1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* Created by Hugo Herbelin from contents related to lemma proofs in file command.ml, Aug 2009 *) open CErrors open Util open Pp open Names open Term open Constr open Declarations open Declareops open Entries open Environ open Nameops open Globnames open Decls open Decl_kinds open Declare open Pretyping open Termops open Namegen open Reductionops open Constrintern open Impargs module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration type 'a declaration_hook = Decl_kinds.locality -> Globnames.global_reference -> 'a let mk_hook hook = hook let call_hook fix_exn hook l c = try hook l c with e when CErrors.noncritical e -> let e = CErrors.push e in iraise (fix_exn e) (* Support for mutually proved theorems *) let retrieve_first_recthm uctx = function | VarRef id -> (NamedDecl.get_value (Global.lookup_named id),variable_opacity id) | ConstRef cst -> let cb = Global.lookup_constant cst in (* we get the right order somehow but surely it could be enforced in a better way *) let uctx = UState.context uctx in let inst = Univ.UContext.instance uctx in let map (c, ctx) = Vars.subst_instance_constr inst c in (Option.map map (Global.body_of_constant_body cb), is_opaque cb) | _ -> assert false let adjust_guardness_conditions const = function | [] -> const (* Not a recursive statement *) | possible_indexes -> (* Try all combinations... not optimal *) let env = Global.env() in { const with const_entry_body = Future.chain const.const_entry_body (fun ((body, ctx), eff) -> match Constr.kind body with | Fix ((nv,0),(_,_,fixdefs as fixdecls)) -> (* let possible_indexes = List.map2 (fun i c -> match i with Some i -> i | None -> List.interval 0 (List.length ((lam_assum c)))) lemma_guard (Array.to_list fixdefs) in *) let add c cb e = let exists c e = try ignore(Environ.lookup_constant c e); true with Not_found -> false in if exists c e then e else Environ.add_constant c cb e in let env = List.fold_left (fun env { eff } -> match eff with | SEsubproof (c, cb,_) -> add c cb env | SEscheme (l,_) -> List.fold_left (fun e (_,c,cb,_) -> add c cb e) env l) env (Safe_typing.side_effects_of_private_constants eff) in let indexes = search_guard env possible_indexes fixdecls in (mkFix ((indexes,0),fixdecls), ctx), eff | _ -> (body, ctx), eff) } let find_mutually_recursive_statements thms = let n = List.length thms in let inds = List.map (fun (id,(t,impls)) -> let (hyps,ccl) = decompose_prod_assum t in let x = (id,(t,impls)) in let whnf_hyp_hds = map_rel_context_in_env (fun env c -> EConstr.Unsafe.to_constr (fst (whd_all_stack env Evd.empty (EConstr.of_constr c)))) (Global.env()) hyps in let ind_hyps = List.flatten (List.map_i (fun i decl -> let t = RelDecl.get_type decl in match Constr.kind t with | Ind ((kn,_ as ind),u) when let mind = Global.lookup_mind kn in mind.mind_finite <> Decl_kinds.CoFinite -> [ind,x,i] | _ -> []) 0 (List.rev (List.filter RelDecl.is_local_assum whnf_hyp_hds))) in let ind_ccl = let cclenv = push_rel_context hyps (Global.env()) in let whnf_ccl,_ = whd_all_stack cclenv Evd.empty (EConstr.of_constr ccl) in match Constr.kind (EConstr.Unsafe.to_constr whnf_ccl) with | Ind ((kn,_ as ind),u) when let mind = Global.lookup_mind kn in Int.equal mind.mind_ntypes n && mind.mind_finite == Decl_kinds.CoFinite -> [ind,x,0] | _ -> [] in ind_hyps,ind_ccl) thms in let inds_hyps,ind_ccls = List.split inds in let of_same_mutind ((kn,_),_,_) = function ((kn',_),_,_) -> MutInd.equal kn kn' in (* Check if all conclusions are coinductive in the same type *) (* (degenerated cartesian product since there is at most one coind ccl) *) let same_indccl = List.cartesians_filter (fun hyp oks -> if List.for_all (of_same_mutind hyp) oks then Some (hyp::oks) else None) [] ind_ccls in let ordered_same_indccl = List.filter (List.for_all_i (fun i ((kn,j),_,_) -> Int.equal i j) 0) same_indccl in (* Check if some hypotheses are inductive in the same type *) let common_same_indhyp = List.cartesians_filter (fun hyp oks -> if List.for_all (of_same_mutind hyp) oks then Some (hyp::oks) else None) [] inds_hyps in let ordered_inds,finite,guard = match ordered_same_indccl, common_same_indhyp with | indccl::rest, _ -> assert (List.is_empty rest); (* One occ. of common coind ccls and no common inductive hyps *) if not (List.is_empty common_same_indhyp) then Flags.if_verbose Feedback.msg_info (str "Assuming mutual coinductive statements."); flush_all (); indccl, true, [] | [], _::_ -> let () = match same_indccl with | ind :: _ -> if List.distinct_f ind_ord (List.map pi1 ind) then Flags.if_verbose Feedback.msg_info (strbrk ("Coinductive statements do not follow the order of "^ "definition, assuming the proof to be by induction.")); flush_all () | _ -> () in let possible_guards = List.map (List.map pi3) inds_hyps in (* assume the largest indices as possible *) List.last common_same_indhyp, false, possible_guards | _, [] -> user_err Pp.(str ("Cannot find common (mutual) inductive premises or coinductive" ^ " conclusions in the statements.")) in (finite,guard,None), ordered_inds let look_for_possibly_mutual_statements = function | [id,(t,impls)] -> (* One non recursively proved theorem *) None,[id,(t,impls)],None | _::_ as thms -> (* More than one statement and/or an explicit decreasing mark: *) (* we look for a common inductive hyp or a common coinductive conclusion *) let recguard,ordered_inds = find_mutually_recursive_statements thms in let thms = List.map pi2 ordered_inds in Some recguard,thms, Some (List.map (fun (_,_,i) -> succ i) ordered_inds) | [] -> anomaly (Pp.str "Empty list of theorems.") (* Saving a goal *) let save ?export_seff id const cstrs pl do_guard (locality,poly,kind) hook = let fix_exn = Future.fix_exn_of const.Entries.const_entry_body in try let const = adjust_guardness_conditions const do_guard in let k = Kindops.logical_kind_of_goal_kind kind in let should_suggest = const.const_entry_opaque && Option.is_empty const.const_entry_secctx in let l,r = match locality with | Discharge when Lib.sections_are_opened () -> let c = SectionLocalDef const in let _ = declare_variable id (Lib.cwd(), c, k) in let () = if should_suggest then Proof_using.suggest_variable (Global.env ()) id in (Local, VarRef id) | Local | Global | Discharge -> let local = match locality with | Local | Discharge -> true | Global -> false in let kn = declare_constant ?export_seff id ~local (DefinitionEntry const, k) in let () = if should_suggest then Proof_using.suggest_constant (Global.env ()) kn in (locality, ConstRef kn) in definition_message id; Universes.register_universe_binders r (Option.default Universes.empty_binders pl); call_hook (fun exn -> exn) hook l r with e when CErrors.noncritical e -> let e = CErrors.push e in iraise (fix_exn e) let default_thm_id = Id.of_string "Unnamed_thm" let compute_proof_name locality = function | Some ((loc,id),pl) -> (* We check existence here: it's a bit late at Qed time *) if Nametab.exists_cci (Lib.make_path id) || is_section_variable id || locality == Global && Nametab.exists_cci (Lib.make_path_except_section id) then user_err ?loc (Id.print id ++ str " already exists."); id | None -> let avoid = Id.Set.of_list (Proof_global.get_all_proof_names ()) in next_global_ident_away default_thm_id avoid let save_remaining_recthms (locality,p,kind) norm univs body opaq i (id,(t_i,(_,imps))) = let t_i = norm t_i in match body with | None -> (match locality with | Discharge -> let impl = false in (* copy values from Vernacentries *) let k = IsAssumption Conjectural in let univs = match univs with | Polymorphic_const_entry univs -> (* What is going on here? *) Univ.ContextSet.of_context univs | Monomorphic_const_entry univs -> univs in let c = SectionLocalAssum ((t_i, univs),p,impl) in let _ = declare_variable id (Lib.cwd(),c,k) in (Discharge, VarRef id,imps) | Local | Global -> let k = IsAssumption Conjectural in let local = match locality with | Local -> true | Global -> false | Discharge -> assert false in let decl = (ParameterEntry (None,(t_i,univs),None), k) in let kn = declare_constant id ~local decl in (locality,ConstRef kn,imps)) | Some body -> let body = norm body in let k = Kindops.logical_kind_of_goal_kind kind in let rec body_i t = match Constr.kind t with | Fix ((nv,0),decls) -> mkFix ((nv,i),decls) | CoFix (0,decls) -> mkCoFix (i,decls) | LetIn(na,t1,ty,t2) -> mkLetIn (na,t1,ty, body_i t2) | Lambda(na,ty,t) -> mkLambda(na,ty,body_i t) | App (t, args) -> mkApp (body_i t, args) | _ -> let sigma, env = Pfedit.get_current_context () in anomaly Pp.(str "Not a proof by induction: " ++ Printer.pr_constr_env env sigma body ++ str ".") in let body_i = body_i body in match locality with | Discharge -> let const = definition_entry ~types:t_i ~opaque:opaq ~univs body_i in let c = SectionLocalDef const in let _ = declare_variable id (Lib.cwd(), c, k) in (Discharge,VarRef id,imps) | Local | Global -> let local = match locality with | Local -> true | Global -> false | Discharge -> assert false in let const = Declare.definition_entry ~types:t_i ~univs ~opaque:opaq body_i in let kn = declare_constant id ~local (DefinitionEntry const, k) in (locality,ConstRef kn,imps) let save_hook = ref ignore let set_save_hook f = save_hook := f let save_named ?export_seff proof = let id,const,(cstrs,pl),do_guard,persistence,hook = proof in save ?export_seff id const cstrs pl do_guard persistence hook let check_anonymity id save_ident = if not (String.equal (atompart_of_id id) (Id.to_string (default_thm_id))) then user_err Pp.(str "This command can only be used for unnamed theorem.") let save_anonymous ?export_seff proof save_ident = let id,const,(cstrs,pl),do_guard,persistence,hook = proof in check_anonymity id save_ident; save ?export_seff save_ident const cstrs pl do_guard persistence hook (* Admitted *) let warn_let_as_axiom = CWarnings.create ~name:"let-as-axiom" ~category:"vernacular" (fun id -> strbrk "Let definition" ++ spc () ++ Id.print id ++ spc () ++ strbrk "declared as an axiom.") let admit (id,k,e) pl hook () = let kn = declare_constant id (ParameterEntry e, IsAssumption Conjectural) in let () = match k with | Global, _, _ -> () | Local, _, _ | Discharge, _, _ -> warn_let_as_axiom id in let () = assumption_message id in Universes.register_universe_binders (ConstRef kn) (Option.default Universes.empty_binders pl); call_hook (fun exn -> exn) hook Global (ConstRef kn) (* Starting a goal *) let start_hook = ref ignore let set_start_hook = (:=) start_hook let get_proof proof do_guard hook opacity = let (id,(const,univs,persistence)) = Pfedit.cook_this_proof proof in id,{const with const_entry_opaque = opacity},univs,do_guard,persistence,hook let universe_proof_terminator compute_guard hook = let open Proof_global in make_terminator begin function | Admitted (id,k,pe,(ctx,pl)) -> admit (id,k,pe) pl (hook (Some ctx)) (); Feedback.feedback Feedback.AddedAxiom | Proved (opaque,idopt,proof) -> let is_opaque, export_seff = match opaque with | Vernacexpr.Transparent -> false, true | Vernacexpr.Opaque -> true, false in let proof = get_proof proof compute_guard (hook (Some (fst proof.Proof_global.universes))) is_opaque in begin match idopt with | None -> save_named ~export_seff proof | Some (_,id) -> save_anonymous ~export_seff proof id end end let standard_proof_terminator compute_guard hook = universe_proof_terminator compute_guard (fun _ -> hook) let start_proof id ?pl kind sigma ?terminator ?sign c ?init_tac ?(compute_guard=[]) hook = let terminator = match terminator with | None -> standard_proof_terminator compute_guard hook | Some terminator -> terminator compute_guard hook in let sign = match sign with | Some sign -> sign | None -> initialize_named_context_for_proof () in !start_hook c; Pfedit.start_proof id ?pl kind sigma sign c ?init_tac terminator let start_proof_univs id ?pl kind sigma ?terminator ?sign c ?init_tac ?(compute_guard=[]) hook = let terminator = match terminator with | None -> universe_proof_terminator compute_guard hook | Some terminator -> terminator compute_guard hook in let sign = match sign with | Some sign -> sign | None -> initialize_named_context_for_proof () in !start_hook c; Pfedit.start_proof id ?pl kind sigma sign c ?init_tac terminator let rec_tac_initializer finite guard thms snl = if finite then match List.map (fun (id,(t,_)) -> (id,EConstr.of_constr t)) thms with | (id,_)::l -> Tactics.mutual_cofix id l 0 | _ -> assert false else (* nl is dummy: it will be recomputed at Qed-time *) let nl = match snl with | None -> List.map succ (List.map List.last guard) | Some nl -> nl in match List.map2 (fun (id,(t,_)) n -> (id,n, EConstr.of_constr t)) thms nl with | (id,n,_)::l -> Tactics.mutual_fix id n l 0 | _ -> assert false let start_proof_with_initialization kind ctx decl recguard thms snl hook = let intro_tac (_, (_, (ids, _))) = Tacticals.New.tclMAP (function | Name id -> Tactics.intro_mustbe_force id | Anonymous -> Tactics.intro) (List.rev ids) in let init_tac,guard = match recguard with | Some (finite,guard,init_tac) -> let rec_tac = rec_tac_initializer finite guard thms snl in Some (match init_tac with | None -> if Flags.is_auto_intros () then Tacticals.New.tclTHENS rec_tac (List.map intro_tac thms) else rec_tac | Some tacl -> Tacticals.New.tclTHENS rec_tac (if Flags.is_auto_intros () then List.map2 (fun tac thm -> Tacticals.New.tclTHEN tac (intro_tac thm)) tacl thms else tacl)),guard | None -> let () = match thms with [_] -> () | _ -> assert false in (if Flags.is_auto_intros () then Some (intro_tac (List.hd thms)) else None), [] in match thms with | [] -> anomaly (Pp.str "No proof to start.") | (id,(t,(_,imps)))::other_thms -> let hook ctx strength ref = let ctx = match ctx with | None -> Evd.empty_evar_universe_context | Some ctx -> ctx in let other_thms_data = if List.is_empty other_thms then [] else (* there are several theorems defined mutually *) let body,opaq = retrieve_first_recthm ctx ref in let subst = Evd.evar_universe_context_subst ctx in let norm c = Universes.subst_opt_univs_constr subst c in let ctx = UState.check_univ_decl ~poly:(pi2 kind) ctx decl in let body = Option.map norm body in List.map_i (save_remaining_recthms kind norm ctx body opaq) 1 other_thms in let thms_data = (strength,ref,imps)::other_thms_data in List.iter (fun (strength,ref,imps) -> maybe_declare_manual_implicits false ref imps; call_hook (fun exn -> exn) hook strength ref) thms_data in start_proof_univs id ~pl:decl kind ctx (EConstr.of_constr t) ?init_tac (fun ctx -> mk_hook (hook ctx)) ~compute_guard:guard let start_proof_com ?inference_hook kind thms hook = let env0 = Global.env () in let decl = fst (List.hd thms) in let evd, decl = match decl with | None -> Evd.from_env env0, Univdecls.default_univ_decl | Some decl -> Univdecls.interp_univ_decl_opt env0 (snd decl) in let evdref = ref evd in let thms = List.map (fun (sopt,(bl,t)) -> let impls, ((env, ctx), imps) = interp_context_evars env0 evdref bl in let t', imps' = interp_type_evars_impls ~impls env evdref t in let flags = all_and_fail_flags in let flags = { flags with use_hook = inference_hook } in evdref := solve_remaining_evars flags env !evdref Evd.empty; let ids = List.map RelDecl.get_name ctx in (compute_proof_name (pi1 kind) sopt, (EConstr.Unsafe.to_constr (nf_evar !evdref (EConstr.it_mkProd_or_LetIn t' ctx)), (ids, imps @ lift_implicits (Context.Rel.nhyps ctx) imps')))) thms in let recguard,thms,snl = look_for_possibly_mutual_statements thms in let evd, nf = Evarutil.nf_evars_and_universes !evdref in let thms = List.map (fun (n, (t, info)) -> (n, (nf t, info))) thms in let () = let open Misctypes in if not (decl.univdecl_extensible_instance && decl.univdecl_extensible_constraints) then ignore (Evd.check_univ_decl ~poly:(pi2 kind) evd decl) in let evd = if pi2 kind then evd else (* We fix the variables to ensure they won't be lowered to Set *) Evd.fix_undefined_variables evd in start_proof_with_initialization kind evd decl recguard thms snl hook (* Saving a proof *) let keep_admitted_vars = ref true let _ = let open Goptions in declare_bool_option { optdepr = false; optname = "keep section variables in admitted proofs"; optkey = ["Keep"; "Admitted"; "Variables"]; optread = (fun () -> !keep_admitted_vars); optwrite = (fun b -> keep_admitted_vars := b) } let save_proof ?proof = function | Vernacexpr.Admitted -> let pe = let open Proof_global in match proof with | Some ({ id; entries; persistence = k; universes }, _) -> if List.length entries <> 1 then user_err Pp.(str "Admitted does not support multiple statements"); let { const_entry_secctx; const_entry_type } = List.hd entries in if const_entry_type = None then user_err Pp.(str "Admitted requires an explicit statement"); let typ = Option.get const_entry_type in let ctx = UState.const_univ_entry ~poly:(pi2 k) (fst universes) in let sec_vars = if !keep_admitted_vars then const_entry_secctx else None in Admitted(id, k, (sec_vars, (typ, ctx), None), universes) | None -> let pftree = Proof_global.give_me_the_proof () in let id, k, typ = Pfedit.current_proof_statement () in let typ = EConstr.Unsafe.to_constr typ in let universes = Proof.initial_euctx pftree in (* This will warn if the proof is complete *) let pproofs, _univs = Proof_global.return_proof ~allow_partial:true () in let sec_vars = if not !keep_admitted_vars then None else match Proof_global.get_used_variables(), pproofs with | Some _ as x, _ -> x | None, (pproof, _) :: _ -> let env = Global.env () in let ids_typ = Environ.global_vars_set env typ in let ids_def = Environ.global_vars_set env pproof in Some (Environ.keep_hyps env (Id.Set.union ids_typ ids_def)) | _ -> None in let decl = Proof_global.get_universe_decl () in let evd = Evd.from_ctx universes in let poly = pi2 k in let ctx = Evd.check_univ_decl ~poly evd decl in let binders = if poly then Some (UState.universe_binders universes) else None in Admitted(id,k,(sec_vars, (typ, ctx), None), (universes, binders)) in Proof_global.apply_terminator (Proof_global.get_terminator ()) pe | Vernacexpr.Proved (is_opaque,idopt) -> let (proof_obj,terminator) = match proof with | None -> Proof_global.close_proof ~keep_body_ucst_separate:false (fun x -> x) | Some proof -> proof in (* if the proof is given explicitly, nothing has to be deleted *) if Option.is_empty proof then Proof_global.discard_current (); Proof_global.(apply_terminator terminator (Proved (is_opaque,idopt,proof_obj))) (* Miscellaneous *) let get_current_context () = Pfedit.get_current_context ()