1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Pp open CErrors open Util open Names module UNameMap = Names.Id.Map type uinfo = { uname : Id.t option; uloc : Loc.t option; } (* 2nd part used to check consistency on the fly. *) type t = { uctx_names : Universes.universe_binders * uinfo Univ.LMap.t; uctx_local : Univ.ContextSet.t; (** The local context of variables *) uctx_univ_variables : Universes.universe_opt_subst; (** The local universes that are unification variables *) uctx_univ_algebraic : Univ.LSet.t; (** The subset of unification variables that can be instantiated with algebraic universes as they appear in inferred types only. *) uctx_universes : UGraph.t; (** The current graph extended with the local constraints *) uctx_initial_universes : UGraph.t; (** The graph at the creation of the evar_map *) } let empty = { uctx_names = UNameMap.empty, Univ.LMap.empty; uctx_local = Univ.ContextSet.empty; uctx_univ_variables = Univ.LMap.empty; uctx_univ_algebraic = Univ.LSet.empty; uctx_universes = UGraph.initial_universes; uctx_initial_universes = UGraph.initial_universes; } let make u = { empty with uctx_universes = u; uctx_initial_universes = u} let is_empty ctx = Univ.ContextSet.is_empty ctx.uctx_local && Univ.LMap.is_empty ctx.uctx_univ_variables let uname_union s t = if s == t then s else UNameMap.merge (fun k l r -> match l, r with | Some _, _ -> l | _, _ -> r) s t let union ctx ctx' = if ctx == ctx' then ctx else if is_empty ctx' then ctx else let local = Univ.ContextSet.union ctx.uctx_local ctx'.uctx_local in let names = uname_union (fst ctx.uctx_names) (fst ctx'.uctx_names) in let newus = Univ.LSet.diff (Univ.ContextSet.levels ctx'.uctx_local) (Univ.ContextSet.levels ctx.uctx_local) in let newus = Univ.LSet.diff newus (Univ.LMap.domain ctx.uctx_univ_variables) in let declarenew g = Univ.LSet.fold (fun u g -> UGraph.add_universe u false g) newus g in let names_rev = Univ.LMap.union (snd ctx.uctx_names) (snd ctx'.uctx_names) in { uctx_names = (names, names_rev); uctx_local = local; uctx_univ_variables = Univ.LMap.subst_union ctx.uctx_univ_variables ctx'.uctx_univ_variables; uctx_univ_algebraic = Univ.LSet.union ctx.uctx_univ_algebraic ctx'.uctx_univ_algebraic; uctx_initial_universes = declarenew ctx.uctx_initial_universes; uctx_universes = if local == ctx.uctx_local then ctx.uctx_universes else let cstrsr = Univ.ContextSet.constraints ctx'.uctx_local in UGraph.merge_constraints cstrsr (declarenew ctx.uctx_universes) } let context_set ctx = ctx.uctx_local let constraints ctx = snd ctx.uctx_local let context ctx = Univ.ContextSet.to_context ctx.uctx_local let const_univ_entry ~poly uctx = let open Entries in if poly then Polymorphic_const_entry (context uctx) else Monomorphic_const_entry (context_set uctx) (* does not support cumulativity since you need more info *) let ind_univ_entry ~poly uctx = let open Entries in if poly then Polymorphic_ind_entry (context uctx) else Monomorphic_ind_entry (context_set uctx) let of_context_set ctx = { empty with uctx_local = ctx } let subst ctx = ctx.uctx_univ_variables let ugraph ctx = ctx.uctx_universes let initial_graph ctx = ctx.uctx_initial_universes let algebraics ctx = ctx.uctx_univ_algebraic let add_uctx_names ?loc s l (names, names_rev) = if UNameMap.mem s names then user_err ?loc ~hdr:"add_uctx_names" Pp.(str "Universe " ++ Names.Id.print s ++ str" already bound."); (UNameMap.add s l names, Univ.LMap.add l { uname = Some s; uloc = loc } names_rev) let add_uctx_loc l loc (names, names_rev) = match loc with | None -> (names, names_rev) | Some _ -> (names, Univ.LMap.add l { uname = None; uloc = loc } names_rev) let of_binders b = let ctx = empty in let rmap = UNameMap.fold (fun id l rmap -> Univ.LMap.add l { uname = Some id; uloc = None } rmap) b Univ.LMap.empty in { ctx with uctx_names = b, rmap } let universe_binders ctx = fst ctx.uctx_names let instantiate_variable l b v = try v := Univ.LMap.update l (Some b) !v with Not_found -> assert false exception UniversesDiffer let process_universe_constraints ctx cstrs = let open Univ in let univs = ctx.uctx_universes in let vars = ref ctx.uctx_univ_variables in let normalize = Universes.normalize_universe_opt_subst vars in let is_local l = Univ.LMap.mem l !vars in let varinfo x = match Univ.Universe.level x with | None -> Inl x | Some l -> Inr l in let equalize_variables fo l l' r r' local = (** Assumes l = [l',0] and r = [r',0] *) let () = if is_local l' then instantiate_variable l' r vars else if is_local r' then instantiate_variable r' l vars else if not (UGraph.check_eq_level univs l' r') then (* Two rigid/global levels, none of them being local, one of them being Prop/Set, disallow *) if Univ.Level.is_small l' || Univ.Level.is_small r' then raise (Univ.UniverseInconsistency (Univ.Eq, l, r, None)) else if fo then raise UniversesDiffer in Univ.enforce_eq_level l' r' local in let equalize_universes l r local = match varinfo l, varinfo r with | Inr l', Inr r' -> equalize_variables false l l' r r' local | Inr l, Inl r | Inl r, Inr l -> let alg = Univ.LSet.mem l ctx.uctx_univ_algebraic in let inst = Univ.univ_level_rem l r r in if alg then (instantiate_variable l inst vars; local) else let lu = Univ.Universe.make l in if Univ.univ_level_mem l r then Univ.enforce_leq inst lu local else raise (Univ.UniverseInconsistency (Univ.Eq, lu, r, None)) | Inl _, Inl _ (* both are algebraic *) -> if UGraph.check_eq univs l r then local else raise (Univ.UniverseInconsistency (Univ.Eq, l, r, None)) in let unify_universes (l, d, r) local = let l = normalize l and r = normalize r in if Univ.Universe.equal l r then local else match d with | Universes.ULe -> if UGraph.check_leq univs l r then (** Keep Prop/Set <= var around if var might be instantiated by prop or set later. *) match Univ.Universe.level l, Univ.Universe.level r with | Some l, Some r -> Univ.Constraint.add (l, Univ.Le, r) local | _ -> local else begin match Univ.Universe.level r with | None -> user_err Pp.(str "Algebraic universe on the right") | Some r' -> if Univ.Level.is_small r' then let levels = Univ.Universe.levels l in let fold l' local = let l = Univ.Universe.make l' in if Univ.Level.is_small l' || is_local l' then equalize_variables false l l' r r' local else raise (Univ.UniverseInconsistency (Univ.Le, l, r, None)) in Univ.LSet.fold fold levels local else Univ.enforce_leq l r local end | Universes.ULub -> begin match Universe.level l, Universe.level r with | Some l', Some r' -> equalize_variables true l l' r r' local | _, _ -> assert false end | Universes.UEq -> equalize_universes l r local in let local = Universes.Constraints.fold unify_universes cstrs Univ.Constraint.empty in !vars, local let add_constraints ctx cstrs = let univs, local = ctx.uctx_local in let cstrs' = Univ.Constraint.fold (fun (l,d,r) acc -> let l = Univ.Universe.make l and r = Univ.Universe.make r in let cstr' = if d == Univ.Lt then (Univ.Universe.super l, Universes.ULe, r) else (l, (if d == Univ.Le then Universes.ULe else Universes.UEq), r) in Universes.Constraints.add cstr' acc) cstrs Universes.Constraints.empty in let vars, local' = process_universe_constraints ctx cstrs' in { ctx with uctx_local = (univs, Univ.Constraint.union local local'); uctx_univ_variables = vars; uctx_universes = UGraph.merge_constraints local' ctx.uctx_universes } (* let addconstrkey = CProfile.declare_profile "add_constraints_context";; *) (* let add_constraints_context = CProfile.profile2 addconstrkey add_constraints_context;; *) let add_universe_constraints ctx cstrs = let univs, local = ctx.uctx_local in let vars, local' = process_universe_constraints ctx cstrs in { ctx with uctx_local = (univs, Univ.Constraint.union local local'); uctx_univ_variables = vars; uctx_universes = UGraph.merge_constraints local' ctx.uctx_universes } let constrain_variables diff ctx = let univs, local = ctx.uctx_local in let univs, vars, local = Univ.LSet.fold (fun l (univs, vars, cstrs) -> try match Univ.LMap.find l vars with | Some u -> (Univ.LSet.add l univs, Univ.LMap.remove l vars, Univ.Constraint.add (l, Univ.Eq, Option.get (Univ.Universe.level u)) cstrs) | None -> (univs, vars, cstrs) with Not_found | Option.IsNone -> (univs, vars, cstrs)) diff (univs, ctx.uctx_univ_variables, local) in { ctx with uctx_local = (univs, local); uctx_univ_variables = vars } let pr_uctx_level uctx = let map, map_rev = uctx.uctx_names in fun l -> try Id.print (Option.get (Univ.LMap.find l map_rev).uname) with Not_found | Option.IsNone -> Universes.pr_with_global_universes l type universe_decl = (Names.Id.t Loc.located list, Univ.Constraint.t) Misctypes.gen_universe_decl let error_unbound_universes left uctx = let open Univ in let n = LSet.cardinal left in let loc = try let info = LMap.find (LSet.choose left) (snd uctx.uctx_names) in info.uloc with Not_found -> None in user_err ?loc ~hdr:"universe_context" ((str(CString.plural n "Universe") ++ spc () ++ LSet.pr (pr_uctx_level uctx) left ++ spc () ++ str (CString.conjugate_verb_to_be n) ++ str" unbound.")) let universe_context ~names ~extensible uctx = let open Univ in let levels = ContextSet.levels uctx.uctx_local in let newinst, left = List.fold_right (fun (loc,id) (newinst, acc) -> let l = try UNameMap.find id (fst uctx.uctx_names) with Not_found -> assert false in (l :: newinst, LSet.remove l acc)) names ([], levels) in if not extensible && not (LSet.is_empty left) then error_unbound_universes left uctx else let left = ContextSet.sort_levels (Array.of_list (LSet.elements left)) in let inst = Array.append (Array.of_list newinst) left in let inst = Instance.of_array inst in let ctx = UContext.make (inst, ContextSet.constraints uctx.uctx_local) in ctx let check_universe_context_set ~names ~extensible uctx = if extensible then () else let open Univ in let left = List.fold_left (fun left (loc,id) -> let l = try UNameMap.find id (fst uctx.uctx_names) with Not_found -> assert false in LSet.remove l left) (ContextSet.levels uctx.uctx_local) names in if not (LSet.is_empty left) then error_unbound_universes left uctx let check_implication uctx cstrs cstrs' = let gr = initial_graph uctx in let grext = UGraph.merge_constraints cstrs gr in if UGraph.check_constraints cstrs' grext then () else CErrors.user_err ~hdr:"check_univ_decl" (str "Universe constraints are not implied by the ones declared.") let check_mono_univ_decl uctx decl = let open Misctypes in let () = let names = decl.univdecl_instance in let extensible = decl.univdecl_extensible_instance in check_universe_context_set ~names ~extensible uctx in if not decl.univdecl_extensible_constraints then check_implication uctx decl.univdecl_constraints (Univ.ContextSet.constraints uctx.uctx_local); uctx.uctx_local let check_univ_decl ~poly uctx decl = let open Misctypes in let ctx = let names = decl.univdecl_instance in let extensible = decl.univdecl_extensible_instance in if poly then Entries.Polymorphic_const_entry (universe_context ~names ~extensible uctx) else let () = check_universe_context_set ~names ~extensible uctx in Entries.Monomorphic_const_entry uctx.uctx_local in if not decl.univdecl_extensible_constraints then check_implication uctx decl.univdecl_constraints (Univ.ContextSet.constraints uctx.uctx_local); ctx let restrict ctx vars = let vars = Names.Id.Map.fold (fun na l vars -> Univ.LSet.add l vars) (fst ctx.uctx_names) vars in let uctx' = Univops.restrict_universe_context ctx.uctx_local vars in { ctx with uctx_local = uctx' } type rigid = | UnivRigid | UnivFlexible of bool (** Is substitution by an algebraic ok? *) let univ_rigid = UnivRigid let univ_flexible = UnivFlexible false let univ_flexible_alg = UnivFlexible true let merge ?loc sideff rigid uctx ctx' = let open Univ in let levels = ContextSet.levels ctx' in let uctx = if sideff then uctx else match rigid with | UnivRigid -> uctx | UnivFlexible b -> let fold u accu = if LMap.mem u accu then accu else LMap.add u None accu in let uvars' = LSet.fold fold levels uctx.uctx_univ_variables in if b then { uctx with uctx_univ_variables = uvars'; uctx_univ_algebraic = LSet.union uctx.uctx_univ_algebraic levels } else { uctx with uctx_univ_variables = uvars' } in let uctx_local = if sideff then uctx.uctx_local else ContextSet.append ctx' uctx.uctx_local in let declare g = LSet.fold (fun u g -> try UGraph.add_universe u false g with UGraph.AlreadyDeclared when sideff -> g) levels g in let uctx_names = let fold u accu = let modify _ info = match info.uloc with | None -> { info with uloc = loc } | Some _ -> info in try LMap.modify u modify accu with Not_found -> LMap.add u { uname = None; uloc = loc } accu in (fst uctx.uctx_names, LSet.fold fold levels (snd uctx.uctx_names)) in let initial = declare uctx.uctx_initial_universes in let univs = declare uctx.uctx_universes in let uctx_universes = UGraph.merge_constraints (ContextSet.constraints ctx') univs in { uctx with uctx_names; uctx_local; uctx_universes; uctx_initial_universes = initial } let merge_subst uctx s = { uctx with uctx_univ_variables = Univ.LMap.subst_union uctx.uctx_univ_variables s } let emit_side_effects eff u = let uctxs = Safe_typing.universes_of_private eff in List.fold_left (merge true univ_rigid) u uctxs let new_univ_variable ?loc rigid name ({ uctx_local = ctx; uctx_univ_variables = uvars; uctx_univ_algebraic = avars} as uctx) = let u = Universes.new_univ_level (Global.current_dirpath ()) in let ctx' = Univ.ContextSet.add_universe u ctx in let uctx', pred = match rigid with | UnivRigid -> uctx, true | UnivFlexible b -> let uvars' = Univ.LMap.add u None uvars in if b then {uctx with uctx_univ_variables = uvars'; uctx_univ_algebraic = Univ.LSet.add u avars}, false else {uctx with uctx_univ_variables = uvars'}, false in let names = match name with | Some n -> add_uctx_names ?loc n u uctx.uctx_names | None -> add_uctx_loc u loc uctx.uctx_names in let initial = UGraph.add_universe u false uctx.uctx_initial_universes in let uctx' = {uctx' with uctx_names = names; uctx_local = ctx'; uctx_universes = UGraph.add_universe u false uctx.uctx_universes; uctx_initial_universes = initial} in uctx', u let add_global_univ uctx u = let initial = UGraph.add_universe u true uctx.uctx_initial_universes in let univs = UGraph.add_universe u true uctx.uctx_universes in { uctx with uctx_local = Univ.ContextSet.add_universe u uctx.uctx_local; uctx_initial_universes = initial; uctx_universes = univs } let make_flexible_variable ctx ~algebraic u = let {uctx_local = cstrs; uctx_univ_variables = uvars; uctx_univ_algebraic = avars} = ctx in let uvars' = Univ.LMap.add u None uvars in let avars' = if algebraic then let uu = Univ.Universe.make u in let substu_not_alg u' v = Option.cata (fun vu -> Univ.Universe.equal uu vu && not (Univ.LSet.mem u' avars)) false v in let has_upper_constraint () = Univ.Constraint.exists (fun (l,d,r) -> d == Univ.Lt && Univ.Level.equal l u) (Univ.ContextSet.constraints cstrs) in if not (Univ.LMap.exists substu_not_alg uvars || has_upper_constraint ()) then Univ.LSet.add u avars else avars else avars in {ctx with uctx_univ_variables = uvars'; uctx_univ_algebraic = avars'} let make_flexible_nonalgebraic ctx = {ctx with uctx_univ_algebraic = Univ.LSet.empty} let is_sort_variable uctx s = match s with | Sorts.Type u -> (match Univ.universe_level u with | Some l as x -> if Univ.LSet.mem l (Univ.ContextSet.levels uctx.uctx_local) then x else None | None -> None) | _ -> None let subst_univs_context_with_def def usubst (ctx, cst) = (Univ.LSet.diff ctx def, Univ.subst_univs_constraints usubst cst) let normalize_variables uctx = let normalized_variables, undef, def, subst = Universes.normalize_univ_variables uctx.uctx_univ_variables in let ctx_local = subst_univs_context_with_def def (Univ.make_subst subst) uctx.uctx_local in let ctx_local', univs = Universes.refresh_constraints uctx.uctx_initial_universes ctx_local in subst, { uctx with uctx_local = ctx_local'; uctx_univ_variables = normalized_variables; uctx_universes = univs } let abstract_undefined_variables uctx = let vars' = Univ.LMap.fold (fun u v acc -> if v == None then Univ.LSet.remove u acc else acc) uctx.uctx_univ_variables uctx.uctx_univ_algebraic in { uctx with uctx_local = Univ.ContextSet.empty; uctx_univ_algebraic = vars' } let fix_undefined_variables uctx = let algs', vars' = Univ.LMap.fold (fun u v (algs, vars as acc) -> if v == None then (Univ.LSet.remove u algs, Univ.LMap.remove u vars) else acc) uctx.uctx_univ_variables (uctx.uctx_univ_algebraic, uctx.uctx_univ_variables) in { uctx with uctx_univ_variables = vars'; uctx_univ_algebraic = algs' } let refresh_undefined_univ_variables uctx = let subst, ctx' = Universes.fresh_universe_context_set_instance uctx.uctx_local in let alg = Univ.LSet.fold (fun u acc -> Univ.LSet.add (Univ.subst_univs_level_level subst u) acc) uctx.uctx_univ_algebraic Univ.LSet.empty in let vars = Univ.LMap.fold (fun u v acc -> Univ.LMap.add (Univ.subst_univs_level_level subst u) (Option.map (Univ.subst_univs_level_universe subst) v) acc) uctx.uctx_univ_variables Univ.LMap.empty in let declare g = Univ.LSet.fold (fun u g -> UGraph.add_universe u false g) (Univ.ContextSet.levels ctx') g in let initial = declare uctx.uctx_initial_universes in let univs = declare UGraph.initial_universes in let uctx' = {uctx_names = uctx.uctx_names; uctx_local = ctx'; uctx_univ_variables = vars; uctx_univ_algebraic = alg; uctx_universes = univs; uctx_initial_universes = initial } in uctx', subst let normalize uctx = let ((vars',algs'), us') = Universes.normalize_context_set uctx.uctx_local uctx.uctx_univ_variables uctx.uctx_univ_algebraic in if Univ.ContextSet.equal us' uctx.uctx_local then uctx else let us', universes = Universes.refresh_constraints uctx.uctx_initial_universes us' in { uctx_names = uctx.uctx_names; uctx_local = us'; uctx_univ_variables = vars'; uctx_univ_algebraic = algs'; uctx_universes = universes; uctx_initial_universes = uctx.uctx_initial_universes } let universe_of_name uctx s = UNameMap.find s (fst uctx.uctx_names) let update_sigma_env uctx env = let univs = Environ.universes env in let eunivs = { uctx with uctx_initial_universes = univs; uctx_universes = univs } in merge true univ_rigid eunivs eunivs.uctx_local