1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open CErrors open Util open Pcoq open Constrexpr open Notation_term open Extend open Libnames open Names (**********************************************************************) (* This determines (depending on the associativity of the current level and on the expected associativity) if a reference to constr_n is a reference to the current level (to be translated into "SELF" on the left border and into "constr LEVEL n" elsewhere), to the level below (to be translated into "NEXT") or to an below wrt associativity (to be translated in camlp4 into "constr" without level) or to another level (to be translated into "constr LEVEL n") The boolean is true if the entry was existing _and_ empty; this to circumvent a weakness of camlp4/camlp5 whose undo mechanism is not the converse of the extension mechanism *) let constr_level = string_of_int let default_levels = [200,Extend.RightA,false; 100,Extend.RightA,false; 99,Extend.RightA,true; 90,Extend.RightA,true; 10,Extend.LeftA,false; 9,Extend.RightA,false; 8,Extend.RightA,true; 1,Extend.LeftA,false; 0,Extend.RightA,false] let default_pattern_levels = [200,Extend.RightA,true; 100,Extend.RightA,false; 99,Extend.RightA,true; 90,Extend.RightA,true; 10,Extend.LeftA,false; 1,Extend.LeftA,false; 0,Extend.RightA,false] let default_constr_levels = (default_levels, default_pattern_levels) (* At a same level, LeftA takes precedence over RightA and NoneA *) (* In case, several associativity exists for a level, we make two levels, *) (* first LeftA, then RightA and NoneA together *) let admissible_assoc = function | Extend.LeftA, Some (Extend.RightA | Extend.NonA) -> false | Extend.RightA, Some Extend.LeftA -> false | _ -> true let create_assoc = function | None -> Extend.RightA | Some a -> a let error_level_assoc p current expected = let open Pp in let pr_assoc = function | Extend.LeftA -> str "left" | Extend.RightA -> str "right" | Extend.NonA -> str "non" in user_err (str "Level " ++ int p ++ str " is already declared " ++ pr_assoc current ++ str " associative while it is now expected to be " ++ pr_assoc expected ++ str " associative.") let create_pos = function | None -> Extend.First | Some lev -> Extend.After (constr_level lev) let find_position_gen current ensure assoc lev = match lev with | None -> current, (None, None, None, None) | Some n -> let after = ref None in let init = ref None in let rec add_level q = function | (p,_,_ as pa)::l when p > n -> pa :: add_level (Some p) l | (p,a,reinit)::l when Int.equal p n -> if reinit then let a' = create_assoc assoc in (init := Some (a',create_pos q); (p,a',false)::l) else if admissible_assoc (a,assoc) then raise Exit else error_level_assoc p a (Option.get assoc) | l -> after := q; (n,create_assoc assoc,ensure)::l in try let updated = add_level None current in let assoc = create_assoc assoc in begin match !init with | None -> (* Create the entry *) updated, (Some (create_pos !after), Some assoc, Some (constr_level n), None) | _ -> (* The reinit flag has been updated *) updated, (Some (Extend.Level (constr_level n)), None, None, !init) end with (* Nothing has changed *) Exit -> (* Just inherit the existing associativity and name (None) *) current, (Some (Extend.Level (constr_level n)), None, None, None) let rec list_mem_assoc_triple x = function | [] -> false | (a,b,c) :: l -> Int.equal a x || list_mem_assoc_triple x l let register_empty_levels accu forpat levels = let rec filter accu = function | [] -> ([], accu) | n :: rem -> let rem, accu = filter accu rem in let (clev, plev) = accu in let levels = if forpat then plev else clev in if not (list_mem_assoc_triple n levels) then let nlev, ans = find_position_gen levels true None (Some n) in let nlev = if forpat then (clev, nlev) else (nlev, plev) in ans :: rem, nlev else rem, accu in filter accu levels let find_position accu forpat assoc level = let (clev, plev) = accu in let levels = if forpat then plev else clev in let nlev, ans = find_position_gen levels false assoc level in let nlev = if forpat then (clev, nlev) else (nlev, plev) in (ans, nlev) (**************************************************************************) (* * --- Note on the mapping of grammar productions to camlp4 actions --- * * Translation of environments: a production * [ nt1(x1) ... nti(xi) ] -> act(x1..xi) * is written (with camlp4 conventions): * (fun vi -> .... (fun v1 -> act(v1 .. vi) )..) * where v1..vi are the values generated by non-terminals nt1..nti. * Since the actions are executed by substituting an environment, * the make_*_action family build the following closure: * * ((fun env -> * (fun vi -> * (fun env -> ... * * (fun v1 -> * (fun env -> gram_action .. env act) * ((x1,v1)::env)) * ...) * ((xi,vi)::env))) * []) *) (**********************************************************************) (** Declare Notations grammar rules *) (**********************************************************************) (* Binding constr entry keys to entries *) (* Camlp4 levels do not treat NonA: use RightA with a NEXT on the left *) let camlp4_assoc = function | Some NonA | Some RightA -> RightA | None | Some LeftA -> LeftA let assoc_eq al ar = match al, ar with | NonA, NonA | RightA, RightA | LeftA, LeftA -> true | _, _ -> false (* [adjust_level assoc from prod] where [assoc] and [from] are the name and associativity of the level where to add the rule; the meaning of the result is None = SELF Some None = NEXT Some (Some (n,cur)) = constr LEVEL n s.t. if [cur] is set then [n] is the same as the [from] level *) let adjust_level assoc from = function (* Associativity is None means force the level *) | (NumLevel n,BorderProd (_,None)) -> Some (Some (n,true)) (* Compute production name on the right side *) (* If NonA or LeftA on the right-hand side, set to NEXT *) | (NumLevel n,BorderProd (Right,Some (NonA|LeftA))) -> Some None (* If RightA on the right-hand side, set to the explicit (current) level *) | (NumLevel n,BorderProd (Right,Some RightA)) -> Some (Some (n,true)) (* Compute production name on the left side *) (* If NonA on the left-hand side, adopt the current assoc ?? *) | (NumLevel n,BorderProd (Left,Some NonA)) -> None (* If the expected assoc is the current one, set to SELF *) | (NumLevel n,BorderProd (Left,Some a)) when assoc_eq a (camlp4_assoc assoc) -> None (* Otherwise, force the level, n or n-1, according to expected assoc *) | (NumLevel n,BorderProd (Left,Some a)) -> begin match a with | LeftA -> Some (Some (n, true)) | _ -> Some None end (* None means NEXT *) | (NextLevel,_) -> Some None (* Compute production name elsewhere *) | (NumLevel n,InternalProd) -> if from = n + 1 then Some None else Some (Some (n, Int.equal n from)) type _ target = | ForConstr : constr_expr target | ForPattern : cases_pattern_expr target type prod_info = production_level * production_position type (_, _) entry = | TTName : ('self, Name.t Loc.located) entry | TTReference : ('self, reference) entry | TTBigint : ('self, Constrexpr.raw_natural_number) entry | TTBinder : ('self, local_binder_expr list) entry | TTConstr : prod_info * 'r target -> ('r, 'r) entry | TTConstrList : prod_info * Tok.t list * 'r target -> ('r, 'r list) entry | TTBinderListT : ('self, local_binder_expr list) entry | TTBinderListF : Tok.t list -> ('self, local_binder_expr list list) entry type _ any_entry = TTAny : ('s, 'r) entry -> 's any_entry (* This computes the name of the level where to add a new rule *) let interp_constr_entry_key : type r. r target -> int -> r Gram.entry * int option = fun forpat level -> match forpat with | ForConstr -> if level = 200 then Constr.binder_constr, None else Constr.operconstr, Some level | ForPattern -> Constr.pattern, Some level let target_entry : type s. s target -> s Gram.entry = function | ForConstr -> Constr.operconstr | ForPattern -> Constr.pattern let is_self from e = match e with | (NumLevel n, BorderProd (Right, _ (* Some(NonA|LeftA) *))) -> false | (NumLevel n, BorderProd (Left, _)) -> Int.equal from n | _ -> false let is_binder_level from e = match e with | (NumLevel 200, (BorderProd (Right, _) | InternalProd)) -> from = 200 | _ -> false let make_sep_rules = function | [tk] -> Atoken tk | tkl -> let rec mkrule : Tok.t list -> string rules = function | [] -> Rules ({ norec_rule = Stop }, fun _ -> (* dropped anyway: *) "") | tkn :: rem -> let Rules ({ norec_rule = r }, f) = mkrule rem in let r = { norec_rule = Next (r, Atoken tkn) } in Rules (r, fun _ -> f) in let r = mkrule (List.rev tkl) in Arules [r] let symbol_of_target : type s. _ -> _ -> _ -> s target -> (s, s) symbol = fun p assoc from forpat -> if is_binder_level from p then Aentryl (target_entry forpat, 200) else if is_self from p then Aself else let g = target_entry forpat in let lev = adjust_level assoc from p in begin match lev with | None -> Aentry g | Some None -> Anext | Some (Some (lev, cur)) -> Aentryl (g, lev) end let symbol_of_entry : type s r. _ -> _ -> (s, r) entry -> (s, r) symbol = fun assoc from typ -> match typ with | TTConstr (p, forpat) -> symbol_of_target p assoc from forpat | TTConstrList (typ', [], forpat) -> Alist1 (symbol_of_target typ' assoc from forpat) | TTConstrList (typ', tkl, forpat) -> Alist1sep (symbol_of_target typ' assoc from forpat, make_sep_rules tkl) | TTBinderListF [] -> Alist1 (Aentry Constr.binder) | TTBinderListF tkl -> Alist1sep (Aentry Constr.binder, make_sep_rules tkl) | TTName -> Aentry Prim.name | TTBinder -> Aentry Constr.binder | TTBinderListT -> Aentry Constr.open_binders | TTBigint -> Aentry Prim.bigint | TTReference -> Aentry Constr.global let interp_entry forpat e = match e with | ETName -> TTAny TTName | ETReference -> TTAny TTReference | ETBigint -> TTAny TTBigint | ETBinder true -> anomaly (Pp.str "Should occur only as part of BinderList.") | ETBinder false -> TTAny TTBinder | ETConstr p -> TTAny (TTConstr (p, forpat)) | ETPattern -> assert false (** not used *) | ETOther _ -> assert false (** not used *) | ETConstrList (p, tkl) -> TTAny (TTConstrList (p, tkl, forpat)) | ETBinderList (true, []) -> TTAny TTBinderListT | ETBinderList (true, _) -> assert false | ETBinderList (false, tkl) -> TTAny (TTBinderListF tkl) let constr_expr_of_name (loc,na) = CAst.make ?loc @@ match na with | Anonymous -> CHole (None,Misctypes.IntroAnonymous,None) | Name id -> CRef (Ident (Loc.tag ?loc id), None) let cases_pattern_expr_of_name (loc,na) = CAst.make ?loc @@ match na with | Anonymous -> CPatAtom None | Name id -> CPatAtom (Some (Ident (Loc.tag ?loc id))) type 'r env = { constrs : 'r list; constrlists : 'r list list; binders : (local_binder_expr list * bool) list; } let push_constr subst v = { subst with constrs = v :: subst.constrs } let push_item : type s r. s target -> (s, r) entry -> s env -> r -> s env = fun forpat e subst v -> match e with | TTConstr _ -> push_constr subst v | TTName -> begin match forpat with | ForConstr -> push_constr subst (constr_expr_of_name v) | ForPattern -> push_constr subst (cases_pattern_expr_of_name v) end | TTBinder -> { subst with binders = (v, true) :: subst.binders } | TTBinderListT -> { subst with binders = (v, true) :: subst.binders } | TTBinderListF _ -> { subst with binders = (List.flatten v, false) :: subst.binders } | TTBigint -> begin match forpat with | ForConstr -> push_constr subst (CAst.make @@ CPrim (Numeral (v,true))) | ForPattern -> push_constr subst (CAst.make @@ CPatPrim (Numeral (v,true))) end | TTReference -> begin match forpat with | ForConstr -> push_constr subst (CAst.make @@ CRef (v, None)) | ForPattern -> push_constr subst (CAst.make @@ CPatAtom (Some v)) end | TTConstrList _ -> { subst with constrlists = v :: subst.constrlists } type (_, _) ty_symbol = | TyTerm : Tok.t -> ('s, string) ty_symbol | TyNonTerm : 's target * ('s, 'a) entry * ('s, 'a) symbol * bool -> ('s, 'a) ty_symbol type ('self, _, 'r) ty_rule = | TyStop : ('self, 'r, 'r) ty_rule | TyNext : ('self, 'a, 'r) ty_rule * ('self, 'b) ty_symbol -> ('self, 'b -> 'a, 'r) ty_rule | TyMark : int * bool * int * ('self, 'a, 'r) ty_rule -> ('self, 'a, 'r) ty_rule type 'r gen_eval = Loc.t -> 'r env -> 'r let rec ty_eval : type s a. (s, a, Loc.t -> s) ty_rule -> s gen_eval -> s env -> a = function | TyStop -> fun f env loc -> f loc env | TyNext (rem, TyTerm _) -> fun f env _ -> ty_eval rem f env | TyNext (rem, TyNonTerm (_, _, _, false)) -> fun f env _ -> ty_eval rem f env | TyNext (rem, TyNonTerm (forpat, e, _, true)) -> fun f env v -> ty_eval rem f (push_item forpat e env v) | TyMark (n, b, p, rem) -> fun f env -> let heads, constrs = List.chop n env.constrs in let constrlists, constrs = if b then (* We rearrange constrs = c1..cn rem and constrlists = [d1..dr e1..ep] rem' into constrs = e1..ep rem and constrlists [c1..cn d1..dr] rem' *) let constrlist = List.hd env.constrlists in let constrlist, tail = List.chop (List.length constrlist - p) constrlist in (heads @ constrlist) :: List.tl env.constrlists, tail @ constrs else (* We rearrange constrs = c1..cn e1..ep rem into constrs = e1..ep rem and add a constr list [c1..cn] *) let constrlist, tail = List.chop (n - p) heads in constrlist :: env.constrlists, tail @ constrs in ty_eval rem f { env with constrs; constrlists; } let rec ty_erase : type s a r. (s, a, r) ty_rule -> (s, a, r) Extend.rule = function | TyStop -> Stop | TyMark (_, _, _, r) -> ty_erase r | TyNext (rem, TyTerm tok) -> Next (ty_erase rem, Atoken tok) | TyNext (rem, TyNonTerm (_, _, s, _)) -> Next (ty_erase rem, s) type ('self, 'r) any_ty_rule = | AnyTyRule : ('self, 'act, Loc.t -> 'r) ty_rule -> ('self, 'r) any_ty_rule let make_ty_rule assoc from forpat prods = let rec make_ty_rule = function | [] -> AnyTyRule TyStop | GramConstrTerminal tok :: rem -> let AnyTyRule r = make_ty_rule rem in AnyTyRule (TyNext (r, TyTerm tok)) | GramConstrNonTerminal (e, var) :: rem -> let AnyTyRule r = make_ty_rule rem in let TTAny e = interp_entry forpat e in let s = symbol_of_entry assoc from e in let bind = match var with None -> false | Some _ -> true in AnyTyRule (TyNext (r, TyNonTerm (forpat, e, s, bind))) | GramConstrListMark (n, b, p) :: rem -> let AnyTyRule r = make_ty_rule rem in AnyTyRule (TyMark (n, b, p, r)) in make_ty_rule (List.rev prods) let target_to_bool : type r. r target -> bool = function | ForConstr -> false | ForPattern -> true let prepare_empty_levels forpat (pos,p4assoc,name,reinit) = let empty = (pos, [(name, p4assoc, [])]) in if forpat then ExtendRule (Constr.pattern, reinit, empty) else ExtendRule (Constr.operconstr, reinit, empty) let rec pure_sublevels : type a b c. int option -> (a, b, c) rule -> int list = fun level r -> match r with | Stop -> [] | Next (rem, Aentryl (_, i)) -> let rem = pure_sublevels level rem in begin match level with | Some j when Int.equal i j -> rem | _ -> i :: rem end | Next (rem, _) -> pure_sublevels level rem let make_act : type r. r target -> _ -> r gen_eval = function | ForConstr -> fun notation loc env -> let env = (env.constrs, env.constrlists, List.map fst env.binders) in CAst.make ~loc @@ CNotation (notation , env) | ForPattern -> fun notation loc env -> let invalid = List.exists (fun (_, b) -> not b) env.binders in let () = if invalid then Constrexpr_ops.error_invalid_pattern_notation ~loc () in let env = (env.constrs, env.constrlists) in CAst.make ~loc @@ CPatNotation (notation, env, []) let extend_constr state forpat ng = let n,_,_ = ng.notgram_level in let assoc = ng.notgram_assoc in let (entry, level) = interp_constr_entry_key forpat n in let fold (accu, state) pt = let AnyTyRule r = make_ty_rule assoc n forpat pt in let symbs = ty_erase r in let pure_sublevels = pure_sublevels level symbs in let isforpat = target_to_bool forpat in let needed_levels, state = register_empty_levels state isforpat pure_sublevels in let (pos,p4assoc,name,reinit), state = find_position state isforpat assoc level in let empty_rules = List.map (prepare_empty_levels isforpat) needed_levels in let empty = { constrs = []; constrlists = []; binders = [] } in let act = ty_eval r (make_act forpat ng.notgram_notation) empty in let rule = (name, p4assoc, [Rule (symbs, act)]) in let r = ExtendRule (entry, reinit, (pos, [rule])) in (accu @ empty_rules @ [r], state) in List.fold_left fold ([], state) ng.notgram_prods let constr_levels = GramState.field () let extend_constr_notation ng state = let levels = match GramState.get state constr_levels with | None -> default_constr_levels | Some lev -> lev in (* Add the notation in constr *) let (r, levels) = extend_constr levels ForConstr ng in (* Add the notation in cases_pattern *) let (r', levels) = extend_constr levels ForPattern ng in let state = GramState.set state constr_levels levels in (r @ r', state) let constr_grammar : one_notation_grammar grammar_command = create_grammar_command "Notation" extend_constr_notation let extend_constr_grammar ntn = extend_grammar_command constr_grammar ntn