1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Names open Sorts open Constr open Cbytecodes external set_drawinstr : unit -> unit = "coq_set_drawinstr" (******************************************) (* Utility Functions about Obj ************) (******************************************) external offset_closure : Obj.t -> int -> Obj.t = "coq_offset_closure" external offset : Obj.t -> int = "coq_offset" (*******************************************) (* Initalization of the abstract machine ***) (*******************************************) external init_vm : unit -> unit = "init_coq_vm" let _ = init_vm () (*******************************************) (* Machine code *** ************************) (*******************************************) type tcode let tcode_of_obj v = ((Obj.obj v):tcode) let fun_code v = tcode_of_obj (Obj.field (Obj.repr v) 0) external mkAccuCode : int -> tcode = "coq_makeaccu" external mkPopStopCode : int -> tcode = "coq_pushpop" external offset_tcode : tcode -> int -> tcode = "coq_offset_tcode" external int_tcode : tcode -> int -> int = "coq_int_tcode" external accumulate : unit -> tcode = "accumulate_code" let accumulate = accumulate () external is_accumulate : tcode -> bool = "coq_is_accumulate_code" let popstop_tbl = ref (Array.init 30 mkPopStopCode) let popstop_code i = let len = Array.length !popstop_tbl in if i < len then !popstop_tbl.(i) else begin popstop_tbl := Array.init (i+10) (fun j -> if j < len then !popstop_tbl.(j) else mkPopStopCode j); !popstop_tbl.(i) end let stop = popstop_code 0 (******************************************************) (* Abstract data types and utility functions **********) (******************************************************) (* Values of the abstract machine *) let val_of_obj v = ((Obj.obj v):values) let crazy_val = (val_of_obj (Obj.repr 0)) (* Abstract data *) type vprod type vfun type vfix type vcofix type vblock type arguments type vm_env type vstack = values array type vswitch = { sw_type_code : tcode; sw_code : tcode; sw_annot : annot_switch; sw_stk : vstack; sw_env : vm_env } (* Representation of values *) (* + Products : *) (* - vprod = 0_[ dom | codom] *) (* dom : values, codom : vfun *) (* *) (* + Functions have two representations : *) (* - unapplied fun : vf = Ct_[ C | fv1 | ... | fvn] *) (* C:tcode, fvi : values *) (* Remark : a function and its environment is the same value. *) (* - partially applied fun : Ct_[Restart:C| vf | arg1 | ... argn] *) (* *) (* + Fixpoints : *) (* - Ct_[C1|Infix_t|C2|...|Infix_t|Cn|fv1|...|fvn] *) (* One single block to represent all of the fixpoints, each fixpoint *) (* is the pointer to the field holding the pointer to its code, and *) (* the infix tag is used to know where the block starts. *) (* - Partial application follows the scheme of partially applied *) (* functions. Note: only fixpoints not having been applied to its *) (* recursive argument are coded this way. When the rec. arg. is *) (* applied, either it's a constructor and the fix reduces, or it's *) (* and the fix is coded as an accumulator. *) (* *) (* + Cofixpoints : see cbytegen.ml *) (* *) (* + vblock's encode (non constant) constructors as in Ocaml, but *) (* starting from 0 up. tag 0 ( = accu_tag) is reserved for *) (* accumulators. *) (* *) (* + vm_env is the type of the machine environments (i.e. a function or *) (* a fixpoint) *) (* *) (* + Accumulators : At_[accumulate| accu | arg1 | ... | argn ] *) (* - representation of [accu] : tag_[....] *) (* -- tag <= 3 : encoding atom type (sorts, free vars, etc.) *) (* -- 10_[accu|proj name] : a projection blocked by an accu *) (* -- 11_[accu|fix_app] : a fixpoint blocked by an accu *) (* -- 12_[accu|vswitch] : a match blocked by an accu *) (* -- 13_[fcofix] : a cofix function *) (* -- 14_[fcofix|val] : a cofix function, val represent the value *) (* of the function applied to arg1 ... argn *) (* The [arguments] type, which is abstracted as an array, represents : *) (* tag[ _ | _ |v1|... | vn] *) (* Generally the first field is a code pointer. *) (* Do not edit this type without editing C code, especially "coq_values.h" *) type atom = | Aid of Vars.id_key | Aind of inductive | Atype of Univ.Universe.t (* Zippers *) type zipper = | Zapp of arguments | Zfix of vfix*arguments (* Possibly empty *) | Zswitch of vswitch | Zproj of Constant.t (* name of the projection *) type stack = zipper list type to_up = values type whd = | Vsort of Sorts.t | Vprod of vprod | Vfun of vfun | Vfix of vfix * arguments option | Vcofix of vcofix * to_up * arguments option | Vconstr_const of int | Vconstr_block of vblock | Vatom_stk of atom * stack | Vuniv_level of Univ.Level.t (************************************************) (* Abstract machine *****************************) (************************************************) (* gestion de la pile *) external push_ra : tcode -> unit = "coq_push_ra" external push_val : values -> unit = "coq_push_val" external push_arguments : arguments -> unit = "coq_push_arguments" external push_vstack : vstack -> int -> unit = "coq_push_vstack" (* interpreteur *) external interprete : tcode -> values -> vm_env -> int -> values = "coq_interprete_ml" (* Functions over arguments *) let nargs : arguments -> int = fun args -> (Obj.size (Obj.repr args)) - 2 let arg args i = if 0 <= i && i < (nargs args) then val_of_obj (Obj.field (Obj.repr args) (i+2)) else invalid_arg ("Vm.arg size = "^(string_of_int (nargs args))^ " acces "^(string_of_int i)) (* Apply a value to arguments contained in [vargs] *) let apply_arguments vf vargs = let n = nargs vargs in if Int.equal n 0 then vf else begin push_ra stop; push_arguments vargs; interprete (fun_code vf) vf (Obj.magic vf) (n - 1) end (* Apply value [vf] to an array of argument values [varray] *) let apply_varray vf varray = let n = Array.length varray in if Int.equal n 0 then vf else begin push_ra stop; (* The fun code of [vf] will make sure we have enough stack, so we put 0 here. *) push_vstack varray 0; interprete (fun_code vf) vf (Obj.magic vf) (n - 1) end (*************************************************) (* Destructors ***********************************) (*************************************************) let uni_lvl_val (v : values) : Univ.Level.t = let whd = Obj.magic v in match whd with | Vuniv_level lvl -> lvl | _ -> let pr = let open Pp in match whd with | Vsort _ -> str "Vsort" | Vprod _ -> str "Vprod" | Vfun _ -> str "Vfun" | Vfix _ -> str "Vfix" | Vcofix _ -> str "Vcofix" | Vconstr_const i -> str "Vconstr_const" | Vconstr_block b -> str "Vconstr_block" | Vatom_stk (a,stk) -> str "Vatom_stk" | _ -> assert false in CErrors.anomaly Pp.( strbrk "Parsing virtual machine value expected universe level, got " ++ pr ++ str ".") let rec whd_accu a stk = let stk = if Int.equal (Obj.size a) 2 then stk else Zapp (Obj.obj a) :: stk in let at = Obj.field a 1 in match Obj.tag at with | i when Int.equal i type_atom_tag -> begin match stk with | [Zapp args] -> let u = ref (Obj.obj (Obj.field at 0)) in for i = 0 to nargs args - 1 do u := Univ.Universe.sup !u (Univ.Universe.make (uni_lvl_val (arg args i))) done; Vsort (Type !u) | _ -> assert false end | i when i <= max_atom_tag -> Vatom_stk(Obj.magic at, stk) | i when Int.equal i proj_tag -> let zproj = Zproj (Obj.obj (Obj.field at 0)) in whd_accu (Obj.field at 1) (zproj :: stk) | i when Int.equal i fix_app_tag -> let fa = Obj.field at 1 in let zfix = Zfix (Obj.obj (Obj.field fa 1), Obj.obj fa) in whd_accu (Obj.field at 0) (zfix :: stk) | i when Int.equal i switch_tag -> let zswitch = Zswitch (Obj.obj (Obj.field at 1)) in whd_accu (Obj.field at 0) (zswitch :: stk) | i when Int.equal i cofix_tag -> let vcfx = Obj.obj (Obj.field at 0) in let to_up = Obj.obj a in begin match stk with | [] -> Vcofix(vcfx, to_up, None) | [Zapp args] -> Vcofix(vcfx, to_up, Some args) | _ -> assert false end | i when Int.equal i cofix_evaluated_tag -> let vcofix = Obj.obj (Obj.field at 0) in let res = Obj.obj a in begin match stk with | [] -> Vcofix(vcofix, res, None) | [Zapp args] -> Vcofix(vcofix, res, Some args) | _ -> assert false end | tg -> CErrors.anomaly Pp.(strbrk "Failed to parse VM value. Tag = " ++ int tg ++ str ".") external kind_of_closure : Obj.t -> int = "coq_kind_of_closure" let whd_val : values -> whd = fun v -> let o = Obj.repr v in if Obj.is_int o then Vconstr_const (Obj.obj o) else let tag = Obj.tag o in if tag = accu_tag then ( if Int.equal (Obj.size o) 1 then Obj.obj o (* sort *) else if is_accumulate (fun_code o) then whd_accu o [] else Vprod(Obj.obj o)) else if tag = Obj.closure_tag || tag = Obj.infix_tag then (match kind_of_closure o with | 0 -> Vfun(Obj.obj o) | 1 -> Vfix(Obj.obj o, None) | 2 -> Vfix(Obj.obj (Obj.field o 1), Some (Obj.obj o)) | 3 -> Vatom_stk(Aid(RelKey(int_tcode (fun_code o) 1)), []) | _ -> CErrors.anomaly ~label:"Vm.whd " (Pp.str "kind_of_closure does not work.")) else Vconstr_block(Obj.obj o) (**********************************************) (* Constructors *******************************) (**********************************************) let obj_of_atom : atom -> Obj.t = fun a -> let res = Obj.new_block accu_tag 2 in Obj.set_field res 0 (Obj.repr accumulate); Obj.set_field res 1 (Obj.repr a); res (* obj_of_str_const : structured_constant -> Obj.t *) let rec obj_of_str_const str = match str with | Const_sorts s -> Obj.repr (Vsort s) | Const_ind ind -> obj_of_atom (Aind ind) | Const_proj p -> Obj.repr p | Const_b0 tag -> Obj.repr tag | Const_bn(tag, args) -> let len = Array.length args in let res = Obj.new_block tag len in for i = 0 to len - 1 do Obj.set_field res i (obj_of_str_const args.(i)) done; res | Const_univ_level l -> Obj.repr (Vuniv_level l) | Const_type u -> obj_of_atom (Atype u) let val_of_obj o = ((Obj.obj o) : values) let val_of_str_const str = val_of_obj (obj_of_str_const str) let val_of_atom a = val_of_obj (obj_of_atom a) let atom_of_proj kn v = let r = Obj.new_block proj_tag 2 in Obj.set_field r 0 (Obj.repr kn); Obj.set_field r 1 (Obj.repr v); ((Obj.obj r) : atom) let val_of_proj kn v = val_of_atom (atom_of_proj kn v) module IdKeyHash = struct type t = Constant.t tableKey let equal = Names.eq_table_key Constant.equal open Hashset.Combine let hash = function | ConstKey c -> combinesmall 1 (Constant.hash c) | VarKey id -> combinesmall 2 (Id.hash id) | RelKey i -> combinesmall 3 (Int.hash i) end module KeyTable = Hashtbl.Make(IdKeyHash) let idkey_tbl = KeyTable.create 31 let val_of_idkey key = try KeyTable.find idkey_tbl key with Not_found -> let v = val_of_atom (Aid key) in KeyTable.add idkey_tbl key v; v let val_of_rel k = val_of_idkey (RelKey k) let val_of_named id = val_of_idkey (VarKey id) let val_of_constant c = val_of_idkey (ConstKey c) external val_of_annot_switch : annot_switch -> values = "%identity" let mkrel_vstack k arity = let max = k + arity - 1 in Array.init arity (fun i -> val_of_rel (max - i)) (*************************************************) (** Operations manipulating data types ***********) (*************************************************) (* Functions over products *) let dom : vprod -> values = fun p -> val_of_obj (Obj.field (Obj.repr p) 0) let codom : vprod -> vfun = fun p -> (Obj.obj (Obj.field (Obj.repr p) 1)) (* Functions over vfun *) external closure_arity : vfun -> int = "coq_closure_arity" let body_of_vfun k vf = let vargs = mkrel_vstack k 1 in apply_varray (Obj.magic vf) vargs let decompose_vfun2 k vf1 vf2 = let arity = min (closure_arity vf1) (closure_arity vf2) in assert (0 < arity && arity < Sys.max_array_length); let vargs = mkrel_vstack k arity in let v1 = apply_varray (Obj.magic vf1) vargs in let v2 = apply_varray (Obj.magic vf2) vargs in arity, v1, v2 (* Functions over fixpoint *) let first o = (offset_closure o (offset o)) let last o = (Obj.field o (Obj.size o - 1)) let current_fix vf = - (offset (Obj.repr vf) / 2) let unsafe_fb_code fb i = tcode_of_obj (Obj.field (Obj.repr fb) (2 * i)) let unsafe_rec_arg fb i = int_tcode (unsafe_fb_code fb i) 1 let rec_args vf = let fb = first (Obj.repr vf) in let size = Obj.size (last fb) in Array.init size (unsafe_rec_arg fb) exception FALSE let check_fix f1 f2 = let i1, i2 = current_fix f1, current_fix f2 in (* Checking starting point *) if i1 = i2 then let fb1,fb2 = first (Obj.repr f1), first (Obj.repr f2) in let n = Obj.size (last fb1) in (* Checking number of definitions *) if n = Obj.size (last fb2) then (* Checking recursive arguments *) try for i = 0 to n - 1 do if unsafe_rec_arg fb1 i <> unsafe_rec_arg fb2 i then raise FALSE done; true with FALSE -> false else false else false (* Functions over vfix *) external atom_rel : unit -> atom array = "get_coq_atom_tbl" external realloc_atom_rel : int -> unit = "realloc_coq_atom_tbl" let relaccu_tbl = let atom_rel = atom_rel() in let len = Array.length atom_rel in for i = 0 to len - 1 do atom_rel.(i) <- Aid (RelKey i) done; ref (Array.init len mkAccuCode) let relaccu_code i = let len = Array.length !relaccu_tbl in if i < len then !relaccu_tbl.(i) else begin realloc_atom_rel i; let atom_rel = atom_rel () in let nl = Array.length atom_rel in for j = len to nl - 1 do atom_rel.(j) <- Aid(RelKey j) done; relaccu_tbl := Array.init nl (fun j -> if j < len then !relaccu_tbl.(j) else mkAccuCode j); !relaccu_tbl.(i) end let reduce_fix k vf = let fb = first (Obj.repr vf) in (* computing types *) let fc_typ = ((Obj.obj (last fb)) : tcode array) in let ndef = Array.length fc_typ in let et = offset_closure fb (2*(ndef - 1)) in let ftyp = Array.map (fun c -> interprete c crazy_val (Obj.magic et) 0) fc_typ in (* Construction of the environment of fix bodies *) let e = Obj.dup fb in for i = 0 to ndef - 1 do Obj.set_field e (2 * i) (Obj.repr (relaccu_code (k + i))) done; let fix_body i = let jump_grabrec c = offset_tcode c 2 in let c = jump_grabrec (unsafe_fb_code fb i) in let res = Obj.new_block Obj.closure_tag 2 in Obj.set_field res 0 (Obj.repr c); Obj.set_field res 1 (offset_closure e (2*i)); ((Obj.obj res) : vfun) in (Array.init ndef fix_body, ftyp) (* Functions over vcofix *) let get_fcofix vcf i = match whd_val (Obj.obj (Obj.field (Obj.repr vcf) (i+1))) with | Vcofix(vcfi, _, _) -> vcfi | _ -> assert false let current_cofix vcf = let ndef = Obj.size (last (Obj.repr vcf)) in let rec find_cofix pos = if pos < ndef then if get_fcofix vcf pos == vcf then pos else find_cofix (pos+1) else raise Not_found in try find_cofix 0 with Not_found -> assert false let check_cofix vcf1 vcf2 = (current_cofix vcf1 = current_cofix vcf2) && (Obj.size (last (Obj.repr vcf1)) = Obj.size (last (Obj.repr vcf2))) let reduce_cofix k vcf = let fc_typ = ((Obj.obj (last (Obj.repr vcf))) : tcode array) in let ndef = Array.length fc_typ in let ftyp = (* Evaluate types *) Array.map (fun c -> interprete c crazy_val (Obj.magic vcf) 0) fc_typ in (* Construction of the environment of cofix bodies *) let e = Obj.dup (Obj.repr vcf) in for i = 0 to ndef - 1 do Obj.set_field e (i+1) (Obj.repr (val_of_rel (k+i))) done; let cofix_body i = let vcfi = get_fcofix vcf i in let c = Obj.field (Obj.repr vcfi) 0 in Obj.set_field e 0 c; let atom = Obj.new_block cofix_tag 1 in let self = Obj.new_block accu_tag 2 in Obj.set_field self 0 (Obj.repr accumulate); Obj.set_field self 1 (Obj.repr atom); apply_varray (Obj.obj e) [|Obj.obj self|] in (Array.init ndef cofix_body, ftyp) (* Functions over vblock *) let btag : vblock -> int = fun b -> Obj.tag (Obj.repr b) let bsize : vblock -> int = fun b -> Obj.size (Obj.repr b) let bfield b i = if 0 <= i && i < (bsize b) then val_of_obj (Obj.field (Obj.repr b) i) else invalid_arg "Vm.bfield" (* Functions over vswitch *) let check_switch sw1 sw2 = sw1.sw_annot.rtbl = sw2.sw_annot.rtbl let case_info sw = sw.sw_annot.ci let type_of_switch sw = (* The fun code of types will make sure we have enough stack, so we put 0 here. *) push_vstack sw.sw_stk 0; interprete sw.sw_type_code crazy_val sw.sw_env 0 let branch_arg k (tag,arity) = if Int.equal arity 0 then ((Obj.magic tag):values) else let b, ofs = if tag < last_variant_tag then Obj.new_block tag arity, 0 else let b = Obj.new_block last_variant_tag (arity+1) in Obj.set_field b 0 (Obj.repr (tag-last_variant_tag)); b,1 in for i = ofs to ofs + arity - 1 do Obj.set_field b i (Obj.repr (val_of_rel (k+i))) done; val_of_obj b let apply_switch sw arg = let tc = sw.sw_annot.tailcall in if tc then (push_ra stop;push_vstack sw.sw_stk sw.sw_annot.max_stack_size) else (push_vstack sw.sw_stk sw.sw_annot.max_stack_size; push_ra (popstop_code (Array.length sw.sw_stk))); interprete sw.sw_code arg sw.sw_env 0 let branch_of_switch k sw = let eval_branch (_,arity as ta) = let arg = branch_arg k ta in let v = apply_switch sw arg in (arity, v) in Array.map eval_branch sw.sw_annot.rtbl (* Apply the term represented by a under stack stk to argument v *) (* t = a stk --> t v *) let rec apply_stack a stk v = match stk with | [] -> apply_varray a [|v|] | Zapp args :: stk -> apply_stack (apply_arguments a args) stk v | Zproj kn :: stk -> apply_stack (val_of_proj kn a) stk v | Zfix(f,args) :: stk -> let a,stk = match stk with | Zapp args' :: stk -> push_ra stop; push_arguments args'; push_val a; push_arguments args; let a = interprete (fun_code f) (Obj.magic f) (Obj.magic f) (nargs args+ nargs args') in a, stk | _ -> push_ra stop; push_val a; push_arguments args; let a = interprete (fun_code f) (Obj.magic f) (Obj.magic f) (nargs args) in a, stk in apply_stack a stk v | Zswitch sw :: stk -> apply_stack (apply_switch sw a) stk v let apply_whd k whd = let v = val_of_rel k in match whd with | Vsort _ | Vprod _ | Vconstr_const _ | Vconstr_block _ -> assert false | Vfun f -> body_of_vfun k f | Vfix(f, None) -> push_ra stop; push_val v; interprete (fun_code f) (Obj.magic f) (Obj.magic f) 0 | Vfix(f, Some args) -> push_ra stop; push_val v; push_arguments args; interprete (fun_code f) (Obj.magic f) (Obj.magic f) (nargs args) | Vcofix(_,to_up,_) -> push_ra stop; push_val v; interprete (fun_code to_up) (Obj.magic to_up) (Obj.magic to_up) 0 | Vatom_stk(a,stk) -> apply_stack (val_of_atom a) stk v | Vuniv_level lvl -> assert false let rec pr_atom a = Pp.(match a with | Aid c -> str "Aid(" ++ (match c with | ConstKey c -> Constant.print c | RelKey i -> str "#" ++ int i | _ -> str "...") ++ str ")" | Aind (mi,i) -> str "Aind(" ++ MutInd.print mi ++ str "#" ++ int i ++ str ")" | Atype _ -> str "Atype(") and pr_whd w = Pp.(match w with | Vsort _ -> str "Vsort" | Vprod _ -> str "Vprod" | Vfun _ -> str "Vfun" | Vfix _ -> str "Vfix" | Vcofix _ -> str "Vcofix" | Vconstr_const i -> str "Vconstr_const(" ++ int i ++ str ")" | Vconstr_block b -> str "Vconstr_block" | Vatom_stk (a,stk) -> str "Vatom_stk(" ++ pr_atom a ++ str ", " ++ pr_stack stk ++ str ")" | Vuniv_level _ -> assert false) and pr_stack stk = Pp.(match stk with | [] -> str "[]" | s :: stk -> pr_zipper s ++ str " :: " ++ pr_stack stk) and pr_zipper z = Pp.(match z with | Zapp args -> str "Zapp(len = " ++ int (nargs args) ++ str ")" | Zfix (f,args) -> str "Zfix(..., len=" ++ int (nargs args) ++ str ")" | Zswitch s -> str "Zswitch(...)" | Zproj c -> str "Zproj(" ++ Constant.print c ++ str ")")