1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Pp open Util open Univ (* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *) (* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *) (* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *) (* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *) (* Support for universe polymorphism by MS [2014] *) (* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey, Matthieu Sozeau, Pierre-Marie Pédrot, Jacques-Henri Jourdan *) let error_inconsistency o u v (p:explanation option) = raise (UniverseInconsistency (o,Universe.make u,Universe.make v,p)) (* Universes are stratified by a partial ordering $\le$. Let $\~{}$ be the associated equivalence. We also have a strict ordering $<$ between equivalence classes, and we maintain that $<$ is acyclic, and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$. At every moment, we have a finite number of universes, and we maintain the ordering in the presence of assertions $U<V$ and $U\le V$. The equivalence $\~{}$ is represented by a tree structure, as in the union-find algorithm. The assertions $<$ and $\le$ are represented by adjacency lists. We use the algorithm described in the paper: Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A new approach to incremental cycle detection and related problems. arXiv preprint arXiv:1112.0784. *) open Universe module UMap = LMap type status = NoMark | Visited | WeakVisited | ToMerge (* Comparison on this type is pointer equality *) type canonical_node = { univ: Level.t; ltle: bool UMap.t; (* true: strict (lt) constraint. false: weak (le) constraint. *) gtge: LSet.t; rank : int; klvl: int; ilvl: int; mutable status: status } let big_rank = 1000000 (* A Level.t is either an alias for another one, or a canonical one, for which we know the universes that are above *) type univ_entry = Canonical of canonical_node | Equiv of Level.t type universes = { entries : univ_entry UMap.t; index : int; n_nodes : int; n_edges : int } type t = universes (** Used to cleanup universes if a traversal function is interrupted before it has the opportunity to do it itself. *) let unsafe_cleanup_universes g = let iter _ n = match n with | Equiv _ -> () | Canonical n -> n.status <- NoMark in UMap.iter iter g.entries let rec cleanup_universes g = try unsafe_cleanup_universes g with e -> (** The only way unsafe_cleanup_universes may raise an exception is when a serious error (stack overflow, out of memory) occurs, or a signal is sent. In this unlikely event, we relaunch the cleanup until we finally succeed. *) cleanup_universes g; raise e (* Every Level.t has a unique canonical arc representative *) (* Low-level function : makes u an alias for v. Does not removes edges from n_edges, but decrements n_nodes. u should be entered as canonical before. *) let enter_equiv g u v = { entries = UMap.modify u (fun _ a -> match a with | Canonical n -> n.status <- NoMark; Equiv v | _ -> assert false) g.entries; index = g.index; n_nodes = g.n_nodes - 1; n_edges = g.n_edges } (* Low-level function : changes data associated with a canonical node. Resets the mutable fields in the old record, in order to avoid breaking invariants for other users of this record. n.univ should already been inserted as a canonical node. *) let change_node g n = { g with entries = UMap.modify n.univ (fun _ a -> match a with | Canonical n' -> n'.status <- NoMark; Canonical n | _ -> assert false) g.entries } (* repr : universes -> Level.t -> canonical_node *) (* canonical representative : we follow the Equiv links *) let rec repr g u = let a = try UMap.find u g.entries with Not_found -> CErrors.anomaly ~label:"Univ.repr" (str"Universe " ++ Level.pr u ++ str" undefined.") in match a with | Equiv v -> repr g v | Canonical arc -> arc let get_set_arc g = repr g Level.set let is_set_arc u = Level.is_set u.univ let is_prop_arc u = Level.is_prop u.univ exception AlreadyDeclared (* Reindexes the given universe, using the next available index. *) let use_index g u = let u = repr g u in let g = change_node g { u with ilvl = g.index } in assert (g.index > min_int); { g with index = g.index - 1 } (* [safe_repr] is like [repr] but if the graph doesn't contain the searched universe, we add it. *) let safe_repr g u = let rec safe_repr_rec entries u = match UMap.find u entries with | Equiv v -> safe_repr_rec entries v | Canonical arc -> arc in try g, safe_repr_rec g.entries u with Not_found -> let can = { univ = u; ltle = UMap.empty; gtge = LSet.empty; rank = if Level.is_small u then big_rank else 0; klvl = 0; ilvl = 0; status = NoMark } in let g = { g with entries = UMap.add u (Canonical can) g.entries; n_nodes = g.n_nodes + 1 } in let g = use_index g u in g, repr g u (* Returns 1 if u is higher than v in topological order. -1 lower 0 if u = v *) let topo_compare u v = if u.klvl > v.klvl then 1 else if u.klvl < v.klvl then -1 else if u.ilvl > v.ilvl then 1 else if u.ilvl < v.ilvl then -1 else (assert (u==v); 0) (* Checks most of the invariants of the graph. For debugging purposes. *) let check_universes_invariants g = let n_edges = ref 0 in let n_nodes = ref 0 in UMap.iter (fun l u -> match u with | Canonical u -> UMap.iter (fun v strict -> incr n_edges; let v = repr g v in assert (topo_compare u v = -1); if u.klvl = v.klvl then assert (LSet.mem u.univ v.gtge || LSet.exists (fun l -> u == repr g l) v.gtge)) u.ltle; LSet.iter (fun v -> let v = repr g v in assert (v.klvl = u.klvl && (UMap.mem u.univ v.ltle || UMap.exists (fun l _ -> u == repr g l) v.ltle)) ) u.gtge; assert (u.status = NoMark); assert (Level.equal l u.univ); assert (u.ilvl > g.index); assert (not (UMap.mem u.univ u.ltle)); incr n_nodes | Equiv _ -> assert (not (Level.is_small l))) g.entries; assert (!n_edges = g.n_edges); assert (!n_nodes = g.n_nodes) let clean_ltle g ltle = UMap.fold (fun u strict acc -> let uu = (repr g u).univ in if Level.equal uu u then acc else ( let acc = UMap.remove u (fst acc) in if not strict && UMap.mem uu acc then (acc, true) else (UMap.add uu strict acc, true))) ltle (ltle, false) let clean_gtge g gtge = LSet.fold (fun u acc -> let uu = (repr g u).univ in if Level.equal uu u then acc else LSet.add uu (LSet.remove u (fst acc)), true) gtge (gtge, false) (* [get_ltle] and [get_gtge] return ltle and gtge arcs. Moreover, if one of these lists is dirty (e.g. points to a non-canonical node), these functions clean this node in the graph by removing some duplicate edges *) let get_ltle g u = let ltle, chgt_ltle = clean_ltle g u.ltle in if not chgt_ltle then u.ltle, u, g else let sz = UMap.cardinal u.ltle in let sz2 = UMap.cardinal ltle in let u = { u with ltle } in let g = change_node g u in let g = { g with n_edges = g.n_edges + sz2 - sz } in u.ltle, u, g let get_gtge g u = let gtge, chgt_gtge = clean_gtge g u.gtge in if not chgt_gtge then u.gtge, u, g else let u = { u with gtge } in let g = change_node g u in u.gtge, u, g (* [revert_graph] rollbacks the changes made to mutable fields in nodes in the graph. [to_revert] contains the touched nodes. *) let revert_graph to_revert g = List.iter (fun t -> match UMap.find t g.entries with | Equiv _ -> () | Canonical t -> t.status <- NoMark) to_revert exception AbortBackward of universes exception CycleDetected (* Implementation of the algorithm described in § 5.1 of the following paper: Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A new approach to incremental cycle detection and related problems. arXiv preprint arXiv:1112.0784. The "STEP X" comments contained in this file refers to the corresponding step numbers of the algorithm described in Section 5.1 of this paper. *) (* [delta] is the timeout for backward search. It might be useful to tune a multiplicative constant. *) let get_delta g = int_of_float (min (float_of_int g.n_edges ** 0.5) (float_of_int g.n_nodes ** (2./.3.))) let rec backward_traverse to_revert b_traversed count g x = let x = repr g x in let count = count - 1 in if count < 0 then begin revert_graph to_revert g; raise (AbortBackward g) end; if x.status = NoMark then begin x.status <- Visited; let to_revert = x.univ::to_revert in let gtge, x, g = get_gtge g x in let to_revert, b_traversed, count, g = LSet.fold (fun y (to_revert, b_traversed, count, g) -> backward_traverse to_revert b_traversed count g y) gtge (to_revert, b_traversed, count, g) in to_revert, x.univ::b_traversed, count, g end else to_revert, b_traversed, count, g let rec forward_traverse f_traversed g v_klvl x y = let y = repr g y in if y.klvl < v_klvl then begin let y = { y with klvl = v_klvl; gtge = if x == y then LSet.empty else LSet.singleton x.univ } in let g = change_node g y in let ltle, y, g = get_ltle g y in let f_traversed, g = UMap.fold (fun z _ (f_traversed, g) -> forward_traverse f_traversed g v_klvl y z) ltle (f_traversed, g) in y.univ::f_traversed, g end else if y.klvl = v_klvl && x != y then let g = change_node g { y with gtge = LSet.add x.univ y.gtge } in f_traversed, g else f_traversed, g let rec find_to_merge to_revert g x v = let x = repr g x in match x.status with | Visited -> false, to_revert | ToMerge -> true, to_revert | NoMark -> let to_revert = x::to_revert in if Level.equal x.univ v then begin x.status <- ToMerge; true, to_revert end else begin let merge, to_revert = LSet.fold (fun y (merge, to_revert) -> let merge', to_revert = find_to_merge to_revert g y v in merge' || merge, to_revert) x.gtge (false, to_revert) in x.status <- if merge then ToMerge else Visited; merge, to_revert end | _ -> assert false let get_new_edges g to_merge = (* Computing edge sets. *) let to_merge_lvl = List.fold_left (fun acc u -> UMap.add u.univ u acc) UMap.empty to_merge in let ltle = let fold _ n acc = let fold u strict acc = if strict then UMap.add u strict acc else if UMap.mem u acc then acc else UMap.add u false acc in UMap.fold fold n.ltle acc in UMap.fold fold to_merge_lvl UMap.empty in let ltle, _ = clean_ltle g ltle in let ltle = UMap.merge (fun _ a strict -> match a, strict with | Some _, Some true -> (* There is a lt edge inside the new component. This is a "bad cycle". *) raise CycleDetected | Some _, Some false -> None | _, _ -> strict ) to_merge_lvl ltle in let gtge = UMap.fold (fun _ n acc -> LSet.union acc n.gtge) to_merge_lvl LSet.empty in let gtge, _ = clean_gtge g gtge in let gtge = LSet.diff gtge (UMap.domain to_merge_lvl) in (ltle, gtge) let reorder g u v = (* STEP 2: backward search in the k-level of u. *) let delta = get_delta g in (* [v_klvl] is the chosen future level for u, v and all traversed nodes. *) let b_traversed, v_klvl, g = try let to_revert, b_traversed, _, g = backward_traverse [] [] delta g u in revert_graph to_revert g; let v_klvl = (repr g u).klvl in b_traversed, v_klvl, g with AbortBackward g -> (* Backward search was too long, use the next k-level. *) let v_klvl = (repr g u).klvl + 1 in [], v_klvl, g in let f_traversed, g = (* STEP 3: forward search. Contrary to what is described in the paper, we do not test whether v_klvl = u.klvl nor we assign v_klvl to v.klvl. Indeed, the first call to forward_traverse will do all that. *) forward_traverse [] g v_klvl (repr g v) v in (* STEP 4: merge nodes if needed. *) let to_merge, b_reindex, f_reindex = if (repr g u).klvl = v_klvl then begin let merge, to_revert = find_to_merge [] g u v in let r = if merge then List.filter (fun u -> u.status = ToMerge) to_revert, List.filter (fun u -> (repr g u).status <> ToMerge) b_traversed, List.filter (fun u -> (repr g u).status <> ToMerge) f_traversed else [], b_traversed, f_traversed in List.iter (fun u -> u.status <- NoMark) to_revert; r end else [], b_traversed, f_traversed in let to_reindex, g = match to_merge with | [] -> List.rev_append f_reindex b_reindex, g | n0::q0 -> (* Computing new root. *) let root, rank_rest = List.fold_left (fun ((best, rank_rest) as acc) n -> if n.rank >= best.rank then n, best.rank else acc) (n0, min_int) q0 in let ltle, gtge = get_new_edges g to_merge in (* Inserting the new root. *) let g = change_node g { root with ltle; gtge; rank = max root.rank (rank_rest + 1); } in (* Inserting shortcuts for old nodes. *) let g = List.fold_left (fun g n -> if Level.equal n.univ root.univ then g else enter_equiv g n.univ root.univ) g to_merge in (* Updating g.n_edges *) let oldsz = List.fold_left (fun sz u -> sz+UMap.cardinal u.ltle) 0 to_merge in let sz = UMap.cardinal ltle in let g = { g with n_edges = g.n_edges + sz - oldsz } in (* Not clear in the paper: we have to put the newly created component just between B and F. *) List.rev_append f_reindex (root.univ::b_reindex), g in (* STEP 5: reindex traversed nodes. *) List.fold_left use_index g to_reindex (* Assumes [u] and [v] are already in the graph. *) (* Does NOT assume that ucan != vcan. *) let insert_edge strict ucan vcan g = try let u = ucan.univ and v = vcan.univ in (* STEP 1: do we need to reorder nodes ? *) let g = if topo_compare ucan vcan <= 0 then g else reorder g u v in (* STEP 6: insert the new edge in the graph. *) let u = repr g u in let v = repr g v in if u == v then if strict then raise CycleDetected else g else let g = try let oldstrict = UMap.find v.univ u.ltle in if strict && not oldstrict then change_node g { u with ltle = UMap.add v.univ true u.ltle } else g with Not_found -> { (change_node g { u with ltle = UMap.add v.univ strict u.ltle }) with n_edges = g.n_edges + 1 } in if u.klvl <> v.klvl || LSet.mem u.univ v.gtge then g else let v = { v with gtge = LSet.add u.univ v.gtge } in change_node g v with | CycleDetected as e -> raise e | e -> (** Unlikely event: fatal error or signal *) let () = cleanup_universes g in raise e let add_universe vlev strict g = try let _arcv = UMap.find vlev g.entries in raise AlreadyDeclared with Not_found -> assert (g.index > min_int); let v = { univ = vlev; ltle = LMap.empty; gtge = LSet.empty; rank = 0; klvl = 0; ilvl = g.index; status = NoMark; } in let entries = UMap.add vlev (Canonical v) g.entries in let g = { entries; index = g.index - 1; n_nodes = g.n_nodes + 1; n_edges = g.n_edges } in insert_edge strict (get_set_arc g) v g exception Found_explanation of explanation let get_explanation strict u v g = let v = repr g v in let visited_strict = ref UMap.empty in let rec traverse strict u = if u == v then if strict then None else Some [] else if topo_compare u v = 1 then None else let visited = try not (UMap.find u.univ !visited_strict) || strict with Not_found -> false in if visited then None else begin visited_strict := UMap.add u.univ strict !visited_strict; try UMap.iter (fun u' strictu' -> match traverse (strict && not strictu') (repr g u') with | None -> () | Some exp -> let typ = if strictu' then Lt else Le in raise (Found_explanation ((typ, make u') :: exp))) u.ltle; None with Found_explanation exp -> Some exp end in let u = repr g u in if u == v then [(Eq, make v.univ)] else match traverse strict u with Some exp -> exp | None -> assert false let get_explanation strict u v g = if !Flags.univ_print then Some (get_explanation strict u v g) else None (* To compare two nodes, we simply do a forward search. We implement two improvements: - we ignore nodes that are higher than the destination; - we do a BFS rather than a DFS because we expect to have a short path (typically, the shortest path has length 1) *) exception Found of canonical_node list let search_path strict u v g = let rec loop to_revert todo next_todo = match todo, next_todo with | [], [] -> to_revert (* No path found *) | [], _ -> loop to_revert next_todo [] | (u, strict)::todo, _ -> if u.status = Visited || (u.status = WeakVisited && strict) then loop to_revert todo next_todo else let to_revert = if u.status = NoMark then u::to_revert else to_revert in u.status <- if strict then WeakVisited else Visited; if try UMap.find v.univ u.ltle || not strict with Not_found -> false then raise (Found to_revert) else begin let next_todo = UMap.fold (fun u strictu next_todo -> let strict = not strictu && strict in let u = repr g u in if u == v && not strict then raise (Found to_revert) else if topo_compare u v = 1 then next_todo else (u, strict)::next_todo) u.ltle next_todo in loop to_revert todo next_todo end in if u == v then not strict else try let res, to_revert = try false, loop [] [u, strict] [] with Found to_revert -> true, to_revert in List.iter (fun u -> u.status <- NoMark) to_revert; res with e -> (** Unlikely event: fatal error or signal *) let () = cleanup_universes g in raise e (** Uncomment to debug the cycle detection algorithm. *) (*let insert_edge strict ucan vcan g = check_universes_invariants g; let g = insert_edge strict ucan vcan g in check_universes_invariants g; let ucan = repr g ucan.univ in let vcan = repr g vcan.univ in assert (search_path strict ucan vcan g); g*) (** First, checks on universe levels *) let check_equal g u v = let arcu = repr g u and arcv = repr g v in arcu == arcv let check_eq_level g u v = u == v || check_equal g u v let check_smaller g strict u v = let arcu = repr g u and arcv = repr g v in if strict then search_path true arcu arcv g else is_prop_arc arcu || (is_set_arc arcu && not (is_prop_arc arcv)) || search_path false arcu arcv g (** Then, checks on universes *) type 'a check_function = universes -> 'a -> 'a -> bool let check_smaller_expr g (u,n) (v,m) = let diff = n - m in match diff with | 0 -> check_smaller g false u v | 1 -> check_smaller g true u v | x when x < 0 -> check_smaller g false u v | _ -> false let exists_bigger g ul l = Universe.exists (fun ul' -> check_smaller_expr g ul ul') l let real_check_leq g u v = Universe.for_all (fun ul -> exists_bigger g ul v) u let check_leq g u v = Universe.equal u v || is_type0m_univ u || real_check_leq g u v let check_eq_univs g l1 l2 = real_check_leq g l1 l2 && real_check_leq g l2 l1 let check_eq g u v = Universe.equal u v || check_eq_univs g u v (* enforce_univ_eq g u v will force u=v if possible, will fail otherwise *) let rec enforce_univ_eq u v g = let ucan = repr g u in let vcan = repr g v in if topo_compare ucan vcan = 1 then enforce_univ_eq v u g else let g = insert_edge false ucan vcan g in (* Cannot fail *) try insert_edge false vcan ucan g with CycleDetected -> error_inconsistency Eq v u (get_explanation true u v g) (* enforce_univ_leq g u v will force u<=v if possible, will fail otherwise *) let enforce_univ_leq u v g = let ucan = repr g u in let vcan = repr g v in try insert_edge false ucan vcan g with CycleDetected -> error_inconsistency Le u v (get_explanation true v u g) (* enforce_univ_lt u v will force u<v if possible, will fail otherwise *) let enforce_univ_lt u v g = let ucan = repr g u in let vcan = repr g v in try insert_edge true ucan vcan g with CycleDetected -> error_inconsistency Lt u v (get_explanation false v u g) let empty_universes = let set_arc = Canonical { univ = Level.set; ltle = LMap.empty; gtge = LSet.empty; rank = big_rank; klvl = 0; ilvl = (-1); status = NoMark; } in let prop_arc = Canonical { univ = Level.prop; ltle = LMap.empty; gtge = LSet.empty; rank = big_rank; klvl = 0; ilvl = 0; status = NoMark; } in let entries = UMap.add Level.set set_arc (UMap.singleton Level.prop prop_arc) in let empty = { entries; index = (-2); n_nodes = 2; n_edges = 0 } in enforce_univ_lt Level.prop Level.set empty (* Prop = Set is forbidden here. *) let initial_universes = empty_universes let is_initial_universes g = UMap.equal (==) g.entries initial_universes.entries let enforce_constraint cst g = match cst with | (u,Lt,v) -> enforce_univ_lt u v g | (u,Le,v) -> enforce_univ_leq u v g | (u,Eq,v) -> enforce_univ_eq u v g let merge_constraints c g = Constraint.fold enforce_constraint c g let check_constraint g (l,d,r) = match d with | Eq -> check_equal g l r | Le -> check_smaller g false l r | Lt -> check_smaller g true l r let check_constraints c g = Constraint.for_all (check_constraint g) c (* Normalization *) (** [normalize_universes g] returns a graph where all edges point directly to the canonical representent of their target. The output graph should be equivalent to the input graph from a logical point of view, but optimized. We maintain the invariant that the key of a [Canonical] element is its own name, by keeping [Equiv] edges. *) let normalize_universes g = let g = { g with entries = UMap.map (fun entry -> match entry with | Equiv u -> Equiv ((repr g u).univ) | Canonical ucan -> Canonical { ucan with rank = 1 }) g.entries } in UMap.fold (fun _ u g -> match u with | Equiv u -> g | Canonical u -> let _, u, g = get_ltle g u in let _, _, g = get_gtge g u in g) g.entries g let constraints_of_universes g = let constraints_of u v acc = match v with | Canonical {univ=u; ltle} -> UMap.fold (fun v strict acc-> let typ = if strict then Lt else Le in Constraint.add (u,typ,v) acc) ltle acc | Equiv v -> Constraint.add (u,Eq,v) acc in UMap.fold constraints_of g.entries Constraint.empty let constraints_of_universes g = constraints_of_universes (normalize_universes g) (** [sort_universes g] builds a totally ordered universe graph. The output graph should imply the input graph (and the implication will be strict most of the time), but is not necessarily minimal. Moreover, it adds levels [Type.n] to identify universes at level n. An artificial constraint Set < Type.2 is added to ensure that Type.n and small universes are not merged. Note: the result is unspecified if the input graph already contains [Type.n] nodes (calling a module Type is probably a bad idea anyway). *) let sort_universes g = let cans = UMap.fold (fun _ u l -> match u with | Equiv _ -> l | Canonical can -> can :: l ) g.entries [] in let cans = List.sort topo_compare cans in let lowest_levels = UMap.mapi (fun u _ -> if Level.is_small u then 0 else 2) (UMap.filter (fun _ u -> match u with Equiv _ -> false | Canonical _ -> true) g.entries) in let lowest_levels = List.fold_left (fun lowest_levels can -> let lvl = UMap.find can.univ lowest_levels in UMap.fold (fun u' strict lowest_levels -> let cost = if strict then 1 else 0 in let u' = (repr g u').univ in UMap.modify u' (fun _ lvl0 -> max lvl0 (lvl+cost)) lowest_levels) can.ltle lowest_levels) lowest_levels cans in let max_lvl = UMap.fold (fun _ a b -> max a b) lowest_levels 0 in let mp = Names.DirPath.make [Names.Id.of_string "Type"] in let types = Array.init (max_lvl + 1) (function | 0 -> Level.prop | 1 -> Level.set | n -> Level.make mp (n-2)) in let g = Array.fold_left (fun g u -> let g, u = safe_repr g u in change_node g { u with rank = big_rank }) g types in let g = if max_lvl >= 2 then enforce_univ_lt Level.set types.(2) g else g in let g = UMap.fold (fun u lvl g -> enforce_univ_eq u (types.(lvl)) g) lowest_levels g in normalize_universes g (** Subtyping of polymorphic contexts *) let check_subtype univs ctxT ctx = if AUContext.size ctx == AUContext.size ctx then let (inst, cst) = UContext.dest (AUContext.repr ctx) in let cstT = UContext.constraints (AUContext.repr ctxT) in let push accu v = add_universe v false accu in let univs = Array.fold_left push univs (Instance.to_array inst) in let univs = merge_constraints cstT univs in check_constraints cst univs else false (** Instances *) let check_eq_instances g t1 t2 = let t1 = Instance.to_array t1 in let t2 = Instance.to_array t2 in t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1)) in aux 0) (** Pretty-printing *) let pr_arc prl = function | _, Canonical {univ=u; ltle} -> if UMap.is_empty ltle then mt () else prl u ++ str " " ++ v 0 (pr_sequence (fun (v, strict) -> (if strict then str "< " else str "<= ") ++ prl v) (UMap.bindings ltle)) ++ fnl () | u, Equiv v -> prl u ++ str " = " ++ prl v ++ fnl () let pr_universes prl g = let graph = UMap.fold (fun u a l -> (u,a)::l) g.entries [] in prlist (pr_arc prl) graph (* Dumping constraints to a file *) let dump_universes output g = let dump_arc u = function | Canonical {univ=u; ltle} -> let u_str = Level.to_string u in UMap.iter (fun v strict -> let typ = if strict then Lt else Le in output typ u_str (Level.to_string v)) ltle; | Equiv v -> output Eq (Level.to_string u) (Level.to_string v) in UMap.iter dump_arc g.entries (** Profiling *) let merge_constraints = if Flags.profile then let key = CProfile.declare_profile "merge_constraints" in CProfile.profile2 key merge_constraints else merge_constraints let check_constraints = if Flags.profile then let key = CProfile.declare_profile "check_constraints" in CProfile.profile2 key check_constraints else check_constraints let check_eq = if Flags.profile then let check_eq_key = CProfile.declare_profile "check_eq" in CProfile.profile3 check_eq_key check_eq else check_eq let check_leq = if Flags.profile then let check_leq_key = CProfile.declare_profile "check_leq" in CProfile.profile3 check_leq_key check_leq else check_leq