1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* Created by Jacek Chrzaszcz, Aug 2002 as part of the implementation of the Coq module system *) (* This module provides the main entry points for type-checking basic declarations *) open CErrors open Util open Names open Constr open Declarations open Environ open Entries open Typeops module NamedDecl = Context.Named.Declaration (* Insertion of constants and parameters in environment. *) let equal_eff e1 e2 = let open Entries in match e1, e2 with | { eff = SEsubproof (c1,_,_) }, { eff = SEsubproof (c2,_,_) } -> Names.Constant.equal c1 c2 | { eff = SEscheme (cl1,_) }, { eff = SEscheme (cl2,_) } -> CList.for_all2eq (fun (_,c1,_,_) (_,c2,_,_) -> Names.Constant.equal c1 c2) cl1 cl2 | _ -> false module SideEffects : sig type t val repr : t -> side_effect list val empty : t val add : side_effect -> t -> t val concat : t -> t -> t end = struct let compare_seff e1 e2 = match e1, e2 with | SEsubproof (c1, _, _), SEsubproof (c2, _, _) -> Constant.CanOrd.compare c1 c2 | SEscheme (cl1, _), SEscheme (cl2, _) -> let cmp (_, c1, _, _) (_, c2, _, _) = Constant.CanOrd.compare c1 c2 in CList.compare cmp cl1 cl2 | SEsubproof _, SEscheme _ -> -1 | SEscheme _, SEsubproof _ -> 1 module SeffOrd = struct type t = side_effect let compare e1 e2 = compare_seff e1.eff e2.eff end module SeffSet = Set.Make(SeffOrd) type t = { seff : side_effect list; elts : SeffSet.t } (** Invariant: [seff] is a permutation of the elements of [elts] *) let repr eff = eff.seff let empty = { seff = []; elts = SeffSet.empty } let add x es = if SeffSet.mem x es.elts then es else { seff = x :: es.seff; elts = SeffSet.add x es.elts } let concat xes yes = List.fold_right add xes.seff yes end type side_effects = SideEffects.t type _ trust = | Pure : unit trust | SideEffects : structure_body -> side_effects trust let uniq_seff_rev = SideEffects.repr let uniq_seff l = List.rev (SideEffects.repr l) let empty_seff = SideEffects.empty let add_seff = SideEffects.add let concat_seff = SideEffects.concat let mk_pure_proof c = (c, Univ.ContextSet.empty), empty_seff let inline_side_effects env body ctx side_eff = (** First step: remove the constants that are still in the environment *) let filter { eff = se; from_env = mb } = let cbl = match se with | SEsubproof (c, cb, b) -> [c, cb, b] | SEscheme (cl,_) -> List.map (fun (_, c, cb, b) -> c, cb, b) cl in let not_exists (c,_,_) = try ignore(Environ.lookup_constant c env); false with Not_found -> true in let cbl = List.filter not_exists cbl in (cbl, mb) in (* CAVEAT: we assure that most recent effects come first *) let side_eff = List.map filter (uniq_seff_rev side_eff) in let sigs = List.rev_map (fun (cbl, mb) -> mb, List.length cbl) side_eff in let side_eff = List.fold_left (fun accu (cbl, _) -> cbl @ accu) [] side_eff in let side_eff = List.rev side_eff in (** Most recent side-effects first in side_eff *) if List.is_empty side_eff then (body, ctx, sigs) else (** Second step: compute the lifts and substitutions to apply *) let cname c = let name = Constant.to_string c in let map c = if c == '.' || c == '#' then '_' else c in let name = String.map map name in Name (Id.of_string name) in let fold (subst, var, ctx, args) (c, cb, b) = let (b, opaque) = match cb.const_body, b with | Def b, _ -> (Mod_subst.force_constr b, false) | OpaqueDef _, `Opaque (b,_) -> (b, true) | _ -> assert false in match cb.const_universes with | Monomorphic_const univs -> (** Abstract over the term at the top of the proof *) let ty = cb.const_type in let subst = Cmap_env.add c (Inr var) subst in let ctx = Univ.ContextSet.union ctx univs in (subst, var + 1, ctx, (cname c, b, ty, opaque) :: args) | Polymorphic_const auctx -> (** Inline the term to emulate universe polymorphism *) let subst = Cmap_env.add c (Inl b) subst in (subst, var, ctx, args) in let (subst, len, ctx, args) = List.fold_left fold (Cmap_env.empty, 1, ctx, []) side_eff in (** Third step: inline the definitions *) let rec subst_const i k t = match Constr.kind t with | Const (c, u) -> let data = try Some (Cmap_env.find c subst) with Not_found -> None in begin match data with | None -> t | Some (Inl b) -> (** [b] is closed but may refer to other constants *) subst_const i k (Vars.subst_instance_constr u b) | Some (Inr n) -> mkRel (k + n - i) end | Rel n -> (** Lift free rel variables *) if n <= k then t else mkRel (n + len - i - 1) | _ -> Constr.map_with_binders ((+) 1) (fun k t -> subst_const i k t) k t in let map_args i (na, b, ty, opaque) = (** Both the type and the body may mention other constants *) let ty = subst_const (len - i - 1) 0 ty in let b = subst_const (len - i - 1) 0 b in (na, b, ty, opaque) in let args = List.mapi map_args args in let body = subst_const 0 0 body in let fold_arg (na, b, ty, opaque) accu = if opaque then mkApp (mkLambda (na, ty, accu), [|b|]) else mkLetIn (na, b, ty, accu) in let body = List.fold_right fold_arg args body in (body, ctx, sigs) let rec is_nth_suffix n l suf = if Int.equal n 0 then l == suf else match l with | [] -> false | _ :: l -> is_nth_suffix (pred n) l suf (* Given the list of signatures of side effects, checks if they match. * I.e. if they are ordered descendants of the current revstruct *) let check_signatures curmb sl = let is_direct_ancestor (sl, curmb) (mb, how_many) = match curmb with | None -> None, None | Some curmb -> try let mb = CEphemeron.get mb in match sl with | None -> sl, None | Some n -> if is_nth_suffix how_many mb curmb then Some (n + how_many), Some mb else None, None with CEphemeron.InvalidKey -> None, None in let sl, _ = List.fold_left is_direct_ancestor (Some 0,Some curmb) sl in sl let skip_trusted_seff sl b e = let rec aux sl b e acc = let open Context.Rel.Declaration in match sl, kind b with | (None|Some 0), _ -> b, e, acc | Some sl, LetIn (n,c,ty,bo) -> aux (Some (sl-1)) bo (Environ.push_rel (LocalDef (n,c,ty)) e) (`Let(n,c,ty)::acc) | Some sl, App(hd,arg) -> begin match kind hd with | Lambda (n,ty,bo) -> aux (Some (sl-1)) bo (Environ.push_rel (LocalAssum (n,ty)) e) (`Cut(n,ty,arg)::acc) | _ -> assert false end | _ -> assert false in aux sl b e [] let rec unzip ctx j = match ctx with | [] -> j | `Let (n,c,ty) :: ctx -> unzip ctx { j with uj_val = mkLetIn (n,c,ty,j.uj_val) } | `Cut (n,ty,arg) :: ctx -> unzip ctx { j with uj_val = mkApp (mkLambda (n,ty,j.uj_val),arg) } let feedback_completion_typecheck = let open Feedback in Option.iter (fun state_id -> feedback ~id:state_id Feedback.Complete) let abstract_constant_universes abstract = function | Monomorphic_const_entry uctx -> Univ.empty_level_subst, Monomorphic_const uctx | Polymorphic_const_entry uctx -> if not abstract then Univ.empty_level_subst, Monomorphic_const (Univ.ContextSet.of_context uctx) else let sbst, auctx = Univ.abstract_universes uctx in sbst, Polymorphic_const auctx let infer_declaration (type a) ~(trust : a trust) env kn (dcl : a constant_entry) = match dcl with | ParameterEntry (ctx,(t,uctx),nl) -> let env = match uctx with | Monomorphic_const_entry uctx -> push_context_set ~strict:true uctx env | Polymorphic_const_entry uctx -> push_context ~strict:false uctx env in let j = infer env t in let abstract = not (Option.is_empty kn) in let usubst, univs = abstract_constant_universes abstract uctx in let c = Typeops.assumption_of_judgment env j in let t = Constr.hcons (Vars.subst_univs_level_constr usubst c) in { Cooking.cook_body = Undef nl; cook_type = t; cook_proj = None; cook_universes = univs; cook_inline = false; cook_context = ctx; } (** Definition [c] is opaque (Qed), non polymorphic and with a specified type, so we delay the typing and hash consing of its body. Remark: when the universe quantification is given explicitly, we could delay even in the polymorphic case. *) | DefinitionEntry ({ const_entry_type = Some typ; const_entry_opaque = true; const_entry_universes = Monomorphic_const_entry univs } as c) -> let env = push_context_set ~strict:true univs env in let { const_entry_body = body; const_entry_feedback = feedback_id } = c in let tyj = infer_type env typ in let proofterm = Future.chain body (fun ((body,uctx),side_eff) -> let j, uctx = match trust with | Pure -> let env = push_context_set uctx env in let j = infer env body in let _ = judge_of_cast env j DEFAULTcast tyj in j, uctx | SideEffects mb -> let (body, uctx, signatures) = inline_side_effects env body uctx side_eff in let valid_signatures = check_signatures mb signatures in let env = push_context_set uctx env in let body,env,ectx = skip_trusted_seff valid_signatures body env in let j = infer env body in let j = unzip ectx j in let _ = judge_of_cast env j DEFAULTcast tyj in j, uctx in let c = Constr.hcons j.uj_val in feedback_completion_typecheck feedback_id; c, uctx) in let def = OpaqueDef (Opaqueproof.create proofterm) in { Cooking.cook_body = def; cook_type = typ; cook_proj = None; cook_universes = Monomorphic_const univs; cook_inline = c.const_entry_inline_code; cook_context = c.const_entry_secctx; } (** Other definitions have to be processed immediately. *) | DefinitionEntry c -> let { const_entry_type = typ; const_entry_opaque = opaque } = c in let { const_entry_body = body; const_entry_feedback = feedback_id } = c in let (body, ctx), side_eff = Future.join body in let poly, univsctx = match c.const_entry_universes with | Monomorphic_const_entry univs -> false, univs | Polymorphic_const_entry univs -> true, Univ.ContextSet.of_context univs in let ctx = Univ.ContextSet.union univsctx ctx in let body, ctx, _ = match trust with | Pure -> body, ctx, [] | SideEffects _ -> inline_side_effects env body ctx side_eff in let env = push_context_set ~strict:(not poly) ctx env in let abstract = not (Option.is_empty kn) in let ctx = if poly then Polymorphic_const_entry (Univ.ContextSet.to_context ctx) else Monomorphic_const_entry ctx in let usubst, univs = abstract_constant_universes abstract ctx in let j = infer env body in let typ = match typ with | None -> Vars.subst_univs_level_constr usubst j.uj_type | Some t -> let tj = infer_type env t in let _ = judge_of_cast env j DEFAULTcast tj in Vars.subst_univs_level_constr usubst t in let def = Constr.hcons (Vars.subst_univs_level_constr usubst j.uj_val) in let def = if opaque then OpaqueDef (Opaqueproof.create (Future.from_val (def, Univ.ContextSet.empty))) else Def (Mod_subst.from_val def) in feedback_completion_typecheck feedback_id; { Cooking.cook_body = def; cook_type = typ; cook_proj = None; cook_universes = univs; cook_inline = c.const_entry_inline_code; cook_context = c.const_entry_secctx; } | ProjectionEntry {proj_entry_ind = ind; proj_entry_arg = i} -> let mib, _ = Inductive.lookup_mind_specif env (ind,0) in let kn, pb = match mib.mind_record with | Some (Some (id, kns, pbs)) -> if i < Array.length pbs then kns.(i), pbs.(i) else assert false | _ -> assert false in let univs = match mib.mind_universes with | Monomorphic_ind ctx -> Monomorphic_const ctx | Polymorphic_ind auctx -> Polymorphic_const auctx | Cumulative_ind acumi -> Polymorphic_const (Univ.ACumulativityInfo.univ_context acumi) in let term, typ = pb.proj_eta in { Cooking.cook_body = Def (Mod_subst.from_val (Constr.hcons term)); cook_type = typ; cook_proj = Some pb; cook_universes = univs; cook_inline = false; cook_context = None; } let record_aux env s_ty s_bo = let in_ty = keep_hyps env s_ty in let v = String.concat " " (CList.map_filter (fun decl -> let id = NamedDecl.get_id decl in if List.exists (NamedDecl.get_id %> Id.equal id) in_ty then None else Some (Id.to_string id)) (keep_hyps env s_bo)) in Aux_file.record_in_aux "context_used" v let build_constant_declaration kn env result = let open Cooking in let typ = result.cook_type in let check declared inferred = let mk_set l = List.fold_right Id.Set.add (List.map NamedDecl.get_id l) Id.Set.empty in let inferred_set, declared_set = mk_set inferred, mk_set declared in if not (Id.Set.subset inferred_set declared_set) then let l = Id.Set.elements (Id.Set.diff inferred_set declared_set) in let n = List.length l in let declared_vars = Pp.pr_sequence Id.print (Id.Set.elements declared_set) in let inferred_vars = Pp.pr_sequence Id.print (Id.Set.elements inferred_set) in let missing_vars = Pp.pr_sequence Id.print (List.rev l) in user_err Pp.(prlist str ["The following section "; (String.plural n "variable"); " "; (String.conjugate_verb_to_be n); " used but not declared:"] ++ fnl () ++ missing_vars ++ str "." ++ fnl () ++ fnl () ++ str "You can either update your proof to not depend on " ++ missing_vars ++ str ", or you can update your Proof line from" ++ fnl () ++ str "Proof using " ++ declared_vars ++ fnl () ++ str "to" ++ fnl () ++ str "Proof using " ++ inferred_vars) in let sort evn l = List.filter (fun decl -> let id = NamedDecl.get_id decl in List.exists (NamedDecl.get_id %> Names.Id.equal id) l) (named_context env) in (* We try to postpone the computation of used section variables *) let hyps, def = let context_ids = List.map NamedDecl.get_id (named_context env) in let def = result.cook_body in match result.cook_context with | None when not (List.is_empty context_ids) -> (* No declared section vars, and non-empty section context: we must look at the body NOW, if any *) let ids_typ = global_vars_set env typ in let ids_def = match def with | Undef _ -> Id.Set.empty | Def cs -> global_vars_set env (Mod_subst.force_constr cs) | OpaqueDef lc -> let vars = global_vars_set env (Opaqueproof.force_proof (opaque_tables env) lc) in (* we force so that cst are added to the env immediately after *) ignore(Opaqueproof.force_constraints (opaque_tables env) lc); if !Flags.record_aux_file then record_aux env ids_typ vars; vars in keep_hyps env (Id.Set.union ids_typ ids_def), def | None -> if !Flags.record_aux_file then record_aux env Id.Set.empty Id.Set.empty; [], def (* Empty section context: no need to check *) | Some declared -> (* We use the declared set and chain a check of correctness *) sort env declared, match def with | Undef _ as x -> x (* nothing to check *) | Def cs as x -> let ids_typ = global_vars_set env typ in let ids_def = global_vars_set env (Mod_subst.force_constr cs) in let inferred = keep_hyps env (Id.Set.union ids_typ ids_def) in check declared inferred; x | OpaqueDef lc -> (* In this case we can postpone the check *) OpaqueDef (Opaqueproof.iter_direct_opaque (fun c -> let ids_typ = global_vars_set env typ in let ids_def = global_vars_set env c in let inferred = keep_hyps env (Id.Set.union ids_typ ids_def) in check declared inferred) lc) in let univs = result.cook_universes in let tps = let res = match result.cook_proj with | None -> compile_constant_body env univs def | Some pb -> (* The compilation of primitive projections is a bit tricky, because they refer to themselves (the body of p looks like fun c => Proj(p,c)). We break the cycle by building an ad-hoc compilation environment. A cleaner solution would be that kernel projections are simply Proj(i,c) with i an int and c a constr, but we would have to get rid of the compatibility layer. *) let cb = { const_hyps = hyps; const_body = def; const_type = typ; const_proj = result.cook_proj; const_body_code = None; const_universes = univs; const_inline_code = result.cook_inline; const_typing_flags = Environ.typing_flags env; } in let env = add_constant kn cb env in compile_constant_body env univs def in Option.map Cemitcodes.from_val res in { const_hyps = hyps; const_body = def; const_type = typ; const_proj = result.cook_proj; const_body_code = tps; const_universes = univs; const_inline_code = result.cook_inline; const_typing_flags = Environ.typing_flags env } (*s Global and local constant declaration. *) let translate_constant mb env kn ce = build_constant_declaration kn env (infer_declaration ~trust:mb env (Some kn) ce) let constant_entry_of_side_effect cb u = let univs = match cb.const_universes with | Monomorphic_const uctx -> Monomorphic_const_entry uctx | Polymorphic_const auctx -> Polymorphic_const_entry (Univ.AUContext.repr auctx) in let pt = match cb.const_body, u with | OpaqueDef _, `Opaque (b, c) -> b, c | Def b, `Nothing -> Mod_subst.force_constr b, Univ.ContextSet.empty | _ -> assert false in DefinitionEntry { const_entry_body = Future.from_val (pt, ()); const_entry_secctx = None; const_entry_feedback = None; const_entry_type = Some cb.const_type; const_entry_universes = univs; const_entry_opaque = Declareops.is_opaque cb; const_entry_inline_code = cb.const_inline_code } ;; let turn_direct (kn,cb,u,r as orig) = match cb.const_body, u with | OpaqueDef _, `Opaque (b,c) -> let pt = Future.from_val (b,c) in kn, { cb with const_body = OpaqueDef (Opaqueproof.create pt) }, u, r | _ -> orig ;; type side_effect_role = | Subproof | Schema of inductive * string type exported_side_effect = Constant.t * constant_body * side_effect_role let export_side_effects mb env ce = match ce with | ParameterEntry e -> [], ParameterEntry e | ProjectionEntry e -> [], ProjectionEntry e | DefinitionEntry c -> let { const_entry_body = body } = c in let _, eff = Future.force body in let ce = DefinitionEntry { c with const_entry_body = Future.chain body (fun (b_ctx, _) -> b_ctx, ()) } in let not_exists (c,_,_,_) = try ignore(Environ.lookup_constant c env); false with Not_found -> true in let aux (acc,sl) { eff = se; from_env = mb } = let cbl = match se with | SEsubproof (c,cb,b) -> [c,cb,b,Subproof] | SEscheme (cl,k) -> List.map (fun (i,c,cb,b) -> c,cb,b,Schema(i,k)) cl in let cbl = List.filter not_exists cbl in if cbl = [] then acc, sl else cbl :: acc, (mb,List.length cbl) :: sl in let seff, signatures = List.fold_left aux ([],[]) (uniq_seff_rev eff) in let trusted = check_signatures mb signatures in let push_seff env = function | kn, cb, `Nothing, _ -> begin let env = Environ.add_constant kn cb env in match cb.const_universes with | Monomorphic_const ctx -> Environ.push_context_set ~strict:true ctx env | Polymorphic_const _ -> env end | kn, cb, `Opaque(_, ctx), _ -> begin let env = Environ.add_constant kn cb env in match cb.const_universes with | Monomorphic_const cstctx -> let env = Environ.push_context_set ~strict:true cstctx env in Environ.push_context_set ~strict:true ctx env | Polymorphic_const _ -> env end in let rec translate_seff sl seff acc env = match sl, seff with | _, [] -> List.rev acc, ce | (None | Some 0), cbs :: rest -> let env, cbs = List.fold_left (fun (env,cbs) (kn, ocb, u, r) -> let ce = constant_entry_of_side_effect ocb u in let cb = translate_constant Pure env kn ce in (push_seff env (kn, cb,`Nothing, Subproof),(kn,cb,r) :: cbs)) (env,[]) cbs in translate_seff sl rest (cbs @ acc) env | Some sl, cbs :: rest -> let cbs_len = List.length cbs in let cbs = List.map turn_direct cbs in let env = List.fold_left push_seff env cbs in let ecbs = List.map (fun (kn,cb,u,r) -> kn, cb, r) cbs in translate_seff (Some (sl-cbs_len)) rest (ecbs @ acc) env in translate_seff trusted seff [] env ;; let translate_local_assum env t = let j = infer env t in let t = Typeops.assumption_of_judgment env j in t let translate_recipe env kn r = (** We only hashcons the term when outside of a section, otherwise this would be useless. It is detected by the dirpath of the constant being empty. *) let (_, dir, _) = Constant.repr3 kn in let hcons = DirPath.is_empty dir in build_constant_declaration kn env (Cooking.cook_constant ~hcons env r) let translate_local_def mb env id centry = let open Cooking in let decl = infer_declaration ~trust:mb env None (DefinitionEntry centry) in let typ = decl.cook_type in if Option.is_empty decl.cook_context && !Flags.record_aux_file then begin match decl.cook_body with | Undef _ -> () | Def _ -> () | OpaqueDef lc -> let ids_typ = global_vars_set env typ in let ids_def = global_vars_set env (Opaqueproof.force_proof (opaque_tables env) lc) in record_aux env ids_typ ids_def end; let univs = match decl.cook_universes with | Monomorphic_const ctx -> ctx | Polymorphic_const _ -> assert false in decl.cook_body, typ, univs (* Insertion of inductive types. *) let translate_mind env kn mie = Indtypes.check_inductive env kn mie let inline_entry_side_effects env ce = { ce with const_entry_body = Future.chain ce.const_entry_body (fun ((body, ctx), side_eff) -> let body, ctx',_ = inline_side_effects env body ctx side_eff in (body, ctx'), ()); } let inline_side_effects env body side_eff = pi1 (inline_side_effects env body Univ.ContextSet.empty side_eff)