1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
open Util open Names open Cic open Term (** Substitutions, code imported from kernel/mod_subst *) module Deltamap = struct [@@@ocaml.warning "-32-34"] type t = delta_resolver let empty = MPmap.empty, KNmap.empty let is_empty (mm, km) = MPmap.is_empty mm && KNmap.is_empty km let add_kn kn hint (mm,km) = (mm,KNmap.add kn hint km) let add_mp mp mp' (mm,km) = (MPmap.add mp mp' mm, km) let remove_mp mp (mm,km) = (MPmap.remove mp mm, km) let find_mp mp map = MPmap.find mp (fst map) let find_kn kn map = KNmap.find kn (snd map) let mem_mp mp map = MPmap.mem mp (fst map) let mem_kn kn map = KNmap.mem kn (snd map) let fold_kn f map i = KNmap.fold f (snd map) i let fold fmp fkn (mm,km) i = MPmap.fold fmp mm (KNmap.fold fkn km i) let join map1 map2 = fold add_mp add_kn map1 map2 end let empty_delta_resolver = Deltamap.empty module Umap = struct [@@@ocaml.warning "-32-34"] type 'a t = 'a umap_t let empty = MPmap.empty, MBImap.empty let is_empty (m1,m2) = MPmap.is_empty m1 && MBImap.is_empty m2 let add_mbi mbi x (m1,m2) = (m1,MBImap.add mbi x m2) let add_mp mp x (m1,m2) = (MPmap.add mp x m1, m2) let find_mp mp map = MPmap.find mp (fst map) let find_mbi mbi map = MBImap.find mbi (snd map) let mem_mp mp map = MPmap.mem mp (fst map) let mem_mbi mbi map = MBImap.mem mbi (snd map) let iter_mbi f map = MBImap.iter f (snd map) let fold fmp fmbi (m1,m2) i = MPmap.fold fmp m1 (MBImap.fold fmbi m2 i) let join map1 map2 = fold add_mp add_mbi map1 map2 end type 'a subst_fun = substitution -> 'a -> 'a let empty_subst = Umap.empty let is_empty_subst = Umap.is_empty let add_mbid mbid mp = Umap.add_mbi mbid (mp,empty_delta_resolver) let add_mp mp1 mp2 = Umap.add_mp mp1 (mp2,empty_delta_resolver) let map_mbid mbid mp = add_mbid mbid mp empty_subst let map_mp mp1 mp2 = add_mp mp1 mp2 empty_subst let mp_in_delta mp = Deltamap.mem_mp mp let find_prefix resolve mp = let rec sub_mp = function | MPdot(mp,l) as mp_sup -> (try Deltamap.find_mp mp_sup resolve with Not_found -> MPdot(sub_mp mp,l)) | p -> Deltamap.find_mp p resolve in try sub_mp mp with Not_found -> mp (** Nota: the following function is slightly different in mod_subst PL: Is it on purpose ? *) let solve_delta_kn resolve kn = try match Deltamap.find_kn kn resolve with | Equiv kn1 -> kn1 | Inline _ -> raise Not_found with Not_found -> let mp,dir,l = KerName.repr kn in let new_mp = find_prefix resolve mp in if mp == new_mp then kn else KerName.make new_mp dir l let gen_of_delta resolve x kn fix_can = let new_kn = solve_delta_kn resolve kn in if kn == new_kn then x else fix_can new_kn let constant_of_delta resolve con = let kn = Constant.user con in gen_of_delta resolve con kn (Constant.make kn) let constant_of_delta2 resolve con = let kn, kn' = Constant.canonical con, Constant.user con in gen_of_delta resolve con kn (Constant.make kn') let mind_of_delta resolve mind = let kn = MutInd.user mind in gen_of_delta resolve mind kn (MutInd.make kn) let mind_of_delta2 resolve mind = let kn, kn' = MutInd.canonical mind, MutInd.user mind in gen_of_delta resolve mind kn (MutInd.make kn') let find_inline_of_delta kn resolve = match Deltamap.find_kn kn resolve with | Inline (_,o) -> o | _ -> raise Not_found let constant_of_delta_with_inline resolve con = let kn1,kn2 = Constant.canonical con, Constant.user con in try find_inline_of_delta kn2 resolve with Not_found -> try find_inline_of_delta kn1 resolve with Not_found -> None let subst_mp0 sub mp = (* 's like subst *) let rec aux mp = match mp with | MPfile sid -> Umap.find_mp mp sub | MPbound bid -> begin try Umap.find_mbi bid sub with Not_found -> Umap.find_mp mp sub end | MPdot (mp1,l) as mp2 -> begin try Umap.find_mp mp2 sub with Not_found -> let mp1',resolve = aux mp1 in MPdot (mp1',l),resolve end in try Some (aux mp) with Not_found -> None let subst_mp sub mp = match subst_mp0 sub mp with None -> mp | Some (mp',_) -> mp' let subst_kn_delta sub kn = let mp,dir,l = KerName.repr kn in match subst_mp0 sub mp with Some (mp',resolve) -> solve_delta_kn resolve (KerName.make mp' dir l) | None -> kn let subst_kn sub kn = let mp,dir,l = KerName.repr kn in match subst_mp0 sub mp with Some (mp',_) -> KerName.make mp' dir l | None -> kn exception No_subst type sideconstantsubst = | User | Canonical let gen_subst_mp f sub mp1 mp2 = match subst_mp0 sub mp1, subst_mp0 sub mp2 with | None, None -> raise No_subst | Some (mp',resolve), None -> User, (f mp' mp2), resolve | None, Some (mp',resolve) -> Canonical, (f mp1 mp'), resolve | Some (mp1',_), Some (mp2',resolve2) -> Canonical, (f mp1' mp2'), resolve2 let make_mind_equiv mpu mpc dir l = let knu = KerName.make mpu dir l in if mpu == mpc then MutInd.make1 knu else MutInd.make knu (KerName.make mpc dir l) let subst_ind sub mind = let kn1,kn2 = MutInd.user mind, MutInd.canonical mind in let mp1,dir,l = KerName.repr kn1 in let mp2,_,_ = KerName.repr kn2 in let rebuild_mind mp1 mp2 = make_mind_equiv mp1 mp2 dir l in try let side,mind',resolve = gen_subst_mp rebuild_mind sub mp1 mp2 in match side with | User -> mind_of_delta resolve mind' | Canonical -> mind_of_delta2 resolve mind' with No_subst -> mind let make_con_equiv mpu mpc dir l = let knu = KerName.make mpu dir l in if mpu == mpc then Constant.make1 knu else Constant.make knu (KerName.make mpc dir l) let subst_con0 sub con u = let kn1,kn2 = Constant.user con, Constant.canonical con in let mp1,dir,l = KerName.repr kn1 in let mp2,_,_ = KerName.repr kn2 in let rebuild_con mp1 mp2 = make_con_equiv mp1 mp2 dir l in let dup con = con, Const (con, u) in let side,con',resolve = gen_subst_mp rebuild_con sub mp1 mp2 in match constant_of_delta_with_inline resolve con' with | Some t -> con', t | None -> let con'' = match side with | User -> constant_of_delta resolve con' | Canonical -> constant_of_delta2 resolve con' in if con'' == con then raise No_subst else dup con'' let rec map_kn f f' c = let func = map_kn f f' in match c with | Const (kn, u) -> (try snd (f' kn u) with No_subst -> c) | Proj (p,t) -> let p' = Projection.map (fun kn -> try fst (f' kn Univ.Instance.empty) with No_subst -> kn) p in let t' = func t in if p' == p && t' == t then c else Proj (p', t') | Ind ((kn,i),u) -> let kn' = f kn in if kn'==kn then c else Ind ((kn',i),u) | Construct (((kn,i),j),u) -> let kn' = f kn in if kn'==kn then c else Construct (((kn',i),j),u) | Case (ci,p,ct,l) -> let ci_ind = let (kn,i) = ci.ci_ind in let kn' = f kn in if kn'==kn then ci.ci_ind else kn',i in let p' = func p in let ct' = func ct in let l' = Array.smartmap func l in if (ci.ci_ind==ci_ind && p'==p && l'==l && ct'==ct)then c else Case ({ci with ci_ind = ci_ind}, p',ct', l') | Cast (ct,k,t) -> let ct' = func ct in let t'= func t in if (t'==t && ct'==ct) then c else Cast (ct', k, t') | Prod (na,t,ct) -> let ct' = func ct in let t'= func t in if (t'==t && ct'==ct) then c else Prod (na, t', ct') | Lambda (na,t,ct) -> let ct' = func ct in let t'= func t in if (t'==t && ct'==ct) then c else Lambda (na, t', ct') | LetIn (na,b,t,ct) -> let ct' = func ct in let t'= func t in let b'= func b in if (t'==t && ct'==ct && b==b') then c else LetIn (na, b', t', ct') | App (ct,l) -> let ct' = func ct in let l' = Array.smartmap func l in if (ct'== ct && l'==l) then c else App (ct',l') | Evar (e,l) -> let l' = Array.smartmap func l in if (l'==l) then c else Evar (e,l') | Fix (ln,(lna,tl,bl)) -> let tl' = Array.smartmap func tl in let bl' = Array.smartmap func bl in if (bl == bl'&& tl == tl') then c else Fix (ln,(lna,tl',bl')) | CoFix(ln,(lna,tl,bl)) -> let tl' = Array.smartmap func tl in let bl' = Array.smartmap func bl in if (bl == bl'&& tl == tl') then c else CoFix (ln,(lna,tl',bl')) | _ -> c let subst_mps sub c = if is_empty_subst sub then c else map_kn (subst_ind sub) (subst_con0 sub) c let rec replace_mp_in_mp mpfrom mpto mp = match mp with | _ when ModPath.equal mp mpfrom -> mpto | MPdot (mp1,l) -> let mp1' = replace_mp_in_mp mpfrom mpto mp1 in if mp1==mp1' then mp else MPdot (mp1',l) | _ -> mp let rec mp_in_mp mp mp1 = match mp1 with | _ when ModPath.equal mp1 mp -> true | MPdot (mp2,l) -> mp_in_mp mp mp2 | _ -> false let subset_prefixed_by mp resolver = let mp_prefix mkey mequ rslv = if mp_in_mp mp mkey then Deltamap.add_mp mkey mequ rslv else rslv in let kn_prefix kn hint rslv = match hint with | Inline _ -> rslv | Equiv _ -> if mp_in_mp mp (KerName.modpath kn) then Deltamap.add_kn kn hint rslv else rslv in Deltamap.fold mp_prefix kn_prefix resolver empty_delta_resolver let subst_dom_delta_resolver subst resolver = let mp_apply_subst mkey mequ rslv = Deltamap.add_mp (subst_mp subst mkey) mequ rslv in let kn_apply_subst kkey hint rslv = Deltamap.add_kn (subst_kn subst kkey) hint rslv in Deltamap.fold mp_apply_subst kn_apply_subst resolver empty_delta_resolver let subst_mp_delta sub mp mkey = match subst_mp0 sub mp with None -> empty_delta_resolver,mp | Some (mp',resolve) -> let mp1 = find_prefix resolve mp' in let resolve1 = subset_prefixed_by mp1 resolve in (subst_dom_delta_resolver (map_mp mp1 mkey) resolve1),mp1 let gen_subst_delta_resolver dom subst resolver = let mp_apply_subst mkey mequ rslv = let mkey' = if dom then subst_mp subst mkey else mkey in let rslv',mequ' = subst_mp_delta subst mequ mkey in Deltamap.join rslv' (Deltamap.add_mp mkey' mequ' rslv) in let kn_apply_subst kkey hint rslv = let kkey' = if dom then subst_kn subst kkey else kkey in let hint' = match hint with | Equiv kequ -> Equiv (subst_kn_delta subst kequ) | Inline (lev,Some t) -> Inline (lev,Some (subst_mps subst t)) | Inline (_,None) -> hint in Deltamap.add_kn kkey' hint' rslv in Deltamap.fold mp_apply_subst kn_apply_subst resolver empty_delta_resolver let subst_codom_delta_resolver = gen_subst_delta_resolver false let subst_dom_codom_delta_resolver = gen_subst_delta_resolver true let update_delta_resolver resolver1 resolver2 = let mp_apply_rslv mkey mequ rslv = if Deltamap.mem_mp mkey resolver2 then rslv else Deltamap.add_mp mkey (find_prefix resolver2 mequ) rslv in let kn_apply_rslv kkey hint rslv = if Deltamap.mem_kn kkey resolver2 then rslv else let hint' = match hint with | Equiv kequ -> Equiv (solve_delta_kn resolver2 kequ) | _ -> hint in Deltamap.add_kn kkey hint' rslv in Deltamap.fold mp_apply_rslv kn_apply_rslv resolver1 empty_delta_resolver let add_delta_resolver resolver1 resolver2 = if resolver1 == resolver2 then resolver2 else if Deltamap.is_empty resolver2 then resolver1 else Deltamap.join (update_delta_resolver resolver1 resolver2) resolver2 let substition_prefixed_by k mp subst = let mp_prefixmp kmp (mp_to,reso) sub = if mp_in_mp mp kmp && not (ModPath.equal mp kmp) then let new_key = replace_mp_in_mp mp k kmp in Umap.add_mp new_key (mp_to,reso) sub else sub in let mbi_prefixmp mbi _ sub = sub in Umap.fold mp_prefixmp mbi_prefixmp subst empty_subst let join subst1 subst2 = let apply_subst mpk add (mp,resolve) res = let mp',resolve' = match subst_mp0 subst2 mp with | None -> mp, None | Some (mp',resolve') -> mp', Some resolve' in let resolve'' = match resolve' with | Some res -> add_delta_resolver (subst_dom_codom_delta_resolver subst2 resolve) res | None -> subst_codom_delta_resolver subst2 resolve in let prefixed_subst = substition_prefixed_by mpk mp' subst2 in Umap.join prefixed_subst (add (mp',resolve'') res) in let mp_apply_subst mp = apply_subst mp (Umap.add_mp mp) in let mbi_apply_subst mbi = apply_subst (MPbound mbi) (Umap.add_mbi mbi) in let subst = Umap.fold mp_apply_subst mbi_apply_subst subst1 empty_subst in Umap.join subst2 subst let from_val x = { subst_value = x; subst_subst = []; } let force fsubst r = match r.subst_subst with | [] -> r.subst_value | s -> let subst = List.fold_left join empty_subst (List.rev s) in let x = fsubst subst r.subst_value in let () = r.subst_subst <- [] in let () = r.subst_value <- x in x let subst_substituted s r = { r with subst_subst = s :: r.subst_subst; } let force_constr = force subst_mps let subst_constr_subst = subst_substituted let subst_lazy_constr sub = function | Indirect (l,dp,i) -> Indirect (sub::l,dp,i) let indirect_opaque_access = ref ((fun dp i -> assert false) : DirPath.t -> int -> constr) let indirect_opaque_univ_access = ref ((fun dp i -> assert false) : DirPath.t -> int -> Univ.ContextSet.t) let force_lazy_constr = function | Indirect (l,dp,i) -> let c = !indirect_opaque_access dp i in force_constr (List.fold_right subst_constr_subst l (from_val c)) let force_lazy_constr_univs = function | OpaqueDef (Indirect (l,dp,i)) -> !indirect_opaque_univ_access dp i | _ -> Univ.ContextSet.empty let subst_constant_def sub = function | Undef inl -> Undef inl | Def c -> Def (subst_constr_subst sub c) | OpaqueDef lc -> OpaqueDef (subst_lazy_constr sub lc) (** Local variables and graph *) let body_of_constant cb = match cb.const_body with | Undef _ -> None | Def c -> Some (force_constr c) | OpaqueDef c -> Some (force_lazy_constr c) let constant_has_body cb = match cb.const_body with | Undef _ -> false | Def _ | OpaqueDef _ -> true let is_opaque cb = match cb.const_body with | OpaqueDef _ -> true | Def _ | Undef _ -> false let opaque_univ_context cb = force_lazy_constr_univs cb.const_body let subst_recarg sub r = match r with | Norec -> r | (Mrec(kn,i)|Imbr (kn,i)) -> let kn' = subst_ind sub kn in if kn==kn' then r else Imbr (kn',i) let mk_norec = Rtree.mk_node Norec [||] let mk_paths r recargs = Rtree.mk_node r (Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs) let dest_recarg p = fst (Rtree.dest_node p) let dest_subterms p = let (_,cstrs) = Rtree.dest_node p in Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs let subst_wf_paths sub p = Rtree.smartmap (subst_recarg sub) p let eq_recarg r1 r2 = match r1, r2 with | Norec, Norec -> true | Mrec i1, Mrec i2 -> Names.eq_ind i1 i2 | Imbr i1, Imbr i2 -> Names.eq_ind i1 i2 | _ -> false let eq_wf_paths = Rtree.equal eq_recarg (**********************************************************************) (* Representation of mutual inductive types in the kernel *) (* Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1 ... with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn *) let subst_decl_arity f g sub ar = match ar with | RegularArity x -> let x' = f sub x in if x' == x then ar else RegularArity x' | TemplateArity x -> let x' = g sub x in if x' == x then ar else TemplateArity x' let subst_rel_declaration sub = Term.map_rel_decl (subst_mps sub) let subst_rel_context sub = List.smartmap (subst_rel_declaration sub) let constant_is_polymorphic cb = match cb.const_universes with | Monomorphic_const _ -> false | Polymorphic_const _ -> true (* TODO: should be changed to non-coping after Term.subst_mps *) (* NB: we leave bytecode and native code fields untouched *) let subst_const_body sub cb = { cb with const_body = subst_constant_def sub cb.const_body; const_type = subst_mps sub cb.const_type } let subst_regular_ind_arity sub s = let uar' = subst_mps sub s.mind_user_arity in if uar' == s.mind_user_arity then s else { mind_user_arity = uar'; mind_sort = s.mind_sort } let subst_template_ind_arity sub s = s (* FIXME records *) let subst_ind_arity = subst_decl_arity subst_regular_ind_arity subst_template_ind_arity let subst_mind_packet sub mbp = { mind_consnames = mbp.mind_consnames; mind_consnrealdecls = mbp.mind_consnrealdecls; mind_consnrealargs = mbp.mind_consnrealargs; mind_typename = mbp.mind_typename; mind_nf_lc = Array.smartmap (subst_mps sub) mbp.mind_nf_lc; mind_arity_ctxt = subst_rel_context sub mbp.mind_arity_ctxt; mind_arity = subst_ind_arity sub mbp.mind_arity; mind_user_lc = Array.smartmap (subst_mps sub) mbp.mind_user_lc; mind_nrealargs = mbp.mind_nrealargs; mind_nrealdecls = mbp.mind_nrealdecls; mind_kelim = mbp.mind_kelim; mind_recargs = subst_wf_paths sub mbp.mind_recargs (*wf_paths*); mind_nb_constant = mbp.mind_nb_constant; mind_nb_args = mbp.mind_nb_args; mind_reloc_tbl = mbp.mind_reloc_tbl } let subst_mind sub mib = { mib with mind_params_ctxt = map_rel_context (subst_mps sub) mib.mind_params_ctxt; mind_packets = Array.smartmap (subst_mind_packet sub) mib.mind_packets } (* Modules *) let rec functor_map fty f0 = function | NoFunctor a -> NoFunctor (f0 a) | MoreFunctor (mbid,ty,e) -> MoreFunctor(mbid,fty ty,functor_map fty f0 e) let implem_map fs fa = function | Struct s -> Struct (fs s) | Algebraic a -> Algebraic (fa a) | impl -> impl let subst_with_body sub = function | WithMod(id,mp) -> WithMod(id,subst_mp sub mp) | WithDef(id,(c,ctx)) -> WithDef(id,(subst_mps sub c,ctx)) let rec subst_expr sub = function | MEident mp -> MEident (subst_mp sub mp) | MEapply (me1,mp2)-> MEapply (subst_expr sub me1, subst_mp sub mp2) | MEwith (me,wd)-> MEwith (subst_expr sub me, subst_with_body sub wd) let rec subst_expression sub me = functor_map (subst_module_type sub) (subst_expr sub) me and subst_signature sub sign = functor_map (subst_module_type sub) (subst_structure sub) sign and subst_structure sub struc = let subst_body = function | SFBconst cb -> SFBconst (subst_const_body sub cb) | SFBmind mib -> SFBmind (subst_mind sub mib) | SFBmodule mb -> SFBmodule (subst_module sub mb) | SFBmodtype mtb -> SFBmodtype (subst_module_type sub mtb) in List.map (fun (l,b) -> (l,subst_body b)) struc and subst_body : 'a. (_ -> 'a -> 'a) -> _ -> 'a generic_module_body -> 'a generic_module_body = fun subst_impl sub mb -> { mb with mod_mp = subst_mp sub mb.mod_mp; mod_expr = subst_impl sub mb.mod_expr; mod_type = subst_signature sub mb.mod_type; mod_type_alg = Option.smartmap (subst_expression sub) mb.mod_type_alg } and subst_module sub mb = subst_body (fun sub e -> implem_map (subst_signature sub) (subst_expression sub) e) sub mb and subst_module_type sub mb = subst_body (fun _ () -> ()) sub mb