1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Util open Term open EConstr open Vars open Termops open Reductionops exception UFAIL of constr*constr (* RIGID-only Martelli-Montanari style unification for CLOSED terms I repeat : t1 and t2 must NOT have ANY free deBruijn sigma is kept normal with respect to itself but is lazily applied to the equation set. Raises UFAIL with a pair of terms *) let pop t = Vars.lift (-1) t let subst_meta subst t = let subst = List.map (fun (m, c) -> (m, EConstr.Unsafe.to_constr c)) subst in EConstr.of_constr (subst_meta subst (EConstr.Unsafe.to_constr t)) let unif evd t1 t2= let bige=Queue.create () and sigma=ref [] in let bind i t= sigma:=(i,t):: (List.map (function (n,tn)->(n,subst_meta [i,t] tn)) !sigma) in let rec head_reduce t= (* forbids non-sigma-normal meta in head position*) match EConstr.kind evd t with Meta i-> (try head_reduce (Int.List.assoc i !sigma) with Not_found->t) | _->t in Queue.add (t1,t2) bige; try while true do let t1,t2=Queue.take bige in let nt1=head_reduce (whd_betaiotazeta evd t1) and nt2=head_reduce (whd_betaiotazeta evd t2) in match (EConstr.kind evd nt1),(EConstr.kind evd nt2) with Meta i,Meta j-> if not (Int.equal i j) then if i<j then bind j nt1 else bind i nt2 | Meta i,_ -> let t=subst_meta !sigma nt2 in if Int.Set.is_empty (free_rels evd t) && not (dependent evd (EConstr.mkMeta i) t) then bind i t else raise (UFAIL(nt1,nt2)) | _,Meta i -> let t=subst_meta !sigma nt1 in if Int.Set.is_empty (free_rels evd t) && not (dependent evd (EConstr.mkMeta i) t) then bind i t else raise (UFAIL(nt1,nt2)) | Cast(_,_,_),_->Queue.add (strip_outer_cast evd nt1,nt2) bige | _,Cast(_,_,_)->Queue.add (nt1,strip_outer_cast evd nt2) bige | (Prod(_,a,b),Prod(_,c,d))|(Lambda(_,a,b),Lambda(_,c,d))-> Queue.add (a,c) bige;Queue.add (pop b,pop d) bige | Case (_,pa,ca,va),Case (_,pb,cb,vb)-> Queue.add (pa,pb) bige; Queue.add (ca,cb) bige; let l=Array.length va in if not (Int.equal l (Array.length vb)) then raise (UFAIL (nt1,nt2)) else for i=0 to l-1 do Queue.add (va.(i),vb.(i)) bige done | App(ha,va),App(hb,vb)-> Queue.add (ha,hb) bige; let l=Array.length va in if not (Int.equal l (Array.length vb)) then raise (UFAIL (nt1,nt2)) else for i=0 to l-1 do Queue.add (va.(i),vb.(i)) bige done | _->if not (eq_constr_nounivs evd nt1 nt2) then raise (UFAIL (nt1,nt2)) done; assert false (* this place is unreachable but needed for the sake of typing *) with Queue.Empty-> !sigma let value evd i t= let add x y= if x<0 then y else if y<0 then x else x+y in let rec vaux term= if isMeta evd term && Int.equal (destMeta evd term) i then 0 else let f v t=add v (vaux t) in let vr=EConstr.fold evd f (-1) term in if vr<0 then -1 else vr+1 in vaux t type instance= Real of (int*constr)*int | Phantom of constr let mk_rel_inst evd t= let new_rel=ref 1 in let rel_env=ref [] in let rec renum_rec d t= match EConstr.kind evd t with Meta n-> (try mkRel (d+(Int.List.assoc n !rel_env)) with Not_found-> let m= !new_rel in incr new_rel; rel_env:=(n,m) :: !rel_env; mkRel (m+d)) | _ -> EConstr.map_with_binders evd succ renum_rec d t in let nt=renum_rec 0 t in (!new_rel - 1,nt) let unif_atoms evd i dom t1 t2= try let t=Int.List.assoc i (unif evd t1 t2) in if isMeta evd t then Some (Phantom dom) else Some (Real(mk_rel_inst evd t,value evd i t1)) with UFAIL(_,_) ->None | Not_found ->Some (Phantom dom) let renum_metas_from k n t= (* requires n = max (free_rels t) *) let l=List.init n (fun i->mkMeta (k+i)) in substl l t let more_general evd (m1,t1) (m2,t2)= let mt1=renum_metas_from 0 m1 t1 and mt2=renum_metas_from m1 m2 t2 in try let sigma=unif evd mt1 mt2 in let p (n,t)= n<m1 || isMeta evd t in List.for_all p sigma with UFAIL(_,_)->false