_constr tc)) [tac2; (Tacticals.New.tclTHENS (Equality.replace (EConstr.of_constr (mkApp (cget coq_Rinv, [|cget coq_R1|]))) (get coq_R1)) (* en attendant Field, ça peut aider Ring de remplacer 1/1 par 1 ... *) [Tacticals.New.tclORELSE (* TODO : Ring.polynom []*) (Proofview.tclUNIT ()) (Proofview.tclUNIT ()); Tacticals.New.pf_constr_of_global (cget coq_sym_eqT) >>= fun symeq -> (Tacticals.New.tclTHEN (apply symeq) (apply (get coq_Rinv_1)))] ) ])); !tac1]); tac:=(Tacticals.New.tclTHENS (cut (get coq_False)) [Tacticals.New.tclTHEN intro (contradiction None); !tac]) |_-> assert false) |_-> assert false ); (* ((tclTHEN !tac (tclFAIL 1 (* 1 au hasard... *))) gl) *) !tac (* ((tclABSTRACT None !tac) gl) *) end ;; (* let fourier_tac x gl = fourier gl ;; let v_fourier = add_tactic "Fourier" fourier_tac *)