1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* Created by Arnaud Spiwack, May 2007 *) (* Addition of native Head (nb of heading 0) and Tail (nb of trailing 0) by Benjamin Grégoire, Jun 2007 *) (* This file defines the knowledge that the kernel is able to optimize for evaluation in the bytecode virtual machine *) open Names open Constr (* The retroknowledge defines a bijective correspondance between some [entry]-s (which are, in fact, merely terms) and [field]-s which are roles assigned to these entries. *) (* aliased type for clarity purpose*) type entry = Constr.t (* [field]-s are the roles the kernel can learn of. *) type nat_field = | NatType | NatPlus | NatTimes type n_field = | NPositive | NType | NTwice | NTwicePlusOne | NPhi | NPhiInv | NPlus | NTimes type int31_field = | Int31Bits | Int31Type | Int31Constructor | Int31Twice | Int31TwicePlusOne | Int31Phi | Int31PhiInv | Int31Plus | Int31PlusC | Int31PlusCarryC | Int31Minus | Int31MinusC | Int31MinusCarryC | Int31Times | Int31TimesC | Int31Div21 | Int31Div | Int31Diveucl | Int31AddMulDiv | Int31Compare | Int31Head0 | Int31Tail0 | Int31Lor | Int31Land | Int31Lxor type field = (* | KEq | KNat of nat_field | KN of n_field *) | KInt31 of string*int31_field (* record representing all the flags of the internal state of the kernel *) type flags = {fastcomputation : bool} (* The [proactive] knowledge contains the mapping [field->entry]. *) module Proactive = Map.Make (struct type t = field let compare = Pervasives.compare end) type proactive = entry Proactive.t (* The [reactive] knowledge contains the mapping [entry->field]. Fields are later to be interpreted as a [reactive_info]. *) module EntryOrd = struct type t = entry let compare = Constr.compare end module Reactive = Map.Make (EntryOrd) type reactive_info = {(*information required by the compiler of the VM *) vm_compiling : (*fastcomputation flag -> continuation -> result *) (bool -> Cbytecodes.comp_env -> constr array -> int->Cbytecodes.bytecodes->Cbytecodes.bytecodes) option; vm_constant_static : (*fastcomputation flag -> constructor -> args -> result*) (bool->constr array->Cbytecodes.structured_constant) option; vm_constant_dynamic : (*fastcomputation flag -> constructor -> reloc -> args -> sz -> cont -> result *) (bool->Cbytecodes.comp_env->Cbytecodes.block array->int-> Cbytecodes.bytecodes->Cbytecodes.bytecodes) option; (* fastcomputation flag -> cont -> result *) vm_before_match : (bool -> Cbytecodes.bytecodes -> Cbytecodes.bytecodes) option; (* tag (= compiled int for instance) -> result *) vm_decompile_const : (int -> constr) option; native_compiling : (bool -> Nativeinstr.prefix -> Nativeinstr.lambda array -> Nativeinstr.lambda) option; native_constant_static : (bool -> constr array -> Nativeinstr.lambda) option; native_constant_dynamic : (bool -> Nativeinstr.prefix -> constructor -> Nativeinstr.lambda array -> Nativeinstr.lambda) option; native_before_match : (bool -> Nativeinstr.prefix -> constructor -> Nativeinstr.lambda -> Nativeinstr.lambda) option } and reactive = field Reactive.t and retroknowledge = {flags : flags; proactive : proactive; reactive : reactive} (* This type represent an atomic action of the retroknowledge. It is stored in the compiled libraries *) (* As per now, there is only the possibility of registering things the possibility of unregistering or changing the flag is under study *) type action = | RKRegister of field*entry (*initialisation*) let initial_flags = {fastcomputation = true;} let initial_proactive = (Proactive.empty:proactive) let initial_reactive = (Reactive.empty:reactive) let initial_retroknowledge = {flags = initial_flags; proactive = initial_proactive; reactive = initial_reactive } let empty_reactive_info = { vm_compiling = None ; vm_constant_static = None; vm_constant_dynamic = None; vm_before_match = None; vm_decompile_const = None; native_compiling = None; native_constant_static = None; native_constant_dynamic = None; native_before_match = None; } (* adds a binding [entry<->field]. *) let add_field knowledge field entry = {knowledge with proactive = Proactive.add field entry knowledge.proactive; reactive = Reactive.add entry field knowledge.reactive} (* acces functions for proactive retroknowledge *) let mem knowledge field = Proactive.mem field knowledge.proactive let find knowledge field = Proactive.find field knowledge.proactive let (dispatch,dispatch_hook) = Hook.make () let dispatch_reactive entry retroknowledge = Hook.get dispatch retroknowledge entry (Reactive.find entry retroknowledge.reactive) (*access functions for reactive retroknowledge*) (* used for compiling of functions (add, mult, etc..) *) let get_vm_compiling_info knowledge key = match (dispatch_reactive key knowledge).vm_compiling with | None -> raise Not_found | Some f -> f knowledge.flags.fastcomputation (* used for compilation of fully applied constructors *) let get_vm_constant_static_info knowledge key = match (dispatch_reactive key knowledge).vm_constant_static with | None -> raise Not_found | Some f -> f knowledge.flags.fastcomputation (* used for compilation of partially applied constructors *) let get_vm_constant_dynamic_info knowledge key = match (dispatch_reactive key knowledge).vm_constant_dynamic with | None -> raise Not_found | Some f -> f knowledge.flags.fastcomputation let get_vm_before_match_info knowledge key = match (dispatch_reactive key knowledge).vm_before_match with | None -> raise Not_found | Some f -> f knowledge.flags.fastcomputation let get_vm_decompile_constant_info knowledge key = match (dispatch_reactive key knowledge).vm_decompile_const with | None -> raise Not_found | Some f -> f let get_native_compiling_info knowledge key = match (dispatch_reactive key knowledge).native_compiling with | None -> raise Not_found | Some f -> f knowledge.flags.fastcomputation (* used for compilation of fully applied constructors *) let get_native_constant_static_info knowledge key = match (dispatch_reactive key knowledge).native_constant_static with | None -> raise Not_found | Some f -> f knowledge.flags.fastcomputation (* used for compilation of partially applied constructors *) let get_native_constant_dynamic_info knowledge key = match (dispatch_reactive key knowledge).native_constant_dynamic with | None -> raise Not_found | Some f -> f knowledge.flags.fastcomputation let get_native_before_match_info knowledge key = match (dispatch_reactive key knowledge).native_before_match with | None -> raise Not_found | Some f -> f knowledge.flags.fastcomputation