1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
open Printer open Pp open Names open Constr open Vars open Glob_term open Glob_ops open Globnames open Indfun_common open CErrors open Util open Glob_termops open Misctypes module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration let observe strm = if do_observe () then Feedback.msg_debug strm else () (*let observennl strm = if do_observe () then Pp.msg strm else ()*) type binder_type = | Lambda of Name.t | Prod of Name.t | LetIn of Name.t type glob_context = (binder_type*glob_constr) list let rec solve_trivial_holes pat_as_term e = match DAst.get pat_as_term, DAst.get e with | GHole _,_ -> e | GApp(fp,argsp),GApp(fe,argse) when glob_constr_eq fp fe -> DAst.make (GApp((solve_trivial_holes fp fe),List.map2 solve_trivial_holes argsp argse)) | _,_ -> pat_as_term (* compose_glob_context [(bt_1,n_1,t_1);......] rt returns b_1(n_1,t_1,.....,bn(n_k,t_k,rt)) where the b_i's are the binders corresponding to the bt_i's *) let compose_glob_context = let compose_binder (bt,t) acc = match bt with | Lambda n -> mkGLambda(n,t,acc) | Prod n -> mkGProd(n,t,acc) | LetIn n -> mkGLetIn(n,t,None,acc) in List.fold_right compose_binder (* The main part deals with building a list of globalized constructor expressions from the rhs of a fixpoint equation. *) type 'a build_entry_pre_return = { context : glob_context; (* the binding context of the result *) value : 'a; (* The value *) } type 'a build_entry_return = { result : 'a build_entry_pre_return list; to_avoid : Id.t list } (* [combine_results combine_fun res1 res2] combine two results [res1] and [res2] w.r.t. [combine_fun]. Informally, both [res1] and [res2] are lists of "constructors" [res1_1;...] and [res2_1,....] and we need to produce [combine_fun res1_1 res2_1;combine_fun res1_1 res2_2;........] *) let combine_results (combine_fun : 'a build_entry_pre_return -> 'b build_entry_pre_return -> 'c build_entry_pre_return ) (res1: 'a build_entry_return) (res2 : 'b build_entry_return) : 'c build_entry_return = let pre_result = List.map ( fun res1 -> (* for each result in arg_res *) List.map (* we add it in each args_res *) (fun res2 -> combine_fun res1 res2 ) res2.result ) res1.result in (* and then we flatten the map *) { result = List.concat pre_result; to_avoid = List.union Id.equal res1.to_avoid res2.to_avoid } (* The combination function for an argument with a list of argument *) let combine_args arg args = { context = arg.context@args.context; (* Note that the binding context of [arg] MUST be placed before the one of [args] in order to preserve possible type dependencies *) value = arg.value::args.value; } let ids_of_binder = function | LetIn Anonymous | Prod Anonymous | Lambda Anonymous -> Id.Set.empty | LetIn (Name id) | Prod (Name id) | Lambda (Name id) -> Id.Set.singleton id let rec change_vars_in_binder mapping = function [] -> [] | (bt,t)::l -> let new_mapping = Id.Set.fold Id.Map.remove (ids_of_binder bt) mapping in (bt,change_vars mapping t):: (if Id.Map.is_empty new_mapping then l else change_vars_in_binder new_mapping l ) let rec replace_var_by_term_in_binder x_id term = function | [] -> [] | (bt,t)::l -> (bt,replace_var_by_term x_id term t):: if Id.Set.mem x_id (ids_of_binder bt) then l else replace_var_by_term_in_binder x_id term l let add_bt_names bt = Id.Set.union (ids_of_binder bt) let apply_args ctxt body args = let need_convert_id avoid id = List.exists (is_free_in id) args || Id.Set.mem id avoid in let need_convert avoid bt = Id.Set.exists (need_convert_id avoid) (ids_of_binder bt) in let next_name_away (na:Name.t) (mapping: Id.t Id.Map.t) (avoid: Id.Set.t) = match na with | Name id when Id.Set.mem id avoid -> let new_id = Namegen.next_ident_away id avoid in Name new_id,Id.Map.add id new_id mapping,Id.Set.add new_id avoid | _ -> na,mapping,avoid in let next_bt_away bt (avoid:Id.Set.t) = match bt with | LetIn na -> let new_na,mapping,new_avoid = next_name_away na Id.Map.empty avoid in LetIn new_na,mapping,new_avoid | Prod na -> let new_na,mapping,new_avoid = next_name_away na Id.Map.empty avoid in Prod new_na,mapping,new_avoid | Lambda na -> let new_na,mapping,new_avoid = next_name_away na Id.Map.empty avoid in Lambda new_na,mapping,new_avoid in let rec do_apply avoid ctxt body args = match ctxt,args with | _,[] -> (* No more args *) (ctxt,body) | [],_ -> (* no more fun *) let f,args' = glob_decompose_app body in (ctxt,mkGApp(f,args'@args)) | (Lambda Anonymous,t)::ctxt',arg::args' -> do_apply avoid ctxt' body args' | (Lambda (Name id),t)::ctxt',arg::args' -> let new_avoid,new_ctxt',new_body,new_id = if need_convert_id avoid id then let new_avoid = Id.Set.add id avoid in let new_id = Namegen.next_ident_away id new_avoid in let new_avoid' = Id.Set.add new_id new_avoid in let mapping = Id.Map.add id new_id Id.Map.empty in let new_ctxt' = change_vars_in_binder mapping ctxt' in let new_body = change_vars mapping body in new_avoid',new_ctxt',new_body,new_id else Id.Set.add id avoid,ctxt',body,id in let new_body = replace_var_by_term new_id arg new_body in let new_ctxt' = replace_var_by_term_in_binder new_id arg new_ctxt' in do_apply avoid new_ctxt' new_body args' | (bt,t)::ctxt',_ -> let new_avoid,new_ctxt',new_body,new_bt = let new_avoid = add_bt_names bt avoid in if need_convert avoid bt then let new_bt,mapping,new_avoid = next_bt_away bt new_avoid in ( new_avoid, change_vars_in_binder mapping ctxt', change_vars mapping body, new_bt ) else new_avoid,ctxt',body,bt in let new_ctxt',new_body = do_apply new_avoid new_ctxt' new_body args in (new_bt,t)::new_ctxt',new_body in do_apply Id.Set.empty ctxt body args let combine_app f args = let new_ctxt,new_value = apply_args f.context f.value args.value in { (* Note that the binding context of [args] MUST be placed before the one of the applied value in order to preserve possible type dependencies *) context = args.context@new_ctxt; value = new_value; } let combine_lam n t b = { context = []; value = mkGLambda(n, compose_glob_context t.context t.value, compose_glob_context b.context b.value ) } let combine_prod2 n t b = { context = []; value = mkGProd(n, compose_glob_context t.context t.value, compose_glob_context b.context b.value ) } let combine_prod n t b = { context = t.context@((Prod n,t.value)::b.context); value = b.value} let combine_letin n t b = { context = t.context@((LetIn n,t.value)::b.context); value = b.value} let mk_result ctxt value avoid = { result = [{context = ctxt; value = value}] ; to_avoid = avoid } (************************************************* Some functions to deal with overlapping patterns **************************************************) let coq_True_ref = lazy (Coqlib.coq_reference "" ["Init";"Logic"] "True") let coq_False_ref = lazy (Coqlib.coq_reference "" ["Init";"Logic"] "False") (* [make_discr_match_el \[e1,...en\]] builds match e1,...,en with (the list of expressions on which we will do the matching) *) let make_discr_match_el = List.map (fun e -> (e,(Anonymous,None))) (* [make_discr_match_brl i \[pat_1,...,pat_n\]] constructs a discrimination pattern matching on the ith expression. that is. match ?????? with \\ | pat_1 => False \\ | pat_{i-1} => False \\ | pat_i => True \\ | pat_{i+1} => False \\ \vdots | pat_n => False end *) let make_discr_match_brl i = List.map_i (fun j (_,(idl,patl,_)) -> Loc.tag @@ if Int.equal j i then (idl,patl, mkGRef (Lazy.force coq_True_ref)) else (idl,patl, mkGRef (Lazy.force coq_False_ref)) ) 0 (* [make_discr_match brl el i] generates an hypothesis such that it reduce to true iff brl_{i} is the first branch matched by [el] Used when we want to simulate the coq pattern matching algorithm *) let make_discr_match brl = fun el i -> mkGCases(None, make_discr_match_el el, make_discr_match_brl i brl) (**********************************************************************) (* functions used to build case expression from lettuple and if ones *) (**********************************************************************) (* [build_constructors_of_type] construct the array of pattern of its inductive argument*) let build_constructors_of_type ind' argl = let (mib,ind) = Inductive.lookup_mind_specif (Global.env()) ind' in let npar = mib.Declarations.mind_nparams in Array.mapi (fun i _ -> let construct = ind',i+1 in let constructref = ConstructRef(construct) in let _implicit_positions_of_cst = Impargs.implicits_of_global constructref in let cst_narg = Inductiveops.constructor_nallargs_env (Global.env ()) construct in let argl = if List.is_empty argl then Array.to_list (Array.init (cst_narg - npar) (fun _ -> mkGHole ()) ) else argl in let pat_as_term = mkGApp(mkGRef (ConstructRef(ind',i+1)),argl) in cases_pattern_of_glob_constr Anonymous pat_as_term ) ind.Declarations.mind_consnames (******************) (* Main functions *) (******************) let raw_push_named (na,raw_value,raw_typ) env = match na with | Anonymous -> env | Name id -> let typ,_ = Pretyping.understand env (Evd.from_env env) ~expected_type:Pretyping.IsType raw_typ in (match raw_value with | None -> Environ.push_named (NamedDecl.LocalAssum (id,typ)) env | Some value -> Environ.push_named (NamedDecl.LocalDef (id, value, typ)) env) let add_pat_variables pat typ env : Environ.env = let rec add_pat_variables env pat typ : Environ.env = observe (str "new rel env := " ++ Printer.pr_rel_context_of env (Evd.from_env env)); match DAst.get pat with | PatVar na -> Environ.push_rel (RelDecl.LocalAssum (na,typ)) env | PatCstr(c,patl,na) -> let Inductiveops.IndType(indf,indargs) = try Inductiveops.find_rectype env (Evd.from_env env) (EConstr.of_constr typ) with Not_found -> assert false in let constructors = Inductiveops.get_constructors env indf in let constructor : Inductiveops.constructor_summary = List.find (fun cs -> eq_constructor c (fst cs.Inductiveops.cs_cstr)) (Array.to_list constructors) in let cs_args_types :types list = List.map RelDecl.get_type constructor.Inductiveops.cs_args in List.fold_left2 add_pat_variables env patl (List.rev cs_args_types) in let new_env = add_pat_variables env pat typ in let res = fst ( Context.Rel.fold_outside (fun decl (env,ctxt) -> let open Context.Rel.Declaration in let sigma, _ = Pfedit.get_current_context () in match decl with | LocalAssum (Anonymous,_) | LocalDef (Anonymous,_,_) -> assert false | LocalAssum (Name id, t) -> let new_t = substl ctxt t in observe (str "for variable " ++ Ppconstr.pr_id id ++ fnl () ++ str "old type := " ++ Printer.pr_lconstr_env env sigma t ++ fnl () ++ str "new type := " ++ Printer.pr_lconstr_env env sigma new_t ++ fnl () ); let open Context.Named.Declaration in (Environ.push_named (LocalAssum (id,new_t)) env,mkVar id::ctxt) | LocalDef (Name id, v, t) -> let new_t = substl ctxt t in let new_v = substl ctxt v in observe (str "for variable " ++ Ppconstr.pr_id id ++ fnl () ++ str "old type := " ++ Printer.pr_lconstr_env env sigma t ++ fnl () ++ str "new type := " ++ Printer.pr_lconstr_env env sigma new_t ++ fnl () ++ str "old value := " ++ Printer.pr_lconstr_env env sigma v ++ fnl () ++ str "new value := " ++ Printer.pr_lconstr_env env sigma new_v ++ fnl () ); let open Context.Named.Declaration in (Environ.push_named (LocalDef (id,new_v,new_t)) env,mkVar id::ctxt) ) (Environ.rel_context new_env) ~init:(env,[]) ) in observe (str "new var env := " ++ Printer.pr_named_context_of res (Evd.from_env env)); res let rec pattern_to_term_and_type env typ = DAst.with_val (function | PatVar Anonymous -> assert false | PatVar (Name id) -> mkGVar id | PatCstr(constr,patternl,_) -> let cst_narg = Inductiveops.constructor_nallargs_env (Global.env ()) constr in let Inductiveops.IndType(indf,indargs) = try Inductiveops.find_rectype env (Evd.from_env env) (EConstr.of_constr typ) with Not_found -> assert false in let constructors = Inductiveops.get_constructors env indf in let constructor = List.find (fun cs -> eq_constructor (fst cs.Inductiveops.cs_cstr) constr) (Array.to_list constructors) in let cs_args_types :types list = List.map RelDecl.get_type constructor.Inductiveops.cs_args in let _,cstl = Inductiveops.dest_ind_family indf in let csta = Array.of_list cstl in let implicit_args = Array.to_list (Array.init (cst_narg - List.length patternl) (fun i -> Detyping.detype Detyping.Now false Id.Set.empty env (Evd.from_env env) (EConstr.of_constr csta.(i))) ) in let patl_as_term = List.map2 (pattern_to_term_and_type env) (List.rev cs_args_types) patternl in mkGApp(mkGRef(ConstructRef constr), implicit_args@patl_as_term ) ) (* [build_entry_lc funnames avoid rt] construct the list (in fact a build_entry_return) of constructors corresponding to [rt] when replacing calls to [funnames] by calls to the corresponding graphs. The idea to transform a term [t] into a list of constructors [lc] is the following: \begin{itemize} \item if the term is a binder (bind x, body) then first compute [lc'] the list corresponding to [body] and add (bind x. _) to each elements of [lc] \item if the term has the form (g t1 ... ... tn) where g does not appears in (fnames) then compute [lc1] ... [lcn] the lists of constructors corresponding to [t1] ... [tn], then combine those lists and [g] as follows~: for each element [c1,...,cn] of [lc1\times...\times lcn], [g c1 ... cn] is an element of [lc] \item if the term has the form (f t1 .... tn) where [f] appears in [fnames] then compute [lc1] ... [lcn] the lists of constructors corresponding to [t1] ... [tn], then compute those lists and [f] as follows~: for each element [c1,...,cn] of [lc1\times...\times lcn] create a new variable [res] and [forall res, R_f c1 ... cn res] is in [lc] \item if the term is a cast just treat its body part \item if the term is a match, an if or a lettuple then compute the lists corresponding to each branch of the case and concatenate them (informally, each branch of a match produces a new constructor) \end{itemize} WARNING: The terms constructed here are only USING the glob_constr syntax but are highly bad formed. We must wait to have complete all the current calculi to set the recursive calls. At this point, each term [f t1 ... tn] (where f appears in [funnames]) is replaced by a pseudo term [forall res, res t1 ... tn, res]. A reconstruction phase is done later. We in fact not create a constructor list since then end of each constructor has not the expected form but only the value of the function *) let rec build_entry_lc env funnames avoid rt : glob_constr build_entry_return = observe (str " Entering : " ++ Printer.pr_glob_constr_env env rt); let open CAst in match DAst.get rt with | GRef _ | GVar _ | GEvar _ | GPatVar _ | GSort _ | GHole _ -> (* do nothing (except changing type of course) *) mk_result [] rt avoid | GApp(_,_) -> let f,args = glob_decompose_app rt in let args_res : (glob_constr list) build_entry_return = List.fold_right (* create the arguments lists of constructors and combine them *) (fun arg ctxt_argsl -> let arg_res = build_entry_lc env funnames ctxt_argsl.to_avoid arg in combine_results combine_args arg_res ctxt_argsl ) args (mk_result [] [] avoid) in begin match DAst.get f with | GLambda _ -> let rec aux t l = match l with | [] -> t | u::l -> DAst.make @@ match DAst.get t with | GLambda(na,_,nat,b) -> GLetIn(na,u,None,aux b l) | _ -> GApp(t,l) in build_entry_lc env funnames avoid (aux f args) | GVar id when Id.Set.mem id funnames -> (* if we have [f t1 ... tn] with [f]$\in$[fnames] then we create a fresh variable [res], add [res] and its "value" (i.e. [res v1 ... vn]) to each pseudo constructor build for the arguments (i.e. a pseudo context [ctxt] and a pseudo value "v1 ... vn". The "value" of this branch is then simply [res] *) let rt_as_constr,ctx = Pretyping.understand env (Evd.from_env env) rt in let rt_typ = Typing.unsafe_type_of env (Evd.from_env env) (EConstr.of_constr rt_as_constr) in let res_raw_type = Detyping.detype Detyping.Now false Id.Set.empty env (Evd.from_env env) rt_typ in let res = fresh_id args_res.to_avoid "_res" in let new_avoid = res::args_res.to_avoid in let res_rt = mkGVar res in let new_result = List.map (fun arg_res -> let new_hyps = [Prod (Name res),res_raw_type; Prod Anonymous,mkGApp(res_rt,(mkGVar id)::arg_res.value)] in {context = arg_res.context@new_hyps; value = res_rt } ) args_res.result in { result = new_result; to_avoid = new_avoid } | GVar _ | GEvar _ | GPatVar _ | GHole _ | GSort _ | GRef _ -> (* if have [g t1 ... tn] with [g] not appearing in [funnames] then foreach [ctxt,v1 ... vn] in [args_res] we return [ctxt, g v1 .... vn] *) { args_res with result = List.map (fun args_res -> {args_res with value = mkGApp(f,args_res.value)}) args_res.result } | GApp _ -> assert false (* we have collected all the app in [glob_decompose_app] *) | GLetIn(n,v,t,b) -> (* if we have [(let x := v in b) t1 ... tn] , we discard our work and compute the list of constructor for [let x = v in (b t1 ... tn)] up to alpha conversion *) let new_n,new_b,new_avoid = match n with | Name id when List.exists (is_free_in id) args -> (* need to alpha-convert the name *) let new_id = Namegen.next_ident_away id (Id.Set.of_list avoid) in let new_avoid = id:: avoid in let new_b = replace_var_by_term id (DAst.make @@ GVar id) b in (Name new_id,new_b,new_avoid) | _ -> n,b,avoid in build_entry_lc env funnames avoid (mkGLetIn(new_n,v,t,mkGApp(new_b,args))) | GCases _ | GIf _ | GLetTuple _ -> (* we have [(match e1, ...., en with ..... end) t1 tn] we first compute the result from the case and then combine each of them with each of args one *) let f_res = build_entry_lc env funnames args_res.to_avoid f in combine_results combine_app f_res args_res | GCast(b,_) -> (* for an applied cast we just trash the cast part and restart the work. WARNING: We need to restart since [b] itself should be an application term *) build_entry_lc env funnames avoid (mkGApp(b,args)) | GRec _ -> user_err Pp.(str "Not handled GRec") | GProd _ -> user_err Pp.(str "Cannot apply a type") end (* end of the application treatement *) | GLambda(n,_,t,b) -> (* we first compute the list of constructor corresponding to the body of the function, then the one corresponding to the type and combine the two result *) let t_res = build_entry_lc env funnames avoid t in let new_n = match n with | Name _ -> n | Anonymous -> Name (Indfun_common.fresh_id [] "_x") in let new_env = raw_push_named (new_n,None,t) env in let b_res = build_entry_lc new_env funnames avoid b in combine_results (combine_lam new_n) t_res b_res | GProd(n,_,t,b) -> (* we first compute the list of constructor corresponding to the body of the function, then the one corresponding to the type and combine the two result *) let t_res = build_entry_lc env funnames avoid t in let new_env = raw_push_named (n,None,t) env in let b_res = build_entry_lc new_env funnames avoid b in if List.length t_res.result = 1 && List.length b_res.result = 1 then combine_results (combine_prod2 n) t_res b_res else combine_results (combine_prod n) t_res b_res | GLetIn(n,v,typ,b) -> (* we first compute the list of constructor corresponding to the body of the function, then the one corresponding to the value [t] and combine the two result *) let v = match typ with None -> v | Some t -> DAst.make ?loc:rt.loc @@ GCast (v,CastConv t) in let v_res = build_entry_lc env funnames avoid v in let v_as_constr,ctx = Pretyping.understand env (Evd.from_env env) v in let v_type = Typing.unsafe_type_of env (Evd.from_env env) (EConstr.of_constr v_as_constr) in let v_type = EConstr.Unsafe.to_constr v_type in let new_env = match n with Anonymous -> env | Name id -> Environ.push_named (NamedDecl.LocalDef (id,v_as_constr,v_type)) env in let b_res = build_entry_lc new_env funnames avoid b in combine_results (combine_letin n) v_res b_res | GCases(_,_,el,brl) -> (* we create the discrimination function and treat the case itself *) let make_discr = make_discr_match brl in build_entry_lc_from_case env funnames make_discr el brl avoid | GIf(b,(na,e_option),lhs,rhs) -> let b_as_constr,ctx = Pretyping.understand env (Evd.from_env env) b in let b_typ = Typing.unsafe_type_of env (Evd.from_env env) (EConstr.of_constr b_as_constr) in let (ind,_) = try Inductiveops.find_inductive env (Evd.from_env env) b_typ with Not_found -> user_err (str "Cannot find the inductive associated to " ++ Printer.pr_glob_constr_env env b ++ str " in " ++ Printer.pr_glob_constr_env env rt ++ str ". try again with a cast") in let case_pats = build_constructors_of_type (fst ind) [] in assert (Int.equal (Array.length case_pats) 2); let brl = List.map_i (fun i x -> Loc.tag ([],[case_pats.(i)],x)) 0 [lhs;rhs] in let match_expr = mkGCases(None,[(b,(Anonymous,None))],brl) in (* Pp.msgnl (str "new case := " ++ Printer.pr_glob_constr match_expr); *) build_entry_lc env funnames avoid match_expr | GLetTuple(nal,_,b,e) -> begin let nal_as_glob_constr = List.map (function Name id -> mkGVar id | Anonymous -> mkGHole () ) nal in let b_as_constr,ctx = Pretyping.understand env (Evd.from_env env) b in let b_typ = Typing.unsafe_type_of env (Evd.from_env env) (EConstr.of_constr b_as_constr) in let (ind,_) = try Inductiveops.find_inductive env (Evd.from_env env) b_typ with Not_found -> user_err (str "Cannot find the inductive associated to " ++ Printer.pr_glob_constr_env env b ++ str " in " ++ Printer.pr_glob_constr_env env rt ++ str ". try again with a cast") in let case_pats = build_constructors_of_type (fst ind) nal_as_glob_constr in assert (Int.equal (Array.length case_pats) 1); let br = Loc.tag ([],[case_pats.(0)],e) in let match_expr = mkGCases(None,[b,(Anonymous,None)],[br]) in build_entry_lc env funnames avoid match_expr end | GRec _ -> user_err Pp.(str "Not handled GRec") | GCast(b,_) -> build_entry_lc env funnames avoid b and build_entry_lc_from_case env funname make_discr (el:tomatch_tuples) (brl:Glob_term.cases_clauses) avoid : glob_constr build_entry_return = match el with | [] -> assert false (* this case correspond to match <nothing> with .... !*) | el -> (* this case correspond to match el with brl end we first compute the list of lists corresponding to [el] and combine them . Then for each element of the combinations, we compute the result we compute one list per branch in [brl] and finally we just concatenate those list *) let case_resl = List.fold_right (fun (case_arg,_) ctxt_argsl -> let arg_res = build_entry_lc env funname ctxt_argsl.to_avoid case_arg in combine_results combine_args arg_res ctxt_argsl ) el (mk_result [] [] avoid) in let types = List.map (fun (case_arg,_) -> let case_arg_as_constr,ctx = Pretyping.understand env (Evd.from_env env) case_arg in EConstr.Unsafe.to_constr (Typing.unsafe_type_of env (Evd.from_env env) (EConstr.of_constr case_arg_as_constr)) ) el in (****** The next works only if the match is not dependent ****) let results = List.map (fun ca -> let res = build_entry_lc_from_case_term env types funname (make_discr) [] brl case_resl.to_avoid ca in res ) case_resl.result in { result = List.concat (List.map (fun r -> r.result) results); to_avoid = List.fold_left (fun acc r -> List.union Id.equal acc r.to_avoid) [] results } and build_entry_lc_from_case_term env types funname make_discr patterns_to_prevent brl avoid matched_expr = match brl with | [] -> (* computed_branches *) {result = [];to_avoid = avoid} | br::brl' -> (* alpha conversion to prevent name clashes *) let _,(idl,patl,return) = alpha_br avoid br in let new_avoid = idl@avoid in (* for now we can no more use idl as an identifier *) (* building a list of precondition stating that we are not in this branch (will be used in the following recursive calls) *) let new_env = List.fold_right2 add_pat_variables patl types env in let not_those_patterns : (Id.t list -> glob_constr -> glob_constr) list = List.map2 (fun pat typ -> fun avoid pat'_as_term -> let renamed_pat,_,_ = alpha_pat avoid pat in let pat_ids = get_pattern_id renamed_pat in let env_with_pat_ids = add_pat_variables pat typ new_env in List.fold_right (fun id acc -> let typ_of_id = Typing.unsafe_type_of env_with_pat_ids (Evd.from_env env) (EConstr.mkVar id) in let raw_typ_of_id = Detyping.detype Detyping.Now false Id.Set.empty env_with_pat_ids (Evd.from_env env) typ_of_id in mkGProd (Name id,raw_typ_of_id,acc)) pat_ids (glob_make_neq pat'_as_term (pattern_to_term renamed_pat)) ) patl types in (* Checking if we can be in this branch (will be used in the following recursive calls) *) let unify_with_those_patterns : (cases_pattern -> bool*bool) list = List.map (fun pat pat' -> are_unifiable pat pat',eq_cases_pattern pat pat') patl in (* we first compute the other branch result (in ordrer to keep the order of the matching as much as possible) *) let brl'_res = build_entry_lc_from_case_term env types funname make_discr ((unify_with_those_patterns,not_those_patterns)::patterns_to_prevent) brl' avoid matched_expr in (* We now create the precondition of this branch i.e. 1- the list of variable appearing in the different patterns of this branch and the list of equation stating than el = patl (List.flatten ...) 2- If there exists a previous branch which pattern unify with the one of this branch then a discrimination precond stating that we are not in a previous branch (if List.exists ...) *) let those_pattern_preconds = (List.flatten ( List.map3 (fun pat e typ_as_constr -> let this_pat_ids = ids_of_pat pat in let typ_as_constr = EConstr.of_constr typ_as_constr in let typ = Detyping.detype Detyping.Now false Id.Set.empty new_env (Evd.from_env env) typ_as_constr in let pat_as_term = pattern_to_term pat in (* removing trivial holes *) let pat_as_term = solve_trivial_holes pat_as_term e in (* observe (str "those_pattern_preconds" ++ spc () ++ *) (* str "pat" ++ spc () ++ pr_glob_constr pat_as_term ++ spc ()++ *) (* str "e" ++ spc () ++ pr_glob_constr e ++spc ()++ *) (* str "typ_as_constr" ++ spc () ++ pr_lconstr typ_as_constr); *) List.fold_right (fun id acc -> if Id.Set.mem id this_pat_ids then (Prod (Name id), let typ_of_id = Typing.unsafe_type_of new_env (Evd.from_env env) (EConstr.mkVar id) in let raw_typ_of_id = Detyping.detype Detyping.Now false Id.Set.empty new_env (Evd.from_env env) typ_of_id in raw_typ_of_id )::acc else acc ) idl [(Prod Anonymous,glob_make_eq ~typ pat_as_term e)] ) patl matched_expr.value types ) ) @ (if List.exists (function (unifl,_) -> let (unif,_) = List.split (List.map2 (fun x y -> x y) unifl patl) in List.for_all (fun x -> x) unif) patterns_to_prevent then let i = List.length patterns_to_prevent in let pats_as_constr = List.map2 (pattern_to_term_and_type new_env) types patl in [(Prod Anonymous,make_discr pats_as_constr i )] else [] ) in (* We compute the result of the value returned by the branch*) let return_res = build_entry_lc new_env funname new_avoid return in (* and combine it with the preconds computed for this branch *) let this_branch_res = List.map (fun res -> { context = matched_expr.context@those_pattern_preconds@res.context ; value = res.value} ) return_res.result in { brl'_res with result = this_branch_res@brl'_res.result } let is_res r = match DAst.get r with | GVar id -> begin try String.equal (String.sub (Id.to_string id) 0 4) "_res" with Invalid_argument _ -> false end | _ -> false let is_gr c gr = match DAst.get c with | GRef (r, _) -> Globnames.eq_gr r gr | _ -> false let is_gvar c = match DAst.get c with | GVar id -> true | _ -> false let same_raw_term rt1 rt2 = match DAst.get rt1, DAst.get rt2 with | GRef(r1,_), GRef (r2,_) -> Globnames.eq_gr r1 r2 | GHole _, GHole _ -> true | _ -> false let decompose_raw_eq lhs rhs = let _, env = Pfedit.get_current_context () in let rec decompose_raw_eq lhs rhs acc = observe (str "decomposing eq for " ++ pr_glob_constr_env env lhs ++ str " " ++ pr_glob_constr_env env rhs); let (rhd,lrhs) = glob_decompose_app rhs in let (lhd,llhs) = glob_decompose_app lhs in observe (str "lhd := " ++ pr_glob_constr_env env lhd); observe (str "rhd := " ++ pr_glob_constr_env env rhd); observe (str "llhs := " ++ int (List.length llhs)); observe (str "lrhs := " ++ int (List.length lrhs)); let sllhs = List.length llhs in let slrhs = List.length lrhs in if same_raw_term lhd rhd && Int.equal sllhs slrhs then (* let _ = assert false in *) List.fold_right2 decompose_raw_eq llhs lrhs acc else (lhs,rhs)::acc in decompose_raw_eq lhs rhs [] exception Continue (* The second phase which reconstruct the real type of the constructor. rebuild the globalized constructors expression. eliminates some meaningless equalities, applies some rewrites...... *) let rec rebuild_cons env nb_args relname args crossed_types depth rt = observe (str "rebuilding : " ++ pr_glob_constr_env env rt); let open Context.Rel.Declaration in let open CAst in match DAst.get rt with | GProd(n,k,t,b) -> let not_free_in_t id = not (is_free_in id t) in let new_crossed_types = t::crossed_types in begin match DAst.get t with | GApp(res_rt ,args') when is_res res_rt -> begin let arg = List.hd args' in match DAst.get arg with | GVar this_relname -> (*i The next call to mk_rel_id is valid since we are constructing the graph Ensures by: obvious i*) let new_t = mkGApp(mkGVar(mk_rel_id this_relname),List.tl args'@[res_rt]) in let t',ctx = Pretyping.understand env (Evd.from_env env) new_t in let new_env = Environ.push_rel (LocalAssum (n,t')) env in let new_b,id_to_exclude = rebuild_cons new_env nb_args relname args new_crossed_types (depth + 1) b in mkGProd(n,new_t,new_b), Id.Set.filter not_free_in_t id_to_exclude | _ -> (* the first args is the name of the function! *) assert false end | GApp(eq_as_ref,[ty; id ;rt]) when is_gvar id && is_gr eq_as_ref (Lazy.force Coqlib.coq_eq_ref) && n == Anonymous -> let loc1 = rt.CAst.loc in let loc2 = eq_as_ref.CAst.loc in let loc3 = id.CAst.loc in let id = match DAst.get id with GVar id -> id | _ -> assert false in begin try observe (str "computing new type for eq : " ++ pr_glob_constr_env env rt); let t' = try fst (Pretyping.understand env (Evd.from_env env) t)(*FIXME*) with e when CErrors.noncritical e -> raise Continue in let is_in_b = is_free_in id b in let _keep_eq = not (List.exists (is_free_in id) args) || is_in_b || List.exists (is_free_in id) crossed_types in let new_args = List.map (replace_var_by_term id rt) args in let subst_b = if is_in_b then b else replace_var_by_term id rt b in let new_env = Environ.push_rel (LocalAssum (n,t')) env in let new_b,id_to_exclude = rebuild_cons new_env nb_args relname new_args new_crossed_types (depth + 1) subst_b in mkGProd(n,t,new_b),id_to_exclude with Continue -> let jmeq = Globnames.IndRef (fst (EConstr.destInd Evd.empty (jmeq ()))) in let ty',ctx = Pretyping.understand env (Evd.from_env env) ty in let ind,args' = Inductive.find_inductive env ty' in let mib,_ = Global.lookup_inductive (fst ind) in let nparam = mib.Declarations.mind_nparams in let params,arg' = ((Util.List.chop nparam args')) in let rt_typ = DAst.make @@ GApp(DAst.make @@ GRef (Globnames.IndRef (fst ind),None), (List.map (fun p -> Detyping.detype Detyping.Now false Id.Set.empty env (Evd.from_env env) (EConstr.of_constr p)) params)@(Array.to_list (Array.make (List.length args' - nparam) (mkGHole ())))) in let eq' = DAst.make ?loc:loc1 @@ GApp(DAst.make ?loc:loc2 @@GRef(jmeq,None),[ty;DAst.make ?loc:loc3 @@ GVar id;rt_typ;rt]) in observe (str "computing new type for jmeq : " ++ pr_glob_constr_env env eq'); let eq'_as_constr,ctx = Pretyping.understand env (Evd.from_env env) eq' in observe (str " computing new type for jmeq : done") ; let new_args = match Constr.kind eq'_as_constr with | App(_,[|_;_;ty;_|]) -> let ty = Array.to_list (snd (destApp ty)) in let ty' = snd (Util.List.chop nparam ty) in List.fold_left2 (fun acc var_as_constr arg -> let arg = EConstr.of_constr arg in if isRel var_as_constr then let na = RelDecl.get_name (Environ.lookup_rel (destRel var_as_constr) env) in match na with | Anonymous -> acc | Name id' -> (id',Detyping.detype Detyping.Now false Id.Set.empty env (Evd.from_env env) arg)::acc else if isVar var_as_constr then (destVar var_as_constr,Detyping.detype Detyping.Now false Id.Set.empty env (Evd.from_env env) arg)::acc else acc ) [] arg' ty' | _ -> assert false in let is_in_b = is_free_in id b in let _keep_eq = not (List.exists (is_free_in id) args) || is_in_b || List.exists (is_free_in id) crossed_types in let new_args = List.fold_left (fun args (id,rt) -> List.map (replace_var_by_term id rt) args ) args ((id,rt)::new_args) in let subst_b = if is_in_b then b else replace_var_by_term id rt b in let new_env = let t',ctx = Pretyping.understand env (Evd.from_env env) eq' in Environ.push_rel (LocalAssum (n,t')) env in let new_b,id_to_exclude = rebuild_cons new_env nb_args relname new_args new_crossed_types (depth + 1) subst_b in mkGProd(n,eq',new_b),id_to_exclude end (* J.F:. keep this comment it explain how to remove some meaningless equalities if keep_eq then mkGProd(n,t,new_b),id_to_exclude else new_b, Id.Set.add id id_to_exclude *) | GApp(eq_as_ref,[ty;rt1;rt2]) when is_gr eq_as_ref (Lazy.force Coqlib.coq_eq_ref) && n == Anonymous -> begin try let l = decompose_raw_eq rt1 rt2 in if List.length l > 1 then let new_rt = List.fold_left (fun acc (lhs,rhs) -> mkGProd(Anonymous, mkGApp(mkGRef(Lazy.force Coqlib.coq_eq_ref),[mkGHole ();lhs;rhs]),acc) ) b l in rebuild_cons env nb_args relname args crossed_types depth new_rt else raise Continue with Continue -> observe (str "computing new type for prod : " ++ pr_glob_constr_env env rt); let t',ctx = Pretyping.understand env (Evd.from_env env) t in let new_env = Environ.push_rel (LocalAssum (n,t')) env in let new_b,id_to_exclude = rebuild_cons new_env nb_args relname args new_crossed_types (depth + 1) b in match n with | Name id when Id.Set.mem id id_to_exclude && depth >= nb_args -> new_b,Id.Set.remove id (Id.Set.filter not_free_in_t id_to_exclude) | _ -> mkGProd(n,t,new_b),Id.Set.filter not_free_in_t id_to_exclude end | _ -> observe (str "computing new type for prod : " ++ pr_glob_constr_env env rt); let t',ctx = Pretyping.understand env (Evd.from_env env) t in let new_env = Environ.push_rel (LocalAssum (n,t')) env in let new_b,id_to_exclude = rebuild_cons new_env nb_args relname args new_crossed_types (depth + 1) b in match n with | Name id when Id.Set.mem id id_to_exclude && depth >= nb_args -> new_b,Id.Set.remove id (Id.Set.filter not_free_in_t id_to_exclude) | _ -> mkGProd(n,t,new_b),Id.Set.filter not_free_in_t id_to_exclude end | GLambda(n,k,t,b) -> begin let not_free_in_t id = not (is_free_in id t) in let new_crossed_types = t :: crossed_types in observe (str "computing new type for lambda : " ++ pr_glob_constr_env env rt); let t',ctx = Pretyping.understand env (Evd.from_env env) t in match n with | Name id -> let new_env = Environ.push_rel (LocalAssum (n,t')) env in let new_b,id_to_exclude = rebuild_cons new_env nb_args relname (args@[mkGVar id])new_crossed_types (depth + 1 ) b in if Id.Set.mem id id_to_exclude && depth >= nb_args then new_b, Id.Set.remove id (Id.Set.filter not_free_in_t id_to_exclude) else DAst.make @@ GProd(n,k,t,new_b),Id.Set.filter not_free_in_t id_to_exclude | _ -> anomaly (Pp.str "Should not have an anonymous function here.") (* We have renamed all the anonymous functions during alpha_renaming phase *) end | GLetIn(n,v,t,b) -> begin let t = match t with None -> v | Some t -> DAst.make ?loc:rt.loc @@ GCast (v,CastConv t) in let not_free_in_t id = not (is_free_in id t) in let evd = (Evd.from_env env) in let t',ctx = Pretyping.understand env evd t in let evd = Evd.from_ctx ctx in let type_t' = Typing.unsafe_type_of env evd (EConstr.of_constr t') in let type_t' = EConstr.Unsafe.to_constr type_t' in let new_env = Environ.push_rel (LocalDef (n,t',type_t')) env in let new_b,id_to_exclude = rebuild_cons new_env nb_args relname args (t::crossed_types) (depth + 1 ) b in match n with | Name id when Id.Set.mem id id_to_exclude && depth >= nb_args -> new_b,Id.Set.remove id (Id.Set.filter not_free_in_t id_to_exclude) | _ -> DAst.make @@ GLetIn(n,t,None,new_b), (* HOPING IT WOULD WORK *) Id.Set.filter not_free_in_t id_to_exclude end | GLetTuple(nal,(na,rto),t,b) -> assert (Option.is_empty rto); begin let not_free_in_t id = not (is_free_in id t) in let new_t,id_to_exclude' = rebuild_cons env nb_args relname args (crossed_types) depth t in let t',ctx = Pretyping.understand env (Evd.from_env env) new_t in let new_env = Environ.push_rel (LocalAssum (na,t')) env in let new_b,id_to_exclude = rebuild_cons new_env nb_args relname args (t::crossed_types) (depth + 1) b in (* match n with *) (* | Name id when Id.Set.mem id id_to_exclude -> *) (* new_b,Id.Set.remove id (Id.Set.filter not_free_in_t id_to_exclude) *) (* | _ -> *) DAst.make @@ GLetTuple(nal,(na,None),t,new_b), Id.Set.filter not_free_in_t (Id.Set.union id_to_exclude id_to_exclude') end | _ -> mkGApp(mkGVar relname,args@[rt]),Id.Set.empty (* debugging wrapper *) let rebuild_cons env nb_args relname args crossed_types rt = (* observennl (str "rebuild_cons : rt := "++ pr_glob_constr rt ++ *) (* str "nb_args := " ++ str (string_of_int nb_args)); *) let res = rebuild_cons env nb_args relname args crossed_types 0 rt in (* observe (str " leads to "++ pr_glob_constr (fst res)); *) res (* naive implementation of parameter detection. A parameter is an argument which is only preceded by parameters and whose calls are all syntactically equal. TODO: Find a valid way to deal with implicit arguments here! *) let rec compute_cst_params relnames params gt = DAst.with_val (function | GRef _ | GVar _ | GEvar _ | GPatVar _ -> params | GApp(f,args) -> begin match DAst.get f with | GVar relname' when Id.Set.mem relname' relnames -> compute_cst_params_from_app [] (params,args) | _ -> List.fold_left (compute_cst_params relnames) params (f::args) end | GLambda(_,_,t,b) | GProd(_,_,t,b) | GLetTuple(_,_,t,b) -> let t_params = compute_cst_params relnames params t in compute_cst_params relnames t_params b | GLetIn(_,v,t,b) -> let v_params = compute_cst_params relnames params v in let t_params = Option.fold_left (compute_cst_params relnames) v_params t in compute_cst_params relnames t_params b | GCases _ -> params (* If there is still cases at this point they can only be discrimination ones *) | GSort _ -> params | GHole _ -> params | GIf _ | GRec _ | GCast _ -> raise (UserError(Some "compute_cst_params", str "Not handled case")) ) gt and compute_cst_params_from_app acc (params,rtl) = let is_gid id c = match DAst.get c with GVar id' -> Id.equal id id' | _ -> false in match params,rtl with | _::_,[] -> assert false (* the rel has at least nargs + 1 arguments ! *) | ((Name id,_,None) as param)::params', c::rtl' when is_gid id c -> compute_cst_params_from_app (param::acc) (params',rtl') | _ -> List.rev acc let compute_params_name relnames (args : (Name.t * Glob_term.glob_constr * glob_constr option) list array) csts = let rels_params = Array.mapi (fun i args -> List.fold_left (fun params (_,cst) -> compute_cst_params relnames params cst) args csts.(i) ) args in let l = ref [] in let _ = try List.iteri (fun i ((n,nt,typ) as param) -> if Array.for_all (fun l -> let (n',nt',typ') = List.nth l i in Name.equal n n' && glob_constr_eq nt nt' && Option.equal glob_constr_eq typ typ') rels_params then l := param::!l ) rels_params.(0) with e when CErrors.noncritical e -> () in List.rev !l let rec rebuild_return_type rt = let loc = rt.CAst.loc in match rt.CAst.v with | Constrexpr.CProdN(n,t') -> CAst.make ?loc @@ Constrexpr.CProdN(n,rebuild_return_type t') | Constrexpr.CLetIn(na,v,t,t') -> CAst.make ?loc @@ Constrexpr.CLetIn(na,v,t,rebuild_return_type t') | _ -> CAst.make ?loc @@ Constrexpr.CProdN([[Loc.tag Anonymous], Constrexpr.Default Decl_kinds.Explicit, rt], CAst.make @@ Constrexpr.CSort(GType [])) let do_build_inductive evd (funconstants: pconstant list) (funsargs: (Name.t * glob_constr * glob_constr option) list list) returned_types (rtl:glob_constr list) = let _time1 = System.get_time () in let funnames = List.map (fun c -> Label.to_id (KerName.label (Constant.canonical (fst c)))) funconstants in (* Pp.msgnl (prlist_with_sep fnl Printer.pr_glob_constr rtl); *) let funnames_as_set = List.fold_right Id.Set.add funnames Id.Set.empty in let funnames = Array.of_list funnames in let funsargs = Array.of_list funsargs in let returned_types = Array.of_list returned_types in (* alpha_renaming of the body to prevent variable capture during manipulation *) let rtl_alpha = List.map (function rt -> expand_as (alpha_rt [] rt)) rtl in let rta = Array.of_list rtl_alpha in (*i The next call to mk_rel_id is valid since we are constructing the graph Ensures by: obvious i*) let relnames = Array.map mk_rel_id funnames in let relnames_as_set = Array.fold_right Id.Set.add relnames Id.Set.empty in (* Construction of the pseudo constructors *) let open Context.Named.Declaration in let evd,env = Array.fold_right2 (fun id (c, u) (evd,env) -> let u = EConstr.EInstance.make u in let evd,t = Typing.type_of env evd (EConstr.mkConstU (c, u)) in let t = EConstr.Unsafe.to_constr t in evd, Environ.push_named (LocalAssum (id,t)) env ) funnames (Array.of_list funconstants) (evd,Global.env ()) in (* we solve and replace the implicits *) let rta = Array.mapi (fun i rt -> let _,t = Typing.type_of env evd (EConstr.of_constr (mkConstU ((Array.of_list funconstants).(i)))) in resolve_and_replace_implicits ~expected_type:(Pretyping.OfType t) env evd rt ) rta in let resa = Array.map (build_entry_lc env funnames_as_set []) rta in let env_with_graphs = let rel_arity i funargs = (* Rebuilding arities (with parameters) *) let rel_first_args :(Name.t * Glob_term.glob_constr * Glob_term.glob_constr option ) list = funargs in List.fold_right (fun (n,t,typ) acc -> match typ with | Some typ -> CAst.make @@ Constrexpr.CLetIn((Loc.tag n),with_full_print (Constrextern.extern_glob_constr Id.Set.empty) t, Some (with_full_print (Constrextern.extern_glob_constr Id.Set.empty) typ), acc) | None -> CAst.make @@ Constrexpr.CProdN ([[(Loc.tag n)],Constrexpr_ops.default_binder_kind,with_full_print (Constrextern.extern_glob_constr Id.Set.empty) t], acc ) ) rel_first_args (rebuild_return_type returned_types.(i)) in (* We need to lift back our work topconstr but only with all information We mimick a Set Printing All. Then save the graphs and reset Printing options to their primitive values *) let rel_arities = Array.mapi rel_arity funsargs in Util.Array.fold_left2 (fun env rel_name rel_ar -> Environ.push_named (LocalAssum (rel_name, fst (with_full_print (Constrintern.interp_constr env evd) rel_ar))) env) env relnames rel_arities in (* and of the real constructors*) let constr i res = List.map (function result (* (args',concl') *) -> let rt = compose_glob_context result.context result.value in let nb_args = List.length funsargs.(i) in (* with_full_print (fun rt -> Pp.msgnl (str "glob constr " ++ pr_glob_constr rt)) rt; *) fst ( rebuild_cons env_with_graphs nb_args relnames.(i) [] [] rt ) ) res.result in (* adding names to constructors *) let next_constructor_id = ref (-1) in let mk_constructor_id i = incr next_constructor_id; (*i The next call to mk_rel_id is valid since we are constructing the graph Ensures by: obvious i*) Id.of_string ((Id.to_string (mk_rel_id funnames.(i)))^"_"^(string_of_int !next_constructor_id)) in let rel_constructors i rt : (Id.t*glob_constr) list = next_constructor_id := (-1); List.map (fun constr -> (mk_constructor_id i),constr) (constr i rt) in let rel_constructors = Array.mapi rel_constructors resa in (* Computing the set of parameters if asked *) let rels_params = compute_params_name relnames_as_set funsargs rel_constructors in let nrel_params = List.length rels_params in let rel_constructors = (* Taking into account the parameters in constructors *) Array.map (List.map (fun (id,rt) -> (id,snd (chop_rprod_n nrel_params rt)))) rel_constructors in let rel_arity i funargs = (* Reduilding arities (with parameters) *) let rel_first_args :(Name.t * Glob_term.glob_constr * Glob_term.glob_constr option ) list = (snd (List.chop nrel_params funargs)) in List.fold_right (fun (n,t,typ) acc -> match typ with | Some typ -> CAst.make @@ Constrexpr.CLetIn((Loc.tag n),with_full_print (Constrextern.extern_glob_constr Id.Set.empty) t, Some (with_full_print (Constrextern.extern_glob_constr Id.Set.empty) typ), acc) | None -> CAst.make @@ Constrexpr.CProdN ([[(Loc.tag n)],Constrexpr_ops.default_binder_kind,with_full_print (Constrextern.extern_glob_constr Id.Set.empty) t], acc ) ) rel_first_args (rebuild_return_type returned_types.(i)) in (* We need to lift back our work topconstr but only with all information We mimick a Set Printing All. Then save the graphs and reset Printing options to their primitive values *) let rel_arities = Array.mapi rel_arity funsargs in let rel_params_ids = List.fold_left (fun acc (na,_,_) -> match na with Anonymous -> acc | Name id -> id::acc ) [] rels_params in let rel_params = List.map (fun (n,t,typ) -> match typ with | Some typ -> Constrexpr.CLocalDef((Loc.tag n), Constrextern.extern_glob_constr Id.Set.empty t, Some (with_full_print (Constrextern.extern_glob_constr Id.Set.empty) typ)) | None -> Constrexpr.CLocalAssum ([(Loc.tag n)], Constrexpr_ops.default_binder_kind, Constrextern.extern_glob_constr Id.Set.empty t) ) rels_params in let ext_rels_constructors = Array.map (List.map (fun (id,t) -> false,((Loc.tag id), with_full_print (Constrextern.extern_glob_type Id.Set.empty) ((* zeta_normalize *) (alpha_rt rel_params_ids t)) ) )) (rel_constructors) in let rel_ind i ext_rel_constructors = (((Loc.tag @@ relnames.(i)), None), rel_params, Some rel_arities.(i), ext_rel_constructors),[] in let ext_rel_constructors = (Array.mapi rel_ind ext_rels_constructors) in let rel_inds = Array.to_list ext_rel_constructors in (* let _ = *) (* Pp.msgnl (\* observe *\) ( *) (* str "Inductive" ++ spc () ++ *) (* prlist_with_sep *) (* (fun () -> fnl ()++spc () ++ str "with" ++ spc ()) *) (* (function ((_,id),_,params,ar,constr) -> *) (* Ppconstr.pr_id id ++ spc () ++ *) (* Ppconstr.pr_binders params ++ spc () ++ *) (* str ":" ++ spc () ++ *) (* Ppconstr.pr_lconstr_expr ar ++ spc () ++ str ":=" ++ *) (* prlist_with_sep *) (* (fun _ -> fnl () ++ spc () ++ str "|" ++ spc ()) *) (* (function (_,((_,id),t)) -> *) (* Ppconstr.pr_id id ++ spc () ++ str ":" ++ spc () ++ *) (* Ppconstr.pr_lconstr_expr t) *) (* constr *) (* ) *) (* rel_inds *) (* ) *) (* in *) let _time2 = System.get_time () in try with_full_print (Flags.silently (Command.do_mutual_inductive rel_inds (Flags.is_universe_polymorphism ()) false false)) Decl_kinds.Finite with | UserError(s,msg) as e -> let _time3 = System.get_time () in (* Pp.msgnl (str "error : "++ str (string_of_float (System.time_difference time2 time3))); *) let repacked_rel_inds = List.map (fun ((a , b , c , l),ntn) -> ((false,a) , b, c , Vernacexpr.Inductive_kw, Vernacexpr.Constructors l),ntn ) rel_inds in let msg = str "while trying to define"++ spc () ++ Ppvernac.pr_vernac (Vernacexpr.VernacInductive(Vernacexpr.GlobalNonCumulativity,false,Decl_kinds.Finite,repacked_rel_inds)) ++ fnl () ++ msg in observe (msg); raise e | reraise -> let _time3 = System.get_time () in (* Pp.msgnl (str "error : "++ str (string_of_float (System.time_difference time2 time3))); *) let repacked_rel_inds = List.map (fun ((a , b , c , l),ntn) -> ((false,a) , b, c , Vernacexpr.Inductive_kw, Vernacexpr.Constructors l),ntn ) rel_inds in let msg = str "while trying to define"++ spc () ++ Ppvernac.pr_vernac (Vernacexpr.VernacInductive(Vernacexpr.GlobalNonCumulativity,false,Decl_kinds.Finite,repacked_rel_inds)) ++ fnl () ++ CErrors.print reraise in observe msg; raise reraise let build_inductive evd funconstants funsargs returned_types rtl = let pu = !Detyping.print_universes in let cu = !Constrextern.print_universes in try Detyping.print_universes := true; Constrextern.print_universes := true; do_build_inductive evd funconstants funsargs returned_types rtl; Detyping.print_universes := pu; Constrextern.print_universes := cu with e when CErrors.noncritical e -> Detyping.print_universes := pu; Constrextern.print_universes := cu; raise (Building_graph e)