1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
open Names open Pp open Constr open Libnames open Globnames open Refiner let mk_prefix pre id = Id.of_string (pre^(Id.to_string id)) let mk_rel_id = mk_prefix "R_" let mk_correct_id id = Nameops.add_suffix (mk_rel_id id) "_correct" let mk_complete_id id = Nameops.add_suffix (mk_rel_id id) "_complete" let mk_equation_id id = Nameops.add_suffix id "_equation" let msgnl m = () let fresh_id avoid s = Namegen.next_ident_away_in_goal (Id.of_string s) (Id.Set.of_list avoid) let fresh_name avoid s = Name (fresh_id avoid s) let get_name avoid ?(default="H") = function | Anonymous -> fresh_name avoid default | Name n -> Name n let array_get_start a = Array.init (Array.length a - 1) (fun i -> a.(i)) let id_of_name = function Name id -> id | _ -> raise Not_found let locate ref = let (loc,qid) = qualid_of_reference ref in Nametab.locate qid let locate_ind ref = match locate ref with | IndRef x -> x | _ -> raise Not_found let locate_constant ref = match locate ref with | ConstRef x -> x | _ -> raise Not_found let locate_with_msg msg f x = try f x with Not_found -> raise (CErrors.UserError(None, msg)) let filter_map filter f = let rec it = function | [] -> [] | e::l -> if filter e then (f e) :: it l else it l in it let chop_rlambda_n = let rec chop_lambda_n acc n rt = if n == 0 then List.rev acc,rt else match DAst.get rt with | Glob_term.GLambda(name,k,t,b) -> chop_lambda_n ((name,t,None)::acc) (n-1) b | Glob_term.GLetIn(name,v,t,b) -> chop_lambda_n ((name,v,t)::acc) (n-1) b | _ -> raise (CErrors.UserError(Some "chop_rlambda_n", str "chop_rlambda_n: Not enough Lambdas")) in chop_lambda_n [] let chop_rprod_n = let rec chop_prod_n acc n rt = if n == 0 then List.rev acc,rt else match DAst.get rt with | Glob_term.GProd(name,k,t,b) -> chop_prod_n ((name,t)::acc) (n-1) b | _ -> raise (CErrors.UserError(Some "chop_rprod_n",str "chop_rprod_n: Not enough products")) in chop_prod_n [] let list_union_eq eq_fun l1 l2 = let rec urec = function | [] -> l2 | a::l -> if List.exists (eq_fun a) l2 then urec l else a::urec l in urec l1 let list_add_set_eq eq_fun x l = if List.exists (eq_fun x) l then l else x::l let const_of_id id = let _,princ_ref = qualid_of_reference (Libnames.Ident (Loc.tag id)) in try Constrintern.locate_reference princ_ref with Not_found -> CErrors.user_err ~hdr:"IndFun.const_of_id" (str "cannot find " ++ Id.print id) let def_of_const t = match Constr.kind t with Term.Const sp -> (try (match Environ.constant_opt_value_in (Global.env()) sp with | Some c -> c | _ -> assert false) with Not_found -> assert false) |_ -> assert false let coq_constant s = Universes.constr_of_global @@ Coqlib.gen_reference_in_modules "RecursiveDefinition" Coqlib.init_modules s;; let find_reference sl s = let dp = Names.DirPath.make (List.rev_map Id.of_string sl) in Nametab.locate (make_qualid dp (Id.of_string s)) let eq = lazy(EConstr.of_constr (coq_constant "eq")) let refl_equal = lazy(EConstr.of_constr (coq_constant "eq_refl")) (*****************************************************************) (* Copy of the standart save mechanism but without the much too *) (* slow reduction function *) (*****************************************************************) open Entries open Decl_kinds open Declare let definition_message = Declare.definition_message let get_locality = function | Discharge -> true | Local -> true | Global -> false let save with_clean id const (locality,_,kind) hook = let fix_exn = Future.fix_exn_of const.const_entry_body in let l,r = match locality with | Discharge when Lib.sections_are_opened () -> let k = Kindops.logical_kind_of_goal_kind kind in let c = SectionLocalDef const in let _ = declare_variable id (Lib.cwd(), c, k) in (Local, VarRef id) | Discharge | Local | Global -> let local = get_locality locality in let k = Kindops.logical_kind_of_goal_kind kind in let kn = declare_constant id ~local (DefinitionEntry const, k) in (locality, ConstRef kn) in if with_clean then Proof_global.discard_current (); CEphemeron.iter_opt hook (fun f -> Lemmas.call_hook fix_exn f l r); definition_message id let cook_proof _ = let (id,(entry,_,strength)) = Pfedit.cook_proof () in (id,(entry,strength)) let get_proof_clean do_reduce = let result = cook_proof do_reduce in Proof_global.discard_current (); result let with_full_print f a = let old_implicit_args = Impargs.is_implicit_args () and old_strict_implicit_args = Impargs.is_strict_implicit_args () and old_contextual_implicit_args = Impargs.is_contextual_implicit_args () in let old_rawprint = !Flags.raw_print in let old_printuniverses = !Constrextern.print_universes in Constrextern.print_universes := true; Flags.raw_print := true; Impargs.make_implicit_args false; Impargs.make_strict_implicit_args false; Impargs.make_contextual_implicit_args false; Impargs.make_contextual_implicit_args false; Dumpglob.pause (); try let res = f a in Impargs.make_implicit_args old_implicit_args; Impargs.make_strict_implicit_args old_strict_implicit_args; Impargs.make_contextual_implicit_args old_contextual_implicit_args; Flags.raw_print := old_rawprint; Constrextern.print_universes := old_printuniverses; Dumpglob.continue (); res with | reraise -> Impargs.make_implicit_args old_implicit_args; Impargs.make_strict_implicit_args old_strict_implicit_args; Impargs.make_contextual_implicit_args old_contextual_implicit_args; Flags.raw_print := old_rawprint; Constrextern.print_universes := old_printuniverses; Dumpglob.continue (); raise reraise (**********************) type function_info = { function_constant : Constant.t; graph_ind : inductive; equation_lemma : Constant.t option; correctness_lemma : Constant.t option; completeness_lemma : Constant.t option; rect_lemma : Constant.t option; rec_lemma : Constant.t option; prop_lemma : Constant.t option; is_general : bool; (* Has this function been defined using general recursive definition *) } (* type function_db = function_info list *) (* let function_table = ref ([] : function_db) *) let from_function = Summary.ref Cmap_env.empty ~name:"functions_db_fn" let from_graph = Summary.ref Indmap.empty ~name:"functions_db_gr" (* let rec do_cache_info finfo = function | [] -> raise Not_found | (finfo'::finfos as l) -> if finfo' == finfo then l else if finfo'.function_constant = finfo.function_constant then finfo::finfos else let res = do_cache_info finfo finfos in if res == finfos then l else finfo'::l let cache_Function (_,(finfos)) = let new_tbl = try do_cache_info finfos !function_table with Not_found -> finfos::!function_table in if new_tbl != !function_table then function_table := new_tbl *) let cache_Function (_,finfos) = from_function := Cmap_env.add finfos.function_constant finfos !from_function; from_graph := Indmap.add finfos.graph_ind finfos !from_graph let load_Function _ = cache_Function let subst_Function (subst,finfos) = let do_subst_con c = Mod_subst.subst_constant subst c and do_subst_ind i = Mod_subst.subst_ind subst i in let function_constant' = do_subst_con finfos.function_constant in let graph_ind' = do_subst_ind finfos.graph_ind in let equation_lemma' = Option.smartmap do_subst_con finfos.equation_lemma in let correctness_lemma' = Option.smartmap do_subst_con finfos.correctness_lemma in let completeness_lemma' = Option.smartmap do_subst_con finfos.completeness_lemma in let rect_lemma' = Option.smartmap do_subst_con finfos.rect_lemma in let rec_lemma' = Option.smartmap do_subst_con finfos.rec_lemma in let prop_lemma' = Option.smartmap do_subst_con finfos.prop_lemma in if function_constant' == finfos.function_constant && graph_ind' == finfos.graph_ind && equation_lemma' == finfos.equation_lemma && correctness_lemma' == finfos.correctness_lemma && completeness_lemma' == finfos.completeness_lemma && rect_lemma' == finfos.rect_lemma && rec_lemma' == finfos.rec_lemma && prop_lemma' == finfos.prop_lemma then finfos else { function_constant = function_constant'; graph_ind = graph_ind'; equation_lemma = equation_lemma' ; correctness_lemma = correctness_lemma' ; completeness_lemma = completeness_lemma' ; rect_lemma = rect_lemma' ; rec_lemma = rec_lemma'; prop_lemma = prop_lemma'; is_general = finfos.is_general } let classify_Function infos = Libobject.Substitute infos let discharge_Function (_,finfos) = let function_constant' = Lib.discharge_con finfos.function_constant and graph_ind' = Lib.discharge_inductive finfos.graph_ind and equation_lemma' = Option.smartmap Lib.discharge_con finfos.equation_lemma and correctness_lemma' = Option.smartmap Lib.discharge_con finfos.correctness_lemma and completeness_lemma' = Option.smartmap Lib.discharge_con finfos.completeness_lemma and rect_lemma' = Option.smartmap Lib.discharge_con finfos.rect_lemma and rec_lemma' = Option.smartmap Lib.discharge_con finfos.rec_lemma and prop_lemma' = Option.smartmap Lib.discharge_con finfos.prop_lemma in if function_constant' == finfos.function_constant && graph_ind' == finfos.graph_ind && equation_lemma' == finfos.equation_lemma && correctness_lemma' == finfos.correctness_lemma && completeness_lemma' == finfos.completeness_lemma && rect_lemma' == finfos.rect_lemma && rec_lemma' == finfos.rec_lemma && prop_lemma' == finfos.prop_lemma then Some finfos else Some { function_constant = function_constant' ; graph_ind = graph_ind' ; equation_lemma = equation_lemma' ; correctness_lemma = correctness_lemma' ; completeness_lemma = completeness_lemma'; rect_lemma = rect_lemma'; rec_lemma = rec_lemma'; prop_lemma = prop_lemma' ; is_general = finfos.is_general } let pr_ocst c = let sigma, env = Pfedit.get_current_context () in Option.fold_right (fun v acc -> Printer.pr_lconstr_env env sigma (mkConst v)) c (mt ()) let pr_info f_info = let sigma, env = Pfedit.get_current_context () in str "function_constant := " ++ Printer.pr_lconstr_env env sigma (mkConst f_info.function_constant)++ fnl () ++ str "function_constant_type := " ++ (try Printer.pr_lconstr_env env sigma (fst (Global.type_of_global_in_context env (ConstRef f_info.function_constant))) with e when CErrors.noncritical e -> mt ()) ++ fnl () ++ str "equation_lemma := " ++ pr_ocst f_info.equation_lemma ++ fnl () ++ str "completeness_lemma :=" ++ pr_ocst f_info.completeness_lemma ++ fnl () ++ str "correctness_lemma := " ++ pr_ocst f_info.correctness_lemma ++ fnl () ++ str "rect_lemma := " ++ pr_ocst f_info.rect_lemma ++ fnl () ++ str "rec_lemma := " ++ pr_ocst f_info.rec_lemma ++ fnl () ++ str "prop_lemma := " ++ pr_ocst f_info.prop_lemma ++ fnl () ++ str "graph_ind := " ++ Printer.pr_lconstr_env env sigma (mkInd f_info.graph_ind) ++ fnl () let pr_table tb = let l = Cmap_env.fold (fun k v acc -> v::acc) tb [] in Pp.prlist_with_sep fnl pr_info l let in_Function : function_info -> Libobject.obj = Libobject.declare_object {(Libobject.default_object "FUNCTIONS_DB") with Libobject.cache_function = cache_Function; Libobject.load_function = load_Function; Libobject.classify_function = classify_Function; Libobject.subst_function = subst_Function; Libobject.discharge_function = discharge_Function (* Libobject.open_function = open_Function; *) } let find_or_none id = try Some (match Nametab.locate (qualid_of_ident id) with ConstRef c -> c | _ -> CErrors.anomaly (Pp.str "Not a constant.") ) with Not_found -> None let find_Function_infos f = Cmap_env.find f !from_function let find_Function_of_graph ind = Indmap.find ind !from_graph let update_Function finfo = (* Pp.msgnl (pr_info finfo); *) Lib.add_anonymous_leaf (in_Function finfo) let add_Function is_general f = let f_id = Label.to_id (Constant.label f) in let equation_lemma = find_or_none (mk_equation_id f_id) and correctness_lemma = find_or_none (mk_correct_id f_id) and completeness_lemma = find_or_none (mk_complete_id f_id) and rect_lemma = find_or_none (Nameops.add_suffix f_id "_rect") and rec_lemma = find_or_none (Nameops.add_suffix f_id "_rec") and prop_lemma = find_or_none (Nameops.add_suffix f_id "_ind") and graph_ind = match Nametab.locate (qualid_of_ident (mk_rel_id f_id)) with | IndRef ind -> ind | _ -> CErrors.anomaly (Pp.str "Not an inductive.") in let finfos = { function_constant = f; equation_lemma = equation_lemma; completeness_lemma = completeness_lemma; correctness_lemma = correctness_lemma; rect_lemma = rect_lemma; rec_lemma = rec_lemma; prop_lemma = prop_lemma; graph_ind = graph_ind; is_general = is_general } in update_Function finfos let pr_table () = pr_table !from_function (*********************************) (* Debuging *) let functional_induction_rewrite_dependent_proofs = ref true let function_debug = ref false open Goptions let functional_induction_rewrite_dependent_proofs_sig = { optdepr = false; optname = "Functional Induction Rewrite Dependent"; optkey = ["Functional";"Induction";"Rewrite";"Dependent"]; optread = (fun () -> !functional_induction_rewrite_dependent_proofs); optwrite = (fun b -> functional_induction_rewrite_dependent_proofs := b) } let _ = declare_bool_option functional_induction_rewrite_dependent_proofs_sig let do_rewrite_dependent () = !functional_induction_rewrite_dependent_proofs = true let function_debug_sig = { optdepr = false; optname = "Function debug"; optkey = ["Function_debug"]; optread = (fun () -> !function_debug); optwrite = (fun b -> function_debug := b) } let _ = declare_bool_option function_debug_sig let do_observe () = !function_debug let strict_tcc = ref false let is_strict_tcc () = !strict_tcc let strict_tcc_sig = { optdepr = false; optname = "Raw Function Tcc"; optkey = ["Function_raw_tcc"]; optread = (fun () -> !strict_tcc); optwrite = (fun b -> strict_tcc := b) } let _ = declare_bool_option strict_tcc_sig exception Building_graph of exn exception Defining_principle of exn exception ToShow of exn let jmeq () = try Coqlib.check_required_library Coqlib.jmeq_module_name; EConstr.of_constr @@ Universes.constr_of_global @@ Coqlib.coq_reference "Function" ["Logic";"JMeq"] "JMeq" with e when CErrors.noncritical e -> raise (ToShow e) let jmeq_refl () = try Coqlib.check_required_library Coqlib.jmeq_module_name; EConstr.of_constr @@ Universes.constr_of_global @@ Coqlib.coq_reference "Function" ["Logic";"JMeq"] "JMeq_refl" with e when CErrors.noncritical e -> raise (ToShow e) let h_intros l = tclMAP (fun x -> Proofview.V82.of_tactic (Tactics.Simple.intro x)) l let h_id = Id.of_string "h" let hrec_id = Id.of_string "hrec" let well_founded = function () -> EConstr.of_constr (coq_constant "well_founded") let acc_rel = function () -> EConstr.of_constr (coq_constant "Acc") let acc_inv_id = function () -> EConstr.of_constr (coq_constant "Acc_inv") let well_founded_ltof () = EConstr.of_constr @@ Universes.constr_of_global @@ Coqlib.coq_reference "" ["Arith";"Wf_nat"] "well_founded_ltof" let ltof_ref = function () -> (find_reference ["Coq";"Arith";"Wf_nat"] "ltof") let evaluable_of_global_reference r = (* Tacred.evaluable_of_global_reference (Global.env ()) *) match r with ConstRef sp -> EvalConstRef sp | VarRef id -> EvalVarRef id | _ -> assert false;; let list_rewrite (rev:bool) (eqs: (EConstr.constr*bool) list) = tclREPEAT (List.fold_right (fun (eq,b) i -> tclORELSE (Proofview.V82.of_tactic ((if b then Equality.rewriteLR else Equality.rewriteRL) eq)) i) (if rev then (List.rev eqs) else eqs) (tclFAIL 0 (mt())));; let decompose_lam_n sigma n = if n < 0 then CErrors.user_err Pp.(str "decompose_lam_n: integer parameter must be positive"); let rec lamdec_rec l n c = if Int.equal n 0 then l,c else match EConstr.kind sigma c with | Lambda (x,t,c) -> lamdec_rec ((x,t)::l) (n-1) c | Cast (c,_,_) -> lamdec_rec l n c | _ -> CErrors.user_err Pp.(str "decompose_lam_n: not enough abstractions") in lamdec_rec [] n let lamn n env b = let open EConstr in let rec lamrec = function | (0, env, b) -> b | (n, ((v,t)::l), b) -> lamrec (n-1, l, mkLambda (v,t,b)) | _ -> assert false in lamrec (n,env,b) (* compose_lam [xn:Tn;..;x1:T1] b = [x1:T1]..[xn:Tn]b *) let compose_lam l b = lamn (List.length l) l b (* prodn n [xn:Tn;..;x1:T1;Gamma] b = (x1:T1)..(xn:Tn)b *) let prodn n env b = let open EConstr in let rec prodrec = function | (0, env, b) -> b | (n, ((v,t)::l), b) -> prodrec (n-1, l, mkProd (v,t,b)) | _ -> assert false in prodrec (n,env,b) (* compose_prod [xn:Tn;..;x1:T1] b = (x1:T1)..(xn:Tn)b *) let compose_prod l b = prodn (List.length l) l b type tcc_lemma_value = | Undefined | Value of constr | Not_needed (* We only "purify" on exceptions. XXX: What is this doing here? *) let funind_purify f x = let st = Vernacstate.freeze_interp_state `No in try f x with e -> let e = CErrors.push e in Vernacstate.unfreeze_interp_state st; Exninfo.iraise e