1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
let contrib_name = "btauto" let init_constant dir s = let find_constant contrib dir s = Universes.constr_of_global (Coqlib.find_reference contrib dir s) in find_constant contrib_name dir s let get_constant dir s = lazy (Universes.constr_of_global @@ Coqlib.coq_reference contrib_name dir s) let get_inductive dir s = let glob_ref () = Coqlib.find_reference contrib_name ("Coq" :: dir) s in Lazy.from_fun (fun () -> Globnames.destIndRef (glob_ref ())) let decomp_term sigma (c : Constr.t) = Constr.kind (EConstr.Unsafe.to_constr (Termops.strip_outer_cast sigma (EConstr.of_constr c))) let lapp c v = Constr.mkApp (Lazy.force c, v) let (===) = Constr.equal module CoqList = struct let path = ["Init"; "Datatypes"] let typ = get_constant path "list" let _nil = get_constant path "nil" let _cons = get_constant path "cons" let cons ty h t = lapp _cons [|ty; h ; t|] let nil ty = lapp _nil [|ty|] let rec of_list ty = function | [] -> nil ty | t::q -> cons ty t (of_list ty q) let type_of_list ty = lapp typ [|ty|] end module CoqPositive = struct let path = ["Numbers"; "BinNums"] let typ = get_constant path "positive" let _xH = get_constant path "xH" let _xO = get_constant path "xO" let _xI = get_constant path "xI" (* A coq nat from an int *) let rec of_int n = if n <= 1 then Lazy.force _xH else let ans = of_int (n / 2) in if n mod 2 = 0 then lapp _xO [|ans|] else lapp _xI [|ans|] end module Env = struct module ConstrHashtbl = Hashtbl.Make (Constr) type t = (int ConstrHashtbl.t * int ref) let add (tbl, off) (t : Constr.t) = try ConstrHashtbl.find tbl t with | Not_found -> let i = !off in let () = ConstrHashtbl.add tbl t i in let () = incr off in i let empty () = (ConstrHashtbl.create 16, ref 1) let to_list (env, _) = (* we need to get an ordered list *) let fold constr key accu = (key, constr) :: accu in let l = ConstrHashtbl.fold fold env [] in let sorted_l = List.sort (fun p1 p2 -> Int.compare (fst p1) (fst p2)) l in List.map snd sorted_l end module Bool = struct let typ = get_constant ["Init"; "Datatypes"] "bool" let ind = get_inductive ["Init"; "Datatypes"] "bool" let trueb = get_constant ["Init"; "Datatypes"] "true" let falseb = get_constant ["Init"; "Datatypes"] "false" let andb = get_constant ["Init"; "Datatypes"] "andb" let orb = get_constant ["Init"; "Datatypes"] "orb" let xorb = get_constant ["Init"; "Datatypes"] "xorb" let negb = get_constant ["Init"; "Datatypes"] "negb" type t = | Var of int | Const of bool | Andb of t * t | Orb of t * t | Xorb of t * t | Negb of t | Ifb of t * t * t let quote (env : Env.t) sigma (c : Constr.t) : t = let trueb = Lazy.force trueb in let falseb = Lazy.force falseb in let andb = Lazy.force andb in let orb = Lazy.force orb in let xorb = Lazy.force xorb in let negb = Lazy.force negb in let rec aux c = match decomp_term sigma c with | Term.App (head, args) -> if head === andb && Array.length args = 2 then Andb (aux args.(0), aux args.(1)) else if head === orb && Array.length args = 2 then Orb (aux args.(0), aux args.(1)) else if head === xorb && Array.length args = 2 then Xorb (aux args.(0), aux args.(1)) else if head === negb && Array.length args = 1 then Negb (aux args.(0)) else Var (Env.add env c) | Term.Case (info, r, arg, pats) -> let is_bool = let i = info.Term.ci_ind in Names.eq_ind i (Lazy.force ind) in if is_bool then Ifb ((aux arg), (aux pats.(0)), (aux pats.(1))) else Var (Env.add env c) | _ -> if c === falseb then Const false else if c === trueb then Const true else Var (Env.add env c) in aux c end module Btauto = struct open Pp let eq = get_constant ["Init"; "Logic"] "eq" let f_var = get_constant ["btauto"; "Reflect"] "formula_var" let f_btm = get_constant ["btauto"; "Reflect"] "formula_btm" let f_top = get_constant ["btauto"; "Reflect"] "formula_top" let f_cnj = get_constant ["btauto"; "Reflect"] "formula_cnj" let f_dsj = get_constant ["btauto"; "Reflect"] "formula_dsj" let f_neg = get_constant ["btauto"; "Reflect"] "formula_neg" let f_xor = get_constant ["btauto"; "Reflect"] "formula_xor" let f_ifb = get_constant ["btauto"; "Reflect"] "formula_ifb" let eval = get_constant ["btauto"; "Reflect"] "formula_eval" let witness = get_constant ["btauto"; "Reflect"] "boolean_witness" let soundness = get_constant ["btauto"; "Reflect"] "reduce_poly_of_formula_sound_alt" let rec convert = function | Bool.Var n -> lapp f_var [|CoqPositive.of_int n|] | Bool.Const true -> Lazy.force f_top | Bool.Const false -> Lazy.force f_btm | Bool.Andb (b1, b2) -> lapp f_cnj [|convert b1; convert b2|] | Bool.Orb (b1, b2) -> lapp f_dsj [|convert b1; convert b2|] | Bool.Negb b -> lapp f_neg [|convert b|] | Bool.Xorb (b1, b2) -> lapp f_xor [|convert b1; convert b2|] | Bool.Ifb (b1, b2, b3) -> lapp f_ifb [|convert b1; convert b2; convert b3|] let convert_env env : Constr.t = CoqList.of_list (Lazy.force Bool.typ) env let reify env t = lapp eval [|convert_env env; convert t|] let print_counterexample p env gl = let var = lapp witness [|p|] in let var = EConstr.of_constr var in (* Compute an assignment that dissatisfies the goal *) let _, var = Tacmach.pf_reduction_of_red_expr gl (Genredexpr.CbvVm None) var in let var = EConstr.Unsafe.to_constr var in let rec to_list l = match decomp_term (Tacmach.project gl) l with | Term.App (c, _) when c === (Lazy.force CoqList._nil) -> [] | Term.App (c, [|_; h; t|]) when c === (Lazy.force CoqList._cons) -> if h === (Lazy.force Bool.trueb) then (true :: to_list t) else if h === (Lazy.force Bool.falseb) then (false :: to_list t) else invalid_arg "to_list" | _ -> invalid_arg "to_list" in let concat sep = function | [] -> mt () | h :: t -> let rec aux = function | [] -> mt () | x :: t -> (sep ++ x ++ aux t) in h ++ aux t in let msg = try let var = to_list var in let assign = List.combine env var in let map_msg (key, v) = let b = if v then str "true" else str "false" in let sigma, env = Pfedit.get_current_context () in let term = Printer.pr_constr_env env sigma key in term ++ spc () ++ str ":=" ++ spc () ++ b in let assign = List.map map_msg assign in let l = str "[" ++ (concat (str ";" ++ spc ()) assign) ++ str "]" in str "Not a tautology:" ++ spc () ++ l with e when CErrors.noncritical e -> (str "Not a tautology") in Tacticals.tclFAIL 0 msg gl let try_unification env = Proofview.Goal.nf_enter begin fun gl -> let concl = Proofview.Goal.concl gl in let eq = Lazy.force eq in let concl = EConstr.Unsafe.to_constr concl in let t = decomp_term (Tacmach.New.project gl) concl in match t with | Term.App (c, [|typ; p; _|]) when c === eq -> (* should be an equality [@eq poly ?p (Cst false)] *) let tac = Tacticals.New.tclORELSE0 Tactics.reflexivity (Proofview.V82.tactic (print_counterexample p env)) in tac | _ -> let msg = str "Btauto: Internal error" in Tacticals.New.tclFAIL 0 msg end let tac = Proofview.Goal.nf_enter begin fun gl -> let concl = Proofview.Goal.concl gl in let concl = EConstr.Unsafe.to_constr concl in let sigma = Tacmach.New.project gl in let eq = Lazy.force eq in let bool = Lazy.force Bool.typ in let t = decomp_term sigma concl in match t with | Term.App (c, [|typ; tl; tr|]) when typ === bool && c === eq -> let env = Env.empty () in let fl = Bool.quote env sigma tl in let fr = Bool.quote env sigma tr in let env = Env.to_list env in let fl = reify env fl in let fr = reify env fr in let changed_gl = Constr.mkApp (c, [|typ; fl; fr|]) in let changed_gl = EConstr.of_constr changed_gl in Tacticals.New.tclTHENLIST [ Tactics.change_concl changed_gl; Tactics.apply (EConstr.of_constr (Lazy.force soundness)); Tactics.normalise_vm_in_concl; try_unification env ] | _ -> let msg = str "Cannot recognize a boolean equality" in Tacticals.New.tclFAIL 0 msg end end