1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Pp open CErrors open Sorts open Util open Constr open Vars open Termops open Environ open Redexpr open Declare open Names open Libnames open Globnames open Nameops open Constrexpr open Constrexpr_ops open Constrintern open Nametab open Impargs open Reductionops open Indtypes open Decl_kinds open Pretyping open Evarutil open Evarconv open Indschemes open Misctypes open Vernacexpr open Context.Rel.Declaration open Entries module RelDecl = Context.Rel.Declaration let do_universe poly l = Declare.do_universe poly l let do_constraint poly l = Declare.do_constraint poly l let rec under_binders env sigma f n c = if Int.equal n 0 then f env sigma (EConstr.of_constr c) else match Constr.kind c with | Lambda (x,t,c) -> mkLambda (x,t,under_binders (push_rel (LocalAssum (x,t)) env) sigma f (n-1) c) | LetIn (x,b,t,c) -> mkLetIn (x,b,t,under_binders (push_rel (LocalDef (x,b,t)) env) sigma f (n-1) c) | _ -> assert false let rec complete_conclusion a cs = CAst.map_with_loc (fun ?loc -> function | CProdN (bl,c) -> CProdN (bl,complete_conclusion a cs c) | CLetIn (na,b,t,c) -> CLetIn (na,b,t,complete_conclusion a cs c) | CHole (k, _, _) -> let (has_no_args,name,params) = a in if not has_no_args then user_err ?loc (strbrk"Cannot infer the non constant arguments of the conclusion of " ++ Id.print cs ++ str "."); let args = List.map (fun id -> CAst.make ?loc @@ CRef(Ident(loc,id),None)) params in CAppExpl ((None,Ident(loc,name),None),List.rev args) | c -> c ) (* Commands of the interface *) (* 1| Constant definitions *) let red_constant_entry n ce sigma = function | None -> ce | Some red -> let proof_out = ce.const_entry_body in let env = Global.env () in let (redfun, _) = reduction_of_red_expr env red in let redfun env sigma c = let (_, c) = redfun env sigma c in EConstr.Unsafe.to_constr c in { ce with const_entry_body = Future.chain proof_out (fun ((body,ctx),eff) -> (under_binders env sigma redfun n body,ctx),eff) } let warn_implicits_in_term = CWarnings.create ~name:"implicits-in-term" ~category:"implicits" (fun () -> strbrk "Implicit arguments declaration relies on type." ++ spc () ++ strbrk "The term declares more implicits than the type here.") let interp_definition pl bl poly red_option c ctypopt = let env = Global.env() in let evd, decl = Univdecls.interp_univ_decl_opt env pl in let evdref = ref evd in let impls, ((env_bl, ctx), imps1) = interp_context_evars env evdref bl in let ctx = List.map (fun d -> map_rel_decl EConstr.Unsafe.to_constr d) ctx in let nb_args = Context.Rel.nhyps ctx in let imps,pl,ce = match ctypopt with None -> let subst = evd_comb0 Evd.nf_univ_variables evdref in let ctx = Context.Rel.map (Vars.subst_univs_constr subst) ctx in let env_bl = push_rel_context ctx env in let c, imps2 = interp_constr_evars_impls ~impls env_bl evdref c in let c = EConstr.Unsafe.to_constr c in let nf,subst = Evarutil.e_nf_evars_and_universes evdref in let body = nf (it_mkLambda_or_LetIn c ctx) in let vars = Univops.universes_of_constr body in let evd = Evd.restrict_universe_context !evdref vars in let uctx = Evd.check_univ_decl ~poly evd decl in let binders = Evd.universe_binders evd in imps1@(Impargs.lift_implicits nb_args imps2), binders, definition_entry ~univs:uctx body | Some ctyp -> let ty, impsty = interp_type_evars_impls ~impls env_bl evdref ctyp in let subst = evd_comb0 Evd.nf_univ_variables evdref in let ctx = Context.Rel.map (Vars.subst_univs_constr subst) ctx in let env_bl = push_rel_context ctx env in let c, imps2 = interp_casted_constr_evars_impls ~impls env_bl evdref c ty in let c = EConstr.Unsafe.to_constr c in let nf, subst = Evarutil.e_nf_evars_and_universes evdref in let body = nf (it_mkLambda_or_LetIn c ctx) in let ty = EConstr.Unsafe.to_constr ty in let typ = nf (Term.it_mkProd_or_LetIn ty ctx) in let beq b1 b2 = if b1 then b2 else not b2 in let impl_eq (x,y,z) (x',y',z') = beq x x' && beq y y' && beq z z' in (* Check that all implicit arguments inferable from the term are inferable from the type *) let chk (key,va) = impl_eq (List.assoc_f Pervasives.(=) key impsty) va (* FIXME *) in if not (try List.for_all chk imps2 with Not_found -> false) then warn_implicits_in_term (); let vars = Univ.LSet.union (Univops.universes_of_constr body) (Univops.universes_of_constr typ) in let ctx = Evd.restrict_universe_context !evdref vars in let uctx = Evd.check_univ_decl ~poly ctx decl in let binders = Evd.universe_binders evd in imps1@(Impargs.lift_implicits nb_args impsty), binders, definition_entry ~types:typ ~univs:uctx body in red_constant_entry (Context.Rel.length ctx) ce !evdref red_option, !evdref, decl, pl, imps let check_definition (ce, evd, _, _, imps) = check_evars_are_solved (Global.env ()) evd Evd.empty; ce let do_definition ident k univdecl bl red_option c ctypopt hook = let (ce, evd, univdecl, pl', imps as def) = interp_definition univdecl bl (pi2 k) red_option c ctypopt in if Flags.is_program_mode () then let env = Global.env () in let (c,ctx), sideff = Future.force ce.const_entry_body in assert(Safe_typing.empty_private_constants = sideff); assert(Univ.ContextSet.is_empty ctx); let typ = match ce.const_entry_type with | Some t -> t | None -> EConstr.to_constr evd (Retyping.get_type_of env evd (EConstr.of_constr c)) in Obligations.check_evars env evd; let obls, _, c, cty = Obligations.eterm_obligations env ident evd 0 c typ in let ctx = Evd.evar_universe_context evd in let hook = Lemmas.mk_hook (fun l r _ -> Lemmas.call_hook (fun exn -> exn) hook l r) in ignore(Obligations.add_definition ident ~term:c cty ctx ~univdecl ~implicits:imps ~kind:k ~hook obls) else let ce = check_definition def in ignore(DeclareDef.declare_definition ident k ce pl' imps (Lemmas.mk_hook (fun l r -> Lemmas.call_hook (fun exn -> exn) hook l r;r))) (* 2| Variable/Hypothesis/Parameter/Axiom declarations *) let axiom_into_instance = ref false let _ = let open Goptions in declare_bool_option { optdepr = false; optname = "automatically declare axioms whose type is a typeclass as instances"; optkey = ["Typeclasses";"Axioms";"Are";"Instances"]; optread = (fun _ -> !axiom_into_instance); optwrite = (:=) axiom_into_instance; } let should_axiom_into_instance = function | Discharge -> (* The typeclass behaviour of Variable and Context doesn't depend on section status *) true | Global | Local -> !axiom_into_instance let declare_assumption is_coe (local,p,kind) (c,ctx) pl imps impl nl (_,ident) = match local with | Discharge when Lib.sections_are_opened () -> let ctx = match ctx with | Monomorphic_const_entry ctx -> ctx | Polymorphic_const_entry ctx -> Univ.ContextSet.of_context ctx in let decl = (Lib.cwd(), SectionLocalAssum ((c,ctx),p,impl), IsAssumption kind) in let _ = declare_variable ident decl in let () = assumption_message ident in let () = if not !Flags.quiet && Proof_global.there_are_pending_proofs () then Feedback.msg_info (str"Variable" ++ spc () ++ Id.print ident ++ strbrk " is not visible from current goals") in let r = VarRef ident in let () = Typeclasses.declare_instance None true r in let () = if is_coe then Class.try_add_new_coercion r ~local:true false in (r,Univ.Instance.empty,true) | Global | Local | Discharge -> let do_instance = should_axiom_into_instance local in let local = DeclareDef.get_locality ident ~kind:"axiom" local in let inl = match nl with | NoInline -> None | DefaultInline -> Some (Flags.get_inline_level()) | InlineAt i -> Some i in let decl = (ParameterEntry (None,(c,ctx),inl), IsAssumption kind) in let kn = declare_constant ident ~local decl in let gr = ConstRef kn in let () = maybe_declare_manual_implicits false gr imps in let () = Universes.register_universe_binders gr pl in let () = assumption_message ident in let () = if do_instance then Typeclasses.declare_instance None false gr in let () = if is_coe then Class.try_add_new_coercion gr ~local p in let inst = match ctx with | Polymorphic_const_entry ctx -> Univ.UContext.instance ctx | Monomorphic_const_entry _ -> Univ.Instance.empty in (gr,inst,Lib.is_modtype_strict ()) let interp_assumption evdref env impls bl c = let c = mkCProdN ?loc:(local_binders_loc bl) bl c in let ty, impls = interp_type_evars_impls env evdref ~impls c in let ty = EConstr.Unsafe.to_constr ty in (ty, impls) (* When monomorphic the universe constraints are declared with the first declaration only. *) let next_uctx = let empty_uctx = Monomorphic_const_entry Univ.ContextSet.empty in function | Polymorphic_const_entry _ as uctx -> uctx | Monomorphic_const_entry _ -> empty_uctx let declare_assumptions idl is_coe k (c,uctx) pl imps nl = let refs, status, _ = List.fold_left (fun (refs,status,uctx) id -> let ref',u',status' = declare_assumption is_coe k (c,uctx) pl imps false nl id in (ref',u')::refs, status' && status, next_uctx uctx) ([],true,uctx) idl in List.rev refs, status let maybe_error_many_udecls = function | ((loc,id), Some _) -> user_err ?loc ~hdr:"many_universe_declarations" Pp.(str "When declaring multiple axioms in one command, " ++ str "only the first is allowed a universe binder " ++ str "(which will be shared by the whole block).") | (_, None) -> () let process_assumptions_udecls kind l = let udecl, first_id = match l with | (coe, ((id, udecl)::rest, c))::rest' -> List.iter maybe_error_many_udecls rest; List.iter (fun (coe, (idl, c)) -> List.iter maybe_error_many_udecls idl) rest'; udecl, id | (_, ([], _))::_ | [] -> assert false in let () = match kind, udecl with | (Discharge, _, _), Some _ when Lib.sections_are_opened () -> let loc = fst first_id in let msg = Pp.str "Section variables cannot be polymorphic." in user_err ?loc msg | _ -> () in udecl, List.map (fun (coe, (idl, c)) -> coe, (List.map fst idl, c)) l let do_assumptions kind nl l = let open Context.Named.Declaration in let env = Global.env () in let udecl, l = process_assumptions_udecls kind l in let evdref, udecl = let evd, udecl = Univdecls.interp_univ_decl_opt env udecl in ref evd, udecl in let l = if pi2 kind (* poly *) then (* Separate declarations so that A B : Type puts A and B in different levels. *) List.fold_right (fun (is_coe,(idl,c)) acc -> List.fold_right (fun id acc -> (is_coe, ([id], c)) :: acc) idl acc) l [] else l in (* We intepret all declarations in the same evar_map, i.e. as a telescope. *) let _,l = List.fold_left_map (fun (env,ienv) (is_coe,(idl,c)) -> let t,imps = interp_assumption evdref env ienv [] c in let env = push_named_context (List.map (fun (_,id) -> LocalAssum (id,t)) idl) env in let ienv = List.fold_right (fun (_,id) ienv -> let impls = compute_internalization_data env Variable t imps in Id.Map.add id impls ienv) idl ienv in ((env,ienv),((is_coe,idl),t,imps))) (env,empty_internalization_env) l in let evd = solve_remaining_evars all_and_fail_flags env !evdref Evd.empty in (* The universe constraints come from the whole telescope. *) let evd = Evd.nf_constraints evd in let nf_evar c = EConstr.to_constr evd (EConstr.of_constr c) in let uvars, l = List.fold_left_map (fun uvars (coe,t,imps) -> let t = nf_evar t in let uvars = Univ.LSet.union uvars (Univops.universes_of_constr t) in uvars, (coe,t,imps)) Univ.LSet.empty l in let evd = Evd.restrict_universe_context evd uvars in let uctx = Evd.check_univ_decl ~poly:(pi2 kind) evd udecl in let ubinders = Evd.universe_binders evd in pi2 (List.fold_left (fun (subst,status,uctx) ((is_coe,idl),t,imps) -> let t = replace_vars subst t in let refs, status' = declare_assumptions idl is_coe kind (t,uctx) ubinders imps nl in let subst' = List.map2 (fun (_,id) (c,u) -> (id, Universes.constr_of_global_univ (c,u))) idl refs in subst'@subst, status' && status, next_uctx uctx) ([], true, uctx) l) (* 3a| Elimination schemes for mutual inductive definitions *) (* 3b| Mutual inductive definitions *) let push_types env idl tl = List.fold_left2 (fun env id t -> Environ.push_rel (LocalAssum (Name id,t)) env) env idl tl type structured_one_inductive_expr = { ind_name : Id.t; ind_univs : Vernacexpr.universe_decl_expr option; ind_arity : constr_expr; ind_lc : (Id.t * constr_expr) list } type structured_inductive_expr = local_binder_expr list * structured_one_inductive_expr list let minductive_message warn = function | [] -> user_err Pp.(str "No inductive definition.") | [x] -> (Id.print x ++ str " is defined" ++ if warn then str " as a non-primitive record" else mt()) | l -> hov 0 (prlist_with_sep pr_comma Id.print l ++ spc () ++ str "are defined") let check_all_names_different indl = let ind_names = List.map (fun ind -> ind.ind_name) indl in let cstr_names = List.map_append (fun ind -> List.map fst ind.ind_lc) indl in let l = List.duplicates Id.equal ind_names in let () = match l with | [] -> () | t :: _ -> raise (InductiveError (SameNamesTypes t)) in let l = List.duplicates Id.equal cstr_names in let () = match l with | [] -> () | c :: _ -> raise (InductiveError (SameNamesConstructors (List.hd l))) in let l = List.intersect Id.equal ind_names cstr_names in match l with | [] -> () | _ -> raise (InductiveError (SameNamesOverlap l)) let mk_mltype_data evdref env assums arity indname = let is_ml_type = is_sort env !evdref (EConstr.of_constr arity) in (is_ml_type,indname,assums) let prepare_param = function | LocalAssum (na,t) -> Name.get_id na, LocalAssumEntry t | LocalDef (na,b,_) -> Name.get_id na, LocalDefEntry b (** Make the arity conclusion flexible to avoid generating an upper bound universe now, only if the universe does not appear anywhere else. This is really a hack to stay compatible with the semantics of template polymorphic inductives which are recognized when a "Type" appears at the end of the conlusion in the source syntax. *) let rec check_anonymous_type ind = let open Glob_term in match DAst.get ind with | GSort (GType []) -> true | GProd ( _, _, _, e) | GLetIn (_, _, _, e) | GLambda (_, _, _, e) | GApp (e, _) | GCast (e, _) -> check_anonymous_type e | _ -> false let make_conclusion_flexible evdref ty poly = if poly && Term.isArity ty then let _, concl = Term.destArity ty in match concl with | Type u -> (match Univ.universe_level u with | Some u -> evdref := Evd.make_flexible_variable !evdref ~algebraic:true u | None -> ()) | _ -> () else () let is_impredicative env u = u = Prop Null || (is_impredicative_set env && u = Prop Pos) let interp_ind_arity env evdref ind = let c = intern_gen IsType env ind.ind_arity in let impls = Implicit_quantifiers.implicits_of_glob_constr ~with_products:true c in let (evd,t) = understand_tcc env !evdref ~expected_type:IsType c in evdref := evd; let pseudo_poly = check_anonymous_type c in let () = if not (Reductionops.is_arity env !evdref t) then user_err ?loc:(constr_loc ind.ind_arity) (str "Not an arity") in let t = EConstr.Unsafe.to_constr t in t, pseudo_poly, impls let interp_cstrs evdref env impls mldata arity ind = let cnames,ctyps = List.split ind.ind_lc in (* Complete conclusions of constructor types if given in ML-style syntax *) let ctyps' = List.map2 (complete_conclusion mldata) cnames ctyps in (* Interpret the constructor types *) let ctyps'', cimpls = List.split (List.map (interp_type_evars_impls evdref env ~impls %> on_fst EConstr.Unsafe.to_constr) ctyps') in (cnames, ctyps'', cimpls) let sign_level env evd sign = fst (List.fold_right (fun d (lev,env) -> match d with | LocalDef _ -> lev, push_rel d env | LocalAssum _ -> let s = destSort (Reduction.whd_all env (EConstr.Unsafe.to_constr (nf_evar evd (Retyping.get_type_of env evd (EConstr.of_constr (RelDecl.get_type d)))))) in let u = univ_of_sort s in (Univ.sup u lev, push_rel d env)) sign (Univ.type0m_univ,env)) let sup_list min = List.fold_left Univ.sup min let extract_level env evd min tys = let sorts = List.map (fun ty -> let ctx, concl = Reduction.dest_prod_assum env ty in sign_level env evd (LocalAssum (Anonymous, concl) :: ctx)) tys in sup_list min sorts let is_flexible_sort evd u = match Univ.Universe.level u with | Some l -> Evd.is_flexible_level evd l | None -> false let inductive_levels env evdref poly arities inds = let destarities = List.map (fun x -> x, Reduction.dest_arity env x) arities in let levels = List.map (fun (x,(ctx,a)) -> if a = Prop Null then None else Some (univ_of_sort a)) destarities in let cstrs_levels, min_levels, sizes = CList.split3 (List.map2 (fun (_,tys,_) (arity,(ctx,du)) -> let len = List.length tys in let minlev = Sorts.univ_of_sort du in let minlev = if len > 1 && not (is_impredicative env du) then Univ.sup minlev Univ.type0_univ else minlev in let minlev = (** Indices contribute. *) if Indtypes.is_indices_matter () && List.length ctx > 0 then ( let ilev = sign_level env !evdref ctx in Univ.sup ilev minlev) else minlev in let clev = extract_level env !evdref minlev tys in (clev, minlev, len)) inds destarities) in (* Take the transitive closure of the system of constructors *) (* level constraints and remove the recursive dependencies *) let levels' = Universes.solve_constraints_system (Array.of_list levels) (Array.of_list cstrs_levels) (Array.of_list min_levels) in let evd, arities = CList.fold_left3 (fun (evd, arities) cu (arity,(ctx,du)) len -> if is_impredicative env du then (** Any product is allowed here. *) evd, arity :: arities else (** If in a predicative sort, or asked to infer the type, we take the max of: - indices (if in indices-matter mode) - constructors - Type(1) if there is more than 1 constructor *) (** Constructors contribute. *) let evd = if Sorts.is_set du then if not (Evd.check_leq evd cu Univ.type0_univ) then raise (Indtypes.InductiveError Indtypes.LargeNonPropInductiveNotInType) else evd else evd (* Evd.set_leq_sort env evd (Type cu) du *) in let evd = if len >= 2 && Univ.is_type0m_univ cu then (** "Polymorphic" type constraint and more than one constructor, should not land in Prop. Add constraint only if it would land in Prop directly (no informative arguments as well). *) Evd.set_leq_sort env evd (Prop Pos) du else evd in let duu = Sorts.univ_of_sort du in let evd = if not (Univ.is_small_univ duu) && Univ.Universe.equal cu duu then if is_flexible_sort evd duu && not (Evd.check_leq evd Univ.type0_univ duu) then Evd.set_eq_sort env evd (Prop Null) du else evd else Evd.set_eq_sort env evd (Type cu) du in (evd, arity :: arities)) (!evdref,[]) (Array.to_list levels') destarities sizes in evdref := evd; List.rev arities let check_named (loc, na) = match na with | Name _ -> () | Anonymous -> let msg = str "Parameters must be named." in user_err ?loc msg let check_param = function | CLocalDef (na, _, _) -> check_named na | CLocalAssum (nas, Default _, _) -> List.iter check_named nas | CLocalAssum (nas, Generalized _, _) -> () | CLocalPattern (loc,_) -> Loc.raise ?loc (Stream.Error "pattern with quote not allowed here.") let interp_mutual_inductive (paramsl,indl) notations cum poly prv finite = check_all_names_different indl; List.iter check_param paramsl; let env0 = Global.env() in let pl = (List.hd indl).ind_univs in let evd, decl = Univdecls.interp_univ_decl_opt env0 pl in let evdref = ref evd in let impls, ((env_params, ctx_params), userimpls) = interp_context_evars env0 evdref paramsl in let ctx_params = List.map (fun d -> map_rel_decl EConstr.Unsafe.to_constr d) ctx_params in let indnames = List.map (fun ind -> ind.ind_name) indl in (* Names of parameters as arguments of the inductive type (defs removed) *) let assums = List.filter is_local_assum ctx_params in let params = List.map (RelDecl.get_name %> Name.get_id) assums in (* Interpret the arities *) let arities = List.map (interp_ind_arity env_params evdref) indl in let fullarities = List.map (fun (c, _, _) -> Term.it_mkProd_or_LetIn c ctx_params) arities in let env_ar = push_types env0 indnames fullarities in let env_ar_params = push_rel_context ctx_params env_ar in (* Compute interpretation metadatas *) let indimpls = List.map (fun (_, _, impls) -> userimpls @ lift_implicits (Context.Rel.nhyps ctx_params) impls) arities in let arities = List.map pi1 arities and aritypoly = List.map pi2 arities in let impls = compute_internalization_env env0 ~impls (Inductive (params,true)) indnames fullarities indimpls in let ntn_impls = compute_internalization_env env0 (Inductive (params,true)) indnames fullarities indimpls in let mldatas = List.map2 (mk_mltype_data evdref env_params params) arities indnames in let constructors = Metasyntax.with_syntax_protection (fun () -> (* Temporary declaration of notations and scopes *) List.iter (Metasyntax.set_notation_for_interpretation env_params ntn_impls) notations; (* Interpret the constructor types *) List.map3 (interp_cstrs env_ar_params evdref impls) mldatas arities indl) () in (* Try further to solve evars, and instantiate them *) let sigma = solve_remaining_evars all_and_fail_flags env_params !evdref Evd.empty in evdref := sigma; (* Compute renewed arities *) let nf,_ = e_nf_evars_and_universes evdref in let arities = List.map nf arities in let constructors = List.map (fun (idl,cl,impsl) -> (idl,List.map nf cl,impsl)) constructors in let _ = List.iter2 (fun ty poly -> make_conclusion_flexible evdref ty poly) arities aritypoly in let arities = inductive_levels env_ar_params evdref poly arities constructors in let nf',_ = e_nf_evars_and_universes evdref in let nf x = nf' (nf x) in let arities = List.map nf' arities in let constructors = List.map (fun (idl,cl,impsl) -> (idl,List.map nf' cl,impsl)) constructors in let ctx_params = Context.Rel.map nf ctx_params in let evd = !evdref in let uctx = Evd.check_univ_decl ~poly evd decl in List.iter (fun c -> check_evars env_params Evd.empty evd (EConstr.of_constr c)) arities; Context.Rel.iter (fun c -> check_evars env0 Evd.empty evd (EConstr.of_constr c)) ctx_params; List.iter (fun (_,ctyps,_) -> List.iter (fun c -> check_evars env_ar_params Evd.empty evd (EConstr.of_constr c)) ctyps) constructors; (* Build the inductive entries *) let entries = List.map4 (fun ind arity template (cnames,ctypes,cimpls) -> { mind_entry_typename = ind.ind_name; mind_entry_arity = arity; mind_entry_template = template; mind_entry_consnames = cnames; mind_entry_lc = ctypes }) indl arities aritypoly constructors in let impls = let len = Context.Rel.nhyps ctx_params in List.map2 (fun indimpls (_,_,cimpls) -> indimpls, List.map (fun impls -> userimpls @ (lift_implicits len impls)) cimpls) indimpls constructors in let univs = match uctx with | Polymorphic_const_entry uctx -> if cum then Cumulative_ind_entry (Universes.univ_inf_ind_from_universe_context uctx) else Polymorphic_ind_entry uctx | Monomorphic_const_entry uctx -> Monomorphic_ind_entry uctx in (* Build the mutual inductive entry *) let mind_ent = { mind_entry_params = List.map prepare_param ctx_params; mind_entry_record = None; mind_entry_finite = finite; mind_entry_inds = entries; mind_entry_private = if prv then Some false else None; mind_entry_universes = univs; } in (if poly && cum then Inductiveops.infer_inductive_subtyping env_ar evd mind_ent else mind_ent), Evd.universe_binders evd, impls (* Very syntactical equality *) let eq_local_binders bl1 bl2 = List.equal local_binder_eq bl1 bl2 let extract_coercions indl = let mkqid (_,((_,id),_)) = qualid_of_ident id in let extract lc = List.filter (fun (iscoe,_) -> iscoe) lc in List.map mkqid (List.flatten(List.map (fun (_,_,_,lc) -> extract lc) indl)) let extract_params indl = let paramsl = List.map (fun (_,params,_,_) -> params) indl in match paramsl with | [] -> anomaly (Pp.str "empty list of inductive types.") | params::paramsl -> if not (List.for_all (eq_local_binders params) paramsl) then user_err Pp.(str "Parameters should be syntactically the same for each inductive type."); params let extract_inductive indl = List.map (fun (((_,indname),pl),_,ar,lc) -> { ind_name = indname; ind_univs = pl; ind_arity = Option.cata (fun x -> x) (CAst.make @@ CSort (GType [])) ar; ind_lc = List.map (fun (_,((_,id),t)) -> (id,t)) lc }) indl let extract_mutual_inductive_declaration_components indl = let indl,ntnl = List.split indl in let params = extract_params indl in let coes = extract_coercions indl in let indl = extract_inductive indl in (params,indl), coes, List.flatten ntnl let is_recursive mie = let rec is_recursive_constructor lift typ = match Constr.kind typ with | Prod (_,arg,rest) -> not (EConstr.Vars.noccurn Evd.empty (** FIXME *) lift (EConstr.of_constr arg)) || is_recursive_constructor (lift+1) rest | LetIn (na,b,t,rest) -> is_recursive_constructor (lift+1) rest | _ -> false in match mie.mind_entry_inds with | [ind] -> let nparams = List.length mie.mind_entry_params in List.exists (fun t -> is_recursive_constructor (nparams+1) t) ind.mind_entry_lc | _ -> false let declare_mutual_inductive_with_eliminations mie pl impls = (* spiwack: raises an error if the structure is supposed to be non-recursive, but isn't *) begin match mie.mind_entry_finite with | BiFinite when is_recursive mie -> if Option.has_some mie.mind_entry_record then user_err Pp.(str "Records declared with the keywords Record or Structure cannot be recursive. You can, however, define recursive records using the Inductive or CoInductive command.") else user_err Pp.(str ("Types declared with the keyword Variant cannot be recursive. Recursive types are defined with the Inductive and CoInductive command.")) | _ -> () end; let names = List.map (fun e -> e.mind_entry_typename) mie.mind_entry_inds in let (_, kn), prim = declare_mind mie in let mind = Global.mind_of_delta_kn kn in List.iteri (fun i (indimpls, constrimpls) -> let ind = (mind,i) in let gr = IndRef ind in maybe_declare_manual_implicits false gr indimpls; Universes.register_universe_binders gr pl; List.iteri (fun j impls -> maybe_declare_manual_implicits false (ConstructRef (ind, succ j)) impls) constrimpls) impls; let warn_prim = match mie.mind_entry_record with Some (Some _) -> not prim | _ -> false in Flags.if_verbose Feedback.msg_info (minductive_message warn_prim names); if mie.mind_entry_private == None then declare_default_schemes mind; mind type one_inductive_impls = Impargs.manual_explicitation list (* for inds *)* Impargs.manual_explicitation list list (* for constrs *) let do_mutual_inductive indl cum poly prv finite = let indl,coes,ntns = extract_mutual_inductive_declaration_components indl in (* Interpret the types *) let mie,pl,impls = interp_mutual_inductive indl ntns cum poly prv finite in (* Declare the mutual inductive block with its associated schemes *) ignore (declare_mutual_inductive_with_eliminations mie pl impls); (* Declare the possible notations of inductive types *) List.iter (Metasyntax.add_notation_interpretation (Global.env ())) ntns; (* Declare the coercions *) List.iter (fun qid -> Class.try_add_new_coercion (locate qid) ~local:false poly) coes; (* If positivity is assumed declares itself as unsafe. *) if Environ.deactivated_guard (Global.env ()) then Feedback.feedback Feedback.AddedAxiom else () (* 3c| Fixpoints and co-fixpoints *) (* An (unoptimized) function that maps preorders to partial orders... Input: a list of associations (x,[y1;...;yn]), all yi distincts and different of x, meaning x<=y1, ..., x<=yn Output: a list of associations (x,Inr [y1;...;yn]), collecting all distincts yi greater than x, _or_, (x, Inl y) meaning that x is in the same class as y (in which case, x occurs nowhere else in the association map) partial_order : ('a * 'a list) list -> ('a * ('a,'a list) union) list *) let rec partial_order cmp = function | [] -> [] | (x,xge)::rest -> let rec browse res xge' = function | [] -> let res = List.map (function | (z, Inr zge) when List.mem_f cmp x zge -> (z, Inr (List.union cmp zge xge')) | r -> r) res in (x,Inr xge')::res | y::xge -> let rec link y = try match List.assoc_f cmp y res with | Inl z -> link z | Inr yge -> if List.mem_f cmp x yge then let res = List.remove_assoc_f cmp y res in let res = List.map (function | (z, Inl t) -> if cmp t y then (z, Inl x) else (z, Inl t) | (z, Inr zge) -> if List.mem_f cmp y zge then (z, Inr (List.add_set cmp x (List.remove cmp y zge))) else (z, Inr zge)) res in browse ((y,Inl x)::res) xge' (List.union cmp xge (List.remove cmp x yge)) else browse res (List.add_set cmp y (List.union cmp xge' yge)) xge with Not_found -> browse res (List.add_set cmp y xge') xge in link y in browse (partial_order cmp rest) [] xge let non_full_mutual_message x xge y yge isfix rest = let reason = if Id.List.mem x yge then Id.print y ++ str " depends on " ++ Id.print x ++ strbrk " but not conversely" else if Id.List.mem y xge then Id.print x ++ str " depends on " ++ Id.print y ++ strbrk " but not conversely" else Id.print y ++ str " and " ++ Id.print x ++ strbrk " are not mutually dependent" in let e = if List.is_empty rest then reason else strbrk "e.g., " ++ reason in let k = if isfix then "fixpoint" else "cofixpoint" in let w = if isfix then strbrk "Well-foundedness check may fail unexpectedly." ++ fnl() else mt () in strbrk "Not a fully mutually defined " ++ str k ++ fnl () ++ str "(" ++ e ++ str ")." ++ fnl () ++ w let warn_non_full_mutual = CWarnings.create ~name:"non-full-mutual" ~category:"fixpoints" (fun (x,xge,y,yge,isfix,rest) -> non_full_mutual_message x xge y yge isfix rest) let check_mutuality env evd isfix fixl = let names = List.map fst fixl in let preorder = List.map (fun (id,def) -> (id, List.filter (fun id' -> not (Id.equal id id') && occur_var env evd id' (EConstr.of_constr def)) names)) fixl in let po = partial_order Id.equal preorder in match List.filter (function (_,Inr _) -> true | _ -> false) po with | (x,Inr xge)::(y,Inr yge)::rest -> warn_non_full_mutual (x,xge,y,yge,isfix,rest) | _ -> () type structured_fixpoint_expr = { fix_name : Id.t; fix_univs : universe_decl_expr option; fix_annot : Id.t Loc.located option; fix_binders : local_binder_expr list; fix_body : constr_expr option; fix_type : constr_expr } let interp_fix_context env evdref isfix fix = let before, after = if isfix then split_at_annot fix.fix_binders fix.fix_annot else [], fix.fix_binders in let impl_env, ((env', ctx), imps) = interp_context_evars env evdref before in let impl_env', ((env'', ctx'), imps') = interp_context_evars ~impl_env ~shift:(Context.Rel.nhyps ctx) env' evdref after in let annot = Option.map (fun _ -> List.length (assums_of_rel_context ctx)) fix.fix_annot in ((env'', ctx' @ ctx), (impl_env',imps @ imps'), annot) let interp_fix_ccl evdref impls (env,_) fix = let (c, impl) = interp_type_evars_impls ~impls env evdref fix.fix_type in (c, impl) let interp_fix_body env_rec evdref impls (_,ctx) fix ccl = let open EConstr in Option.map (fun body -> let env = push_rel_context ctx env_rec in let body = interp_casted_constr_evars env evdref ~impls body ccl in it_mkLambda_or_LetIn body ctx) fix.fix_body let build_fix_type (_,ctx) ccl = EConstr.it_mkProd_or_LetIn ccl ctx let prepare_recursive_declaration fixnames fixtypes fixdefs = let defs = List.map (subst_vars (List.rev fixnames)) fixdefs in let names = List.map (fun id -> Name id) fixnames in (Array.of_list names, Array.of_list fixtypes, Array.of_list defs) (* Jump over let-bindings. *) let compute_possible_guardness_evidences (ctx,_,recindex) = (* A recursive index is characterized by the number of lambdas to skip before finding the relevant inductive argument *) match recindex with | Some i -> [i] | None -> (* If recursive argument was not given by user, we try all args. An earlier approach was to look only for inductive arguments, but doing it properly involves delta-reduction, and it finally doesn't seem to worth the effort (except for huge mutual fixpoints ?) *) List.interval 0 (Context.Rel.nhyps ctx - 1) type recursive_preentry = Id.t list * constr option list * types list (* Wellfounded definition *) open Coqlib let contrib_name = "Program" let subtac_dir = [contrib_name] let fixsub_module = subtac_dir @ ["Wf"] let tactics_module = subtac_dir @ ["Tactics"] let init_reference dir s () = Coqlib.coq_reference "Command" dir s let init_constant dir s evdref = let (sigma, c) = Evarutil.new_global !evdref (Coqlib.coq_reference "Command" dir s) in evdref := sigma; c let make_ref l s = init_reference l s let fix_proto = init_constant tactics_module "fix_proto" let fix_sub_ref = make_ref fixsub_module "Fix_sub" let measure_on_R_ref = make_ref fixsub_module "MR" let well_founded = init_constant ["Init"; "Wf"] "well_founded" let mkSubset evdref name typ prop = let open EConstr in mkApp (Evarutil.e_new_global evdref (delayed_force build_sigma).typ, [| typ; mkLambda (name, typ, prop) |]) let sigT = Lazy.from_fun build_sigma_type let make_qref s = Qualid (Loc.tag @@ qualid_of_string s) let lt_ref = make_qref "Init.Peano.lt" let rec telescope evdref l = let open EConstr in let open Vars in match l with | [] -> assert false | [LocalAssum (n, t)] -> t, [LocalDef (n, mkRel 1, t)], mkRel 1 | LocalAssum (n, t) :: tl -> let ty, tys, (k, constr) = List.fold_left (fun (ty, tys, (k, constr)) decl -> let t = RelDecl.get_type decl in let pred = mkLambda (RelDecl.get_name decl, t, ty) in let ty = Evarutil.e_new_global evdref (Lazy.force sigT).typ in let intro = Evarutil.e_new_global evdref (Lazy.force sigT).intro in let sigty = mkApp (ty, [|t; pred|]) in let intro = mkApp (intro, [|lift k t; lift k pred; mkRel k; constr|]) in (sigty, pred :: tys, (succ k, intro))) (t, [], (2, mkRel 1)) tl in let (last, subst) = List.fold_right2 (fun pred decl (prev, subst) -> let t = RelDecl.get_type decl in let p1 = Evarutil.e_new_global evdref (Lazy.force sigT).proj1 in let p2 = Evarutil.e_new_global evdref (Lazy.force sigT).proj2 in let proj1 = applist (p1, [t; pred; prev]) in let proj2 = applist (p2, [t; pred; prev]) in (lift 1 proj2, LocalDef (get_name decl, proj1, t) :: subst)) (List.rev tys) tl (mkRel 1, []) in ty, (LocalDef (n, last, t) :: subst), constr | LocalDef (n, b, t) :: tl -> let ty, subst, term = telescope evdref tl in ty, (LocalDef (n, b, t) :: subst), lift 1 term let nf_evar_context sigma ctx = List.map (map_constr (fun c -> Evarutil.nf_evar sigma c)) ctx let build_wellfounded (recname,pl,n,bl,arityc,body) poly r measure notation = let open EConstr in let open Vars in let lift_rel_context n l = Termops.map_rel_context_with_binders (liftn n) l in Coqlib.check_required_library ["Coq";"Program";"Wf"]; let env = Global.env() in let evd, decl = Univdecls.interp_univ_decl_opt env pl in let evdref = ref evd in let _, ((env', binders_rel), impls) = interp_context_evars env evdref bl in let len = List.length binders_rel in let top_env = push_rel_context binders_rel env in let top_arity = interp_type_evars top_env evdref arityc in let full_arity = it_mkProd_or_LetIn top_arity binders_rel in let argtyp, letbinders, make = telescope evdref binders_rel in let argname = Id.of_string "recarg" in let arg = LocalAssum (Name argname, argtyp) in let binders = letbinders @ [arg] in let binders_env = push_rel_context binders_rel env in let rel, _ = interp_constr_evars_impls env evdref r in let relty = Typing.unsafe_type_of env !evdref rel in let relargty = let error () = user_err ?loc:(constr_loc r) ~hdr:"Command.build_wellfounded" (Printer.pr_econstr_env env !evdref rel ++ str " is not an homogeneous binary relation.") in try let ctx, ar = Reductionops.splay_prod_n env !evdref 2 relty in match ctx, EConstr.kind !evdref ar with | [LocalAssum (_,t); LocalAssum (_,u)], Sort s when Sorts.is_prop (ESorts.kind !evdref s) && Reductionops.is_conv env !evdref t u -> t | _, _ -> error () with e when CErrors.noncritical e -> error () in let relargty = EConstr.Unsafe.to_constr relargty in let measure = interp_casted_constr_evars binders_env evdref measure relargty in let wf_rel, wf_rel_fun, measure_fn = let measure_body, measure = it_mkLambda_or_LetIn measure letbinders, it_mkLambda_or_LetIn measure binders in let comb = Evarutil.e_new_global evdref (delayed_force measure_on_R_ref) in let relargty = EConstr.of_constr relargty in let wf_rel = mkApp (comb, [| argtyp; relargty; rel; measure |]) in let wf_rel_fun x y = mkApp (rel, [| subst1 x measure_body; subst1 y measure_body |]) in wf_rel, wf_rel_fun, measure in let wf_proof = mkApp (well_founded evdref, [| argtyp ; wf_rel |]) in let argid' = Id.of_string (Id.to_string argname ^ "'") in let wfarg len = LocalAssum (Name argid', mkSubset evdref (Name argid') argtyp (wf_rel_fun (mkRel 1) (mkRel (len + 1)))) in let intern_bl = wfarg 1 :: [arg] in let _intern_env = push_rel_context intern_bl env in let proj = Evarutil.e_new_global evdref (delayed_force build_sigma).Coqlib.proj1 in let wfargpred = mkLambda (Name argid', argtyp, wf_rel_fun (mkRel 1) (mkRel 3)) in let projection = (* in wfarg :: arg :: before *) mkApp (proj, [| argtyp ; wfargpred ; mkRel 1 |]) in let top_arity_let = it_mkLambda_or_LetIn top_arity letbinders in let intern_arity = substl [projection] top_arity_let in (* substitute the projection of wfarg for something, now intern_arity is in wfarg :: arg *) let intern_fun_arity_prod = it_mkProd_or_LetIn intern_arity [wfarg 1] in let intern_fun_binder = LocalAssum (Name (add_suffix recname "'"), intern_fun_arity_prod) in let curry_fun = let wfpred = mkLambda (Name argid', argtyp, wf_rel_fun (mkRel 1) (mkRel (2 * len + 4))) in let intro = Evarutil.e_new_global evdref (delayed_force build_sigma).Coqlib.intro in let arg = mkApp (intro, [| argtyp; wfpred; lift 1 make; mkRel 1 |]) in let app = mkApp (mkRel (2 * len + 2 (* recproof + orig binders + current binders *)), [| arg |]) in let rcurry = mkApp (rel, [| measure; lift len measure |]) in let lam = LocalAssum (Name (Id.of_string "recproof"), rcurry) in let body = it_mkLambda_or_LetIn app (lam :: binders_rel) in let ty = it_mkProd_or_LetIn (lift 1 top_arity) (lam :: binders_rel) in LocalDef (Name recname, body, ty) in let fun_bl = intern_fun_binder :: [arg] in let lift_lets = lift_rel_context 1 letbinders in let intern_body = let ctx = LocalAssum (Name recname, get_type curry_fun) :: binders_rel in let (r, l, impls, scopes) = Constrintern.compute_internalization_data env Constrintern.Recursive (EConstr.Unsafe.to_constr full_arity) impls in let newimpls = Id.Map.singleton recname (r, l, impls @ [(Some (Id.of_string "recproof", Impargs.Manual, (true, false)))], scopes @ [None]) in interp_casted_constr_evars (push_rel_context ctx env) evdref ~impls:newimpls body (EConstr.Unsafe.to_constr (lift 1 top_arity)) in let intern_body_lam = it_mkLambda_or_LetIn intern_body (curry_fun :: lift_lets @ fun_bl) in let prop = mkLambda (Name argname, argtyp, top_arity_let) in let def = mkApp (Evarutil.e_new_global evdref (delayed_force fix_sub_ref), [| argtyp ; wf_rel ; Evarutil.e_new_evar env evdref ~src:(Loc.tag @@ Evar_kinds.QuestionMark (Evar_kinds.Define false,Anonymous)) wf_proof; prop |]) in let def = Typing.e_solve_evars env evdref def in let _ = evdref := Evarutil.nf_evar_map !evdref in let def = mkApp (def, [|intern_body_lam|]) in let binders_rel = nf_evar_context !evdref binders_rel in let binders = nf_evar_context !evdref binders in let top_arity = Evarutil.nf_evar !evdref top_arity in let hook, recname, typ = if List.length binders_rel > 1 then let name = add_suffix recname "_func" in let hook l gr _ = let body = it_mkLambda_or_LetIn (mkApp (Evarutil.e_new_global evdref gr, [|make|])) binders_rel in let ty = it_mkProd_or_LetIn top_arity binders_rel in let ty = EConstr.Unsafe.to_constr ty in let univs = Evd.check_univ_decl ~poly !evdref decl in (*FIXME poly? *) let ce = definition_entry ~types:ty ~univs (EConstr.to_constr !evdref body) in (** FIXME: include locality *) let c = Declare.declare_constant recname (DefinitionEntry ce, IsDefinition Definition) in let gr = ConstRef c in let () = Universes.register_universe_binders gr (Evd.universe_binders !evdref) in if Impargs.is_implicit_args () || not (List.is_empty impls) then Impargs.declare_manual_implicits false gr [impls] in let typ = it_mkProd_or_LetIn top_arity binders in hook, name, typ else let typ = it_mkProd_or_LetIn top_arity binders_rel in let hook l gr _ = if Impargs.is_implicit_args () || not (List.is_empty impls) then Impargs.declare_manual_implicits false gr [impls] in hook, recname, typ in let hook = Lemmas.mk_hook hook in let fullcoqc = EConstr.to_constr !evdref def in let fullctyp = EConstr.to_constr !evdref typ in Obligations.check_evars env !evdref; let evars, _, evars_def, evars_typ = Obligations.eterm_obligations env recname !evdref 0 fullcoqc fullctyp in let ctx = Evd.evar_universe_context !evdref in ignore(Obligations.add_definition recname ~term:evars_def ~univdecl:decl evars_typ ctx evars ~hook) let interp_recursive isfix fixl notations = let open Context.Named.Declaration in let open EConstr in let env = Global.env() in let fixnames = List.map (fun fix -> fix.fix_name) fixl in (* Interp arities allowing for unresolved types *) let all_universes = List.fold_right (fun sfe acc -> match sfe.fix_univs , acc with | None , acc -> acc | x , None -> x | Some ls , Some us -> let lsu = ls.univdecl_instance and usu = us.univdecl_instance in if not (CList.for_all2eq (fun x y -> Id.equal (snd x) (snd y)) lsu usu) then user_err Pp.(str "(co)-recursive definitions should all have the same universe binders"); Some us) fixl None in let evd, decl = Univdecls.interp_univ_decl_opt env all_universes in let evdref = ref evd in let fixctxs, fiximppairs, fixannots = List.split3 (List.map (interp_fix_context env evdref isfix) fixl) in let fixctximpenvs, fixctximps = List.split fiximppairs in let fixccls,fixcclimps = List.split (List.map3 (interp_fix_ccl evdref) fixctximpenvs fixctxs fixl) in let fixtypes = List.map2 build_fix_type fixctxs fixccls in let fixtypes = List.map (fun c -> nf_evar !evdref c) fixtypes in let fiximps = List.map3 (fun ctximps cclimps (_,ctx) -> ctximps@(Impargs.lift_implicits (Context.Rel.nhyps ctx) cclimps)) fixctximps fixcclimps fixctxs in let rec_sign = List.fold_left2 (fun env' id t -> if Flags.is_program_mode () then let sort = Evarutil.evd_comb1 (Typing.type_of ~refresh:true env) evdref t in let fixprot = try let app = mkApp (fix_proto evdref, [|sort; t|]) in Typing.e_solve_evars env evdref app with e when CErrors.noncritical e -> t in LocalAssum (id,fixprot) :: env' else LocalAssum (id,t) :: env') [] fixnames fixtypes in let env_rec = push_named_context rec_sign env in (* Get interpretation metadatas *) let fixtypes = List.map EConstr.Unsafe.to_constr fixtypes in let fixccls = List.map EConstr.Unsafe.to_constr fixccls in let impls = compute_internalization_env env Recursive fixnames fixtypes fiximps in (* Interp bodies with rollback because temp use of notations/implicit *) let fixdefs = Metasyntax.with_syntax_protection (fun () -> List.iter (Metasyntax.set_notation_for_interpretation env_rec impls) notations; List.map4 (fun fixctximpenv -> interp_fix_body env_rec evdref (Id.Map.fold Id.Map.add fixctximpenv impls)) fixctximpenvs fixctxs fixl fixccls) () in (* Instantiate evars and check all are resolved *) let evd = solve_unif_constraints_with_heuristics env_rec !evdref in let evd, nf = nf_evars_and_universes evd in let fixdefs = List.map (fun c -> Option.map EConstr.Unsafe.to_constr c) fixdefs in let fixdefs = List.map (Option.map nf) fixdefs in let fixtypes = List.map nf fixtypes in let fixctxs = List.map (fun (_,ctx) -> ctx) fixctxs in (* Build the fix declaration block *) (env,rec_sign,decl,evd), (fixnames,fixdefs,fixtypes), List.combine3 fixctxs fiximps fixannots let check_recursive isfix env evd (fixnames,fixdefs,_) = check_evars_are_solved env evd Evd.empty; if List.for_all Option.has_some fixdefs then begin let fixdefs = List.map Option.get fixdefs in check_mutuality env evd isfix (List.combine fixnames fixdefs) end let interp_fixpoint l ntns = let (env,_,pl,evd),fix,info = interp_recursive true l ntns in check_recursive true env evd fix; (fix,pl,Evd.evar_universe_context evd,info) let interp_cofixpoint l ntns = let (env,_,pl,evd),fix,info = interp_recursive false l ntns in check_recursive false env evd fix; (fix,pl,Evd.evar_universe_context evd,info) let declare_fixpoint local poly ((fixnames,fixdefs,fixtypes),pl,ctx,fiximps) indexes ntns = if List.exists Option.is_empty fixdefs then (* Some bodies to define by proof *) let thms = List.map3 (fun id t (ctx,imps,_) -> (id,(t,(List.map RelDecl.get_name ctx,imps)))) fixnames fixtypes fiximps in let init_tac = Some (List.map (Option.cata (EConstr.of_constr %> Tactics.exact_no_check) Tacticals.New.tclIDTAC) fixdefs) in let evd = Evd.from_ctx ctx in Lemmas.start_proof_with_initialization (Global,poly,DefinitionBody Fixpoint) evd pl (Some(false,indexes,init_tac)) thms None (Lemmas.mk_hook (fun _ _ -> ())) else begin (* We shortcut the proof process *) let fixdefs = List.map Option.get fixdefs in let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in let env = Global.env() in let indexes = search_guard env indexes fixdecls in let fiximps = List.map (fun (n,r,p) -> r) fiximps in let vars = Univops.universes_of_constr (mkFix ((indexes,0),fixdecls)) in let fixdecls = List.map_i (fun i _ -> mkFix ((indexes,i),fixdecls)) 0 fixnames in let evd = Evd.from_ctx ctx in let evd = Evd.restrict_universe_context evd vars in let ctx = Evd.check_univ_decl ~poly evd pl in let pl = Evd.universe_binders evd in let fixdecls = List.map Safe_typing.mk_pure_proof fixdecls in ignore (List.map4 (DeclareDef.declare_fix (local, poly, Fixpoint) pl ctx) fixnames fixdecls fixtypes fiximps); (* Declare the recursive definitions *) fixpoint_message (Some indexes) fixnames; end; (* Declare notations *) List.iter (Metasyntax.add_notation_interpretation (Global.env())) ntns let declare_cofixpoint local poly ((fixnames,fixdefs,fixtypes),pl,ctx,fiximps) ntns = if List.exists Option.is_empty fixdefs then (* Some bodies to define by proof *) let thms = List.map3 (fun id t (ctx,imps,_) -> (id,(t,(List.map RelDecl.get_name ctx,imps)))) fixnames fixtypes fiximps in let init_tac = Some (List.map (Option.cata (EConstr.of_constr %> Tactics.exact_no_check) Tacticals.New.tclIDTAC) fixdefs) in let evd = Evd.from_ctx ctx in Lemmas.start_proof_with_initialization (Global,poly, DefinitionBody CoFixpoint) evd pl (Some(true,[],init_tac)) thms None (Lemmas.mk_hook (fun _ _ -> ())) else begin (* We shortcut the proof process *) let fixdefs = List.map Option.get fixdefs in let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in let fixdecls = List.map_i (fun i _ -> mkCoFix (i,fixdecls)) 0 fixnames in let vars = Univops.universes_of_constr (List.hd fixdecls) in let fixdecls = List.map Safe_typing.mk_pure_proof fixdecls in let fiximps = List.map (fun (len,imps,idx) -> imps) fiximps in let evd = Evd.from_ctx ctx in let evd = Evd.restrict_universe_context evd vars in let ctx = Evd.check_univ_decl ~poly evd pl in let pl = Evd.universe_binders evd in ignore (List.map4 (DeclareDef.declare_fix (local, poly, CoFixpoint) pl ctx) fixnames fixdecls fixtypes fiximps); (* Declare the recursive definitions *) cofixpoint_message fixnames end; (* Declare notations *) List.iter (Metasyntax.add_notation_interpretation (Global.env())) ntns let extract_decreasing_argument limit = function | (na,CStructRec) -> na | (na,_) when not limit -> na | _ -> user_err Pp.(str "Only structural decreasing is supported for a non-Program Fixpoint") let extract_fixpoint_components limit l = let fixl, ntnl = List.split l in let fixl = List.map (fun (((_,id),pl),ann,bl,typ,def) -> let ann = extract_decreasing_argument limit ann in {fix_name = id; fix_annot = ann; fix_univs = pl; fix_binders = bl; fix_body = def; fix_type = typ}) fixl in fixl, List.flatten ntnl let extract_cofixpoint_components l = let fixl, ntnl = List.split l in List.map (fun (((_,id),pl),bl,typ,def) -> {fix_name = id; fix_annot = None; fix_univs = pl; fix_binders = bl; fix_body = def; fix_type = typ}) fixl, List.flatten ntnl let out_def = function | Some def -> def | None -> user_err Pp.(str "Program Fixpoint needs defined bodies.") let collect_evars_of_term evd c ty = let evars = Evar.Set.union (Evd.evars_of_term c) (Evd.evars_of_term ty) in Evar.Set.fold (fun ev acc -> Evd.add acc ev (Evd.find_undefined evd ev)) evars (Evd.from_ctx (Evd.evar_universe_context evd)) let do_program_recursive local p fixkind fixl ntns = let isfix = fixkind != Obligations.IsCoFixpoint in let (env, rec_sign, pl, evd), fix, info = interp_recursive isfix fixl ntns in (* Program-specific code *) (* Get the interesting evars, those that were not instanciated *) let evd = Typeclasses.resolve_typeclasses ~filter:Typeclasses.no_goals ~fail:true env evd in (* Solve remaining evars *) let evd = nf_evar_map_undefined evd in let collect_evars id def typ imps = (* Generalize by the recursive prototypes *) let def = EConstr.to_constr evd (Termops.it_mkNamedLambda_or_LetIn (EConstr.of_constr def) rec_sign) and typ = EConstr.to_constr evd (Termops.it_mkNamedProd_or_LetIn (EConstr.of_constr typ) rec_sign) in let evm = collect_evars_of_term evd def typ in let evars, _, def, typ = Obligations.eterm_obligations env id evm (List.length rec_sign) def typ in (id, def, typ, imps, evars) in let (fixnames,fixdefs,fixtypes) = fix in let fiximps = List.map pi2 info in let fixdefs = List.map out_def fixdefs in let defs = List.map4 collect_evars fixnames fixdefs fixtypes fiximps in let () = if isfix then begin let possible_indexes = List.map compute_possible_guardness_evidences info in let fixdecls = Array.of_list (List.map (fun x -> Name x) fixnames), Array.of_list fixtypes, Array.of_list (List.map (subst_vars (List.rev fixnames)) fixdefs) in let indexes = Pretyping.search_guard (Global.env ()) possible_indexes fixdecls in List.iteri (fun i _ -> Inductive.check_fix env ((indexes,i),fixdecls)) fixl end in let ctx = Evd.evar_universe_context evd in let kind = match fixkind with | Obligations.IsFixpoint _ -> (local, p, Fixpoint) | Obligations.IsCoFixpoint -> (local, p, CoFixpoint) in Obligations.add_mutual_definitions defs ~kind ~univdecl:pl ctx ntns fixkind let do_program_fixpoint local poly l = let g = List.map (fun ((_,wf,_,_,_),_) -> wf) l in match g, l with | [(n, CWfRec r)], [((((_,id),pl),_,bl,typ,def),ntn)] -> let recarg = match n with | Some n -> mkIdentC (snd n) | None -> user_err ~hdr:"do_program_fixpoint" (str "Recursive argument required for well-founded fixpoints") in build_wellfounded (id, pl, n, bl, typ, out_def def) poly r recarg ntn | [(n, CMeasureRec (m, r))], [((((_,id),pl),_,bl,typ,def),ntn)] -> build_wellfounded (id, pl, n, bl, typ, out_def def) poly (Option.default (CAst.make @@ CRef (lt_ref,None)) r) m ntn | _, _ when List.for_all (fun (n, ro) -> ro == CStructRec) g -> let fixl,ntns = extract_fixpoint_components true l in let fixkind = Obligations.IsFixpoint g in do_program_recursive local poly fixkind fixl ntns | _, _ -> user_err ~hdr:"do_program_fixpoint" (str "Well-founded fixpoints not allowed in mutually recursive blocks") let check_safe () = let open Declarations in let flags = Environ.typing_flags (Global.env ()) in flags.check_universes && flags.check_guarded let do_fixpoint local poly l = if Flags.is_program_mode () then do_program_fixpoint local poly l else let fixl, ntns = extract_fixpoint_components true l in let (_, _, _, info as fix) = interp_fixpoint fixl ntns in let possible_indexes = List.map compute_possible_guardness_evidences info in declare_fixpoint local poly fix possible_indexes ntns; if not (check_safe ()) then Feedback.feedback Feedback.AddedAxiom else () let do_cofixpoint local poly l = let fixl,ntns = extract_cofixpoint_components l in if Flags.is_program_mode () then do_program_recursive local poly Obligations.IsCoFixpoint fixl ntns else let cofix = interp_cofixpoint fixl ntns in declare_cofixpoint local poly cofix ntns; if not (check_safe ()) then Feedback.feedback Feedback.AddedAxiom else ()