1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* File initially created by Gérard Huet and Thierry Coquand in 1984 *) (* Extension to inductive constructions by Christine Paulin for Coq V5.6 *) (* Extension to mutual inductive constructions by Christine Paulin for Coq V5.10.2 *) (* Extension to co-inductive constructions by Eduardo Gimenez *) (* Optimization of substitution functions by Chet Murthy *) (* Optimization of lifting functions by Bruno Barras, Mar 1997 *) (* Hash-consing by Bruno Barras in Feb 1998 *) (* Restructuration of Coq of the type-checking kernel by Jean-Christophe Filliâtre, 1999 *) (* Abstraction of the syntax of terms and iterators by Hugo Herbelin, 2000 *) (* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *) (* This file defines the internal syntax of the Calculus of Inductive Constructions (CIC) terms together with constructors, destructors, iterators and basic functions *) open Util open Names open Univ type existential_key = Evar.t type metavariable = int (* This defines the strategy to use for verifiying a Cast *) (* Warning: REVERTcast is not exported to vo-files; as of r14492, it has to *) (* come after the vo-exported cast_kind so as to be compatible with coqchk *) type cast_kind = VMcast | NATIVEcast | DEFAULTcast | REVERTcast (* This defines Cases annotations *) type case_style = LetStyle | IfStyle | LetPatternStyle | MatchStyle | RegularStyle type case_printing = { ind_tags : bool list; (** tell whether letin or lambda in the arity of the inductive type *) cstr_tags : bool list array; (* whether each pattern var of each constructor is a let-in (true) or not (false) *) style : case_style } (* INVARIANT: * - Array.length ci_cstr_ndecls = Array.length ci_cstr_nargs * - forall (i : 0 .. pred (Array.length ci_cstr_ndecls)), * ci_cstr_ndecls.(i) >= ci_cstr_nargs.(i) *) type case_info = { ci_ind : inductive; (* inductive type to which belongs the value that is being matched *) ci_npar : int; (* number of parameters of the above inductive type *) ci_cstr_ndecls : int array; (* For each constructor, the corresponding integer determines the number of values that can be bound in a match-construct. NOTE: parameters of the inductive type are therefore excluded from the count *) ci_cstr_nargs : int array; (* for each constructor, the corresponding integers determines the number of values that can be applied to the constructor, in addition to the parameters of the related inductive type NOTE: "lets" are therefore excluded from the count NOTE: parameters of the inductive type are also excluded from the count *) ci_pp_info : case_printing (* not interpreted by the kernel *) } (********************************************************************) (* Constructions as implemented *) (********************************************************************) (* [constr array] is an instance matching definitional [named_context] in the same order (i.e. last argument first) *) type 'constr pexistential = existential_key * 'constr array type ('constr, 'types) prec_declaration = Name.t array * 'types array * 'constr array type ('constr, 'types) pfixpoint = (int array * int) * ('constr, 'types) prec_declaration type ('constr, 'types) pcofixpoint = int * ('constr, 'types) prec_declaration type 'a puniverses = 'a Univ.puniverses type pconstant = Constant.t puniverses type pinductive = inductive puniverses type pconstructor = constructor puniverses (* [Var] is used for named variables and [Rel] for variables as de Bruijn indices. *) type ('constr, 'types, 'sort, 'univs) kind_of_term = | Rel of int | Var of Id.t | Meta of metavariable | Evar of 'constr pexistential | Sort of 'sort | Cast of 'constr * cast_kind * 'types | Prod of Name.t * 'types * 'types | Lambda of Name.t * 'types * 'constr | LetIn of Name.t * 'constr * 'types * 'constr | App of 'constr * 'constr array | Const of (Constant.t * 'univs) | Ind of (inductive * 'univs) | Construct of (constructor * 'univs) | Case of case_info * 'constr * 'constr * 'constr array | Fix of ('constr, 'types) pfixpoint | CoFix of ('constr, 'types) pcofixpoint | Proj of projection * 'constr (* constr is the fixpoint of the previous type. Requires option -rectypes of the Caml compiler to be set *) type t = (t, t, Sorts.t, Instance.t) kind_of_term type constr = t type existential = existential_key * constr array type rec_declaration = Name.t array * constr array * constr array type fixpoint = (int array * int) * rec_declaration (* The array of [int]'s tells for each component of the array of mutual fixpoints the number of lambdas to skip before finding the recursive argument (e.g., value is 2 in "fix f (x:A) (y:=t) (z:B) (v:=u) (w:I) {struct w}"), telling to skip x and z and that w is the recursive argument); The second component [int] tells which component of the block is returned *) type cofixpoint = int * rec_declaration (* The component [int] tells which component of the block of cofixpoint is returned *) type types = constr (*********************) (* Term constructors *) (*********************) (* Constructs a de Bruijn index with number n *) let rels = [|Rel 1;Rel 2;Rel 3;Rel 4;Rel 5;Rel 6;Rel 7; Rel 8; Rel 9;Rel 10;Rel 11;Rel 12;Rel 13;Rel 14;Rel 15; Rel 16|] let mkRel n = if 0<n && n<=16 then rels.(n-1) else Rel n (* Construct a type *) let mkProp = Sort Sorts.prop let mkSet = Sort Sorts.set let mkType u = Sort (Sorts.Type u) let mkSort = function | Sorts.Prop Sorts.Null -> mkProp (* Easy sharing *) | Sorts.Prop Sorts.Pos -> mkSet | s -> Sort s (* Constructs the term t1::t2, i.e. the term t1 casted with the type t2 *) (* (that means t2 is declared as the type of t1) *) let mkCast (t1,k2,t2) = match t1 with | Cast (c,k1, _) when (k1 == VMcast || k1 == NATIVEcast) && k1 == k2 -> Cast (c,k1,t2) | _ -> Cast (t1,k2,t2) (* Constructs the product (x:t1)t2 *) let mkProd (x,t1,t2) = Prod (x,t1,t2) (* Constructs the abstraction [x:t1]t2 *) let mkLambda (x,t1,t2) = Lambda (x,t1,t2) (* Constructs [x=c_1:t]c_2 *) let mkLetIn (x,c1,t,c2) = LetIn (x,c1,t,c2) (* If lt = [t1; ...; tn], constructs the application (t1 ... tn) *) (* We ensure applicative terms have at least one argument and the function is not itself an applicative term *) let mkApp (f, a) = if Int.equal (Array.length a) 0 then f else match f with | App (g, cl) -> App (g, Array.append cl a) | _ -> App (f, a) let map_puniverses f (x,u) = (f x, u) let in_punivs a = (a, Univ.Instance.empty) (* Constructs a constant *) let mkConst c = Const (in_punivs c) let mkConstU c = Const c (* Constructs an applied projection *) let mkProj (p,c) = Proj (p,c) (* Constructs an existential variable *) let mkEvar e = Evar e (* Constructs the ith (co)inductive type of the block named kn *) let mkInd m = Ind (in_punivs m) let mkIndU m = Ind m (* Constructs the jth constructor of the ith (co)inductive type of the block named kn. *) let mkConstruct c = Construct (in_punivs c) let mkConstructU c = Construct c let mkConstructUi ((ind,u),i) = Construct ((ind,i),u) (* Constructs the term <p>Case c of c1 | c2 .. | cn end *) let mkCase (ci, p, c, ac) = Case (ci, p, c, ac) (* If recindxs = [|i1,...in|] funnames = [|f1,...fn|] typarray = [|t1,...tn|] bodies = [|b1,...bn|] then mkFix ((recindxs,i),(funnames,typarray,bodies)) constructs the ith function of the block Fixpoint f1 [ctx1] : t1 := b1 with f2 [ctx2] : t2 := b2 ... with fn [ctxn] : tn := bn. where the length of the jth context is ij. *) let mkFix fix = Fix fix (* If funnames = [|f1,...fn|] typarray = [|t1,...tn|] bodies = [|b1,...bn|] then mkCoFix (i,(funnames,typsarray,bodies)) constructs the ith function of the block CoFixpoint f1 : t1 := b1 with f2 : t2 := b2 ... with fn : tn := bn. *) let mkCoFix cofix= CoFix cofix (* Constructs an existential variable named "?n" *) let mkMeta n = Meta n (* Constructs a Variable named id *) let mkVar id = Var id (************************************************************************) (* kind_of_term = constructions as seen by the user *) (************************************************************************) (* User view of [constr]. For [App], it is ensured there is at least one argument and the function is not itself an applicative term *) let kind c = c (* The other way around. We treat specifically smart constructors *) let of_kind = function | App (f, a) -> mkApp (f, a) | Cast (c, knd, t) -> mkCast (c, knd, t) | k -> k (**********************************************************************) (* Non primitive term destructors *) (**********************************************************************) (* Destructor operations : partial functions Raise [DestKO] if the const has not the expected form *) exception DestKO let isMeta c = match kind c with Meta _ -> true | _ -> false (* Destructs a type *) let isSort c = match kind c with | Sort _ -> true | _ -> false let rec isprop c = match kind c with | Sort (Sorts.Prop _) -> true | Cast (c,_,_) -> isprop c | _ -> false let rec is_Prop c = match kind c with | Sort (Sorts.Prop Sorts.Null) -> true | Cast (c,_,_) -> is_Prop c | _ -> false let rec is_Set c = match kind c with | Sort (Sorts.Prop Sorts.Pos) -> true | Cast (c,_,_) -> is_Set c | _ -> false let rec is_Type c = match kind c with | Sort (Sorts.Type _) -> true | Cast (c,_,_) -> is_Type c | _ -> false let is_small = Sorts.is_small let iskind c = isprop c || is_Type c (* Tests if an evar *) let isEvar c = match kind c with Evar _ -> true | _ -> false let isEvar_or_Meta c = match kind c with | Evar _ | Meta _ -> true | _ -> false let isCast c = match kind c with Cast _ -> true | _ -> false (* Tests if a de Bruijn index *) let isRel c = match kind c with Rel _ -> true | _ -> false let isRelN n c = match kind c with Rel n' -> Int.equal n n' | _ -> false (* Tests if a variable *) let isVar c = match kind c with Var _ -> true | _ -> false let isVarId id c = match kind c with Var id' -> Id.equal id id' | _ -> false (* Tests if an inductive *) let isInd c = match kind c with Ind _ -> true | _ -> false let isProd c = match kind c with | Prod _ -> true | _ -> false let isLambda c = match kind c with | Lambda _ -> true | _ -> false let isLetIn c = match kind c with LetIn _ -> true | _ -> false let isApp c = match kind c with App _ -> true | _ -> false let isConst c = match kind c with Const _ -> true | _ -> false let isConstruct c = match kind c with Construct _ -> true | _ -> false let isCase c = match kind c with Case _ -> true | _ -> false let isProj c = match kind c with Proj _ -> true | _ -> false let isFix c = match kind c with Fix _ -> true | _ -> false let isCoFix c = match kind c with CoFix _ -> true | _ -> false (* Destructs a de Bruijn index *) let destRel c = match kind c with | Rel n -> n | _ -> raise DestKO (* Destructs an existential variable *) let destMeta c = match kind c with | Meta n -> n | _ -> raise DestKO (* Destructs a variable *) let destVar c = match kind c with | Var id -> id | _ -> raise DestKO let destSort c = match kind c with | Sort s -> s | _ -> raise DestKO (* Destructs a casted term *) let destCast c = match kind c with | Cast (t1,k,t2) -> (t1,k,t2) | _ -> raise DestKO (* Destructs the product (x:t1)t2 *) let destProd c = match kind c with | Prod (x,t1,t2) -> (x,t1,t2) | _ -> raise DestKO (* Destructs the abstraction [x:t1]t2 *) let destLambda c = match kind c with | Lambda (x,t1,t2) -> (x,t1,t2) | _ -> raise DestKO (* Destructs the let [x:=b:t1]t2 *) let destLetIn c = match kind c with | LetIn (x,b,t1,t2) -> (x,b,t1,t2) | _ -> raise DestKO (* Destructs an application *) let destApp c = match kind c with | App (f,a) -> (f, a) | _ -> raise DestKO (* Destructs a constant *) let destConst c = match kind c with | Const kn -> kn | _ -> raise DestKO (* Destructs an existential variable *) let destEvar c = match kind c with | Evar (kn, a as r) -> r | _ -> raise DestKO (* Destructs a (co)inductive type named kn *) let destInd c = match kind c with | Ind (kn, a as r) -> r | _ -> raise DestKO (* Destructs a constructor *) let destConstruct c = match kind c with | Construct (kn, a as r) -> r | _ -> raise DestKO (* Destructs a term <p>Case c of lc1 | lc2 .. | lcn end *) let destCase c = match kind c with | Case (ci,p,c,v) -> (ci,p,c,v) | _ -> raise DestKO let destProj c = match kind c with | Proj (p, c) -> (p, c) | _ -> raise DestKO let destFix c = match kind c with | Fix fix -> fix | _ -> raise DestKO let destCoFix c = match kind c with | CoFix cofix -> cofix | _ -> raise DestKO (******************************************************************) (* Flattening and unflattening of embedded applications and casts *) (******************************************************************) let decompose_app c = match kind c with | App (f,cl) -> (f, Array.to_list cl) | _ -> (c,[]) let decompose_appvect c = match kind c with | App (f,cl) -> (f, cl) | _ -> (c,[||]) (****************************************************************************) (* Functions to recur through subterms *) (****************************************************************************) (* [fold f acc c] folds [f] on the immediate subterms of [c] starting from [acc] and proceeding from left to right according to the usual representation of the constructions; it is not recursive *) let fold f acc c = match kind c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> acc | Cast (c,_,t) -> f (f acc c) t | Prod (_,t,c) -> f (f acc t) c | Lambda (_,t,c) -> f (f acc t) c | LetIn (_,b,t,c) -> f (f (f acc b) t) c | App (c,l) -> Array.fold_left f (f acc c) l | Proj (p,c) -> f acc c | Evar (_,l) -> Array.fold_left f acc l | Case (_,p,c,bl) -> Array.fold_left f (f (f acc p) c) bl | Fix (_,(lna,tl,bl)) -> Array.fold_left2 (fun acc t b -> f (f acc t) b) acc tl bl | CoFix (_,(lna,tl,bl)) -> Array.fold_left2 (fun acc t b -> f (f acc t) b) acc tl bl (* [iter f c] iters [f] on the immediate subterms of [c]; it is not recursive and the order with which subterms are processed is not specified *) let iter f c = match kind c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> () | Cast (c,_,t) -> f c; f t | Prod (_,t,c) -> f t; f c | Lambda (_,t,c) -> f t; f c | LetIn (_,b,t,c) -> f b; f t; f c | App (c,l) -> f c; Array.iter f l | Proj (p,c) -> f c | Evar (_,l) -> Array.iter f l | Case (_,p,c,bl) -> f p; f c; Array.iter f bl | Fix (_,(_,tl,bl)) -> Array.iter f tl; Array.iter f bl | CoFix (_,(_,tl,bl)) -> Array.iter f tl; Array.iter f bl (* [iter_with_binders g f n c] iters [f n] on the immediate subterms of [c]; it carries an extra data [n] (typically a lift index) which is processed by [g] (which typically add 1 to [n]) at each binder traversal; it is not recursive and the order with which subterms are processed is not specified *) let iter_with_binders g f n c = match kind c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> () | Cast (c,_,t) -> f n c; f n t | Prod (_,t,c) -> f n t; f (g n) c | Lambda (_,t,c) -> f n t; f (g n) c | LetIn (_,b,t,c) -> f n b; f n t; f (g n) c | App (c,l) -> f n c; CArray.Fun1.iter f n l | Evar (_,l) -> CArray.Fun1.iter f n l | Case (_,p,c,bl) -> f n p; f n c; CArray.Fun1.iter f n bl | Proj (p,c) -> f n c | Fix (_,(_,tl,bl)) -> CArray.Fun1.iter f n tl; CArray.Fun1.iter f (iterate g (Array.length tl) n) bl | CoFix (_,(_,tl,bl)) -> CArray.Fun1.iter f n tl; CArray.Fun1.iter f (iterate g (Array.length tl) n) bl (* [map f c] maps [f] on the immediate subterms of [c]; it is not recursive and the order with which subterms are processed is not specified *) let map f c = match kind c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> c | Cast (b,k,t) -> let b' = f b in let t' = f t in if b'==b && t' == t then c else mkCast (b', k, t') | Prod (na,t,b) -> let b' = f b in let t' = f t in if b'==b && t' == t then c else mkProd (na, t', b') | Lambda (na,t,b) -> let b' = f b in let t' = f t in if b'==b && t' == t then c else mkLambda (na, t', b') | LetIn (na,b,t,k) -> let b' = f b in let t' = f t in let k' = f k in if b'==b && t' == t && k'==k then c else mkLetIn (na, b', t', k') | App (b,l) -> let b' = f b in let l' = Array.smartmap f l in if b'==b && l'==l then c else mkApp (b', l') | Proj (p,t) -> let t' = f t in if t' == t then c else mkProj (p, t') | Evar (e,l) -> let l' = Array.smartmap f l in if l'==l then c else mkEvar (e, l') | Case (ci,p,b,bl) -> let b' = f b in let p' = f p in let bl' = Array.smartmap f bl in if b'==b && p'==p && bl'==bl then c else mkCase (ci, p', b', bl') | Fix (ln,(lna,tl,bl)) -> let tl' = Array.smartmap f tl in let bl' = Array.smartmap f bl in if tl'==tl && bl'==bl then c else mkFix (ln,(lna,tl',bl')) | CoFix(ln,(lna,tl,bl)) -> let tl' = Array.smartmap f tl in let bl' = Array.smartmap f bl in if tl'==tl && bl'==bl then c else mkCoFix (ln,(lna,tl',bl')) (* Like {!map} but with an accumulator. *) let fold_map f accu c = match kind c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> accu, c | Cast (b,k,t) -> let accu, b' = f accu b in let accu, t' = f accu t in if b'==b && t' == t then accu, c else accu, mkCast (b', k, t') | Prod (na,t,b) -> let accu, b' = f accu b in let accu, t' = f accu t in if b'==b && t' == t then accu, c else accu, mkProd (na, t', b') | Lambda (na,t,b) -> let accu, b' = f accu b in let accu, t' = f accu t in if b'==b && t' == t then accu, c else accu, mkLambda (na, t', b') | LetIn (na,b,t,k) -> let accu, b' = f accu b in let accu, t' = f accu t in let accu, k' = f accu k in if b'==b && t' == t && k'==k then accu, c else accu, mkLetIn (na, b', t', k') | App (b,l) -> let accu, b' = f accu b in let accu, l' = Array.smartfoldmap f accu l in if b'==b && l'==l then accu, c else accu, mkApp (b', l') | Proj (p,t) -> let accu, t' = f accu t in if t' == t then accu, c else accu, mkProj (p, t') | Evar (e,l) -> let accu, l' = Array.smartfoldmap f accu l in if l'==l then accu, c else accu, mkEvar (e, l') | Case (ci,p,b,bl) -> let accu, b' = f accu b in let accu, p' = f accu p in let accu, bl' = Array.smartfoldmap f accu bl in if b'==b && p'==p && bl'==bl then accu, c else accu, mkCase (ci, p', b', bl') | Fix (ln,(lna,tl,bl)) -> let accu, tl' = Array.smartfoldmap f accu tl in let accu, bl' = Array.smartfoldmap f accu bl in if tl'==tl && bl'==bl then accu, c else accu, mkFix (ln,(lna,tl',bl')) | CoFix(ln,(lna,tl,bl)) -> let accu, tl' = Array.smartfoldmap f accu tl in let accu, bl' = Array.smartfoldmap f accu bl in if tl'==tl && bl'==bl then accu, c else accu, mkCoFix (ln,(lna,tl',bl')) (* [map_with_binders g f n c] maps [f n] on the immediate subterms of [c]; it carries an extra data [n] (typically a lift index) which is processed by [g] (which typically add 1 to [n]) at each binder traversal; it is not recursive and the order with which subterms are processed is not specified *) let map_with_binders g f l c0 = match kind c0 with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> c0 | Cast (c, k, t) -> let c' = f l c in let t' = f l t in if c' == c && t' == t then c0 else mkCast (c', k, t') | Prod (na, t, c) -> let t' = f l t in let c' = f (g l) c in if t' == t && c' == c then c0 else mkProd (na, t', c') | Lambda (na, t, c) -> let t' = f l t in let c' = f (g l) c in if t' == t && c' == c then c0 else mkLambda (na, t', c') | LetIn (na, b, t, c) -> let b' = f l b in let t' = f l t in let c' = f (g l) c in if b' == b && t' == t && c' == c then c0 else mkLetIn (na, b', t', c') | App (c, al) -> let c' = f l c in let al' = CArray.Fun1.smartmap f l al in if c' == c && al' == al then c0 else mkApp (c', al') | Proj (p, t) -> let t' = f l t in if t' == t then c0 else mkProj (p, t') | Evar (e, al) -> let al' = CArray.Fun1.smartmap f l al in if al' == al then c0 else mkEvar (e, al') | Case (ci, p, c, bl) -> let p' = f l p in let c' = f l c in let bl' = CArray.Fun1.smartmap f l bl in if p' == p && c' == c && bl' == bl then c0 else mkCase (ci, p', c', bl') | Fix (ln, (lna, tl, bl)) -> let tl' = CArray.Fun1.smartmap f l tl in let l' = iterate g (Array.length tl) l in let bl' = CArray.Fun1.smartmap f l' bl in if tl' == tl && bl' == bl then c0 else mkFix (ln,(lna,tl',bl')) | CoFix(ln,(lna,tl,bl)) -> let tl' = CArray.Fun1.smartmap f l tl in let l' = iterate g (Array.length tl) l in let bl' = CArray.Fun1.smartmap f l' bl in mkCoFix (ln,(lna,tl',bl')) (* [compare_head_gen_evar k1 k2 u s e eq leq c1 c2] compare [c1] and [c2] (using [k1] to expose the structure of [c1] and [k2] to expose the structure [c2]) using [eq] to compare the immediate subterms of [c1] of [c2] for conversion if needed, [leq] for cumulativity, [u] to compare universe instances, and [s] to compare sorts; Cast's, application associativity, binders name and Cases annotations are not taken into account. Note that as [kind1] and [kind2] are potentially different, we cannot use, in recursive case, the optimisation that physically equal arrays are equals (hence the calls to {!Array.equal_norefl}). *) let compare_head_gen_leq_with kind1 kind2 eq_universes leq_sorts eq leq t1 t2 = match kind1 t1, kind2 t2 with | Rel n1, Rel n2 -> Int.equal n1 n2 | Meta m1, Meta m2 -> Int.equal m1 m2 | Var id1, Var id2 -> Id.equal id1 id2 | Sort s1, Sort s2 -> leq_sorts s1 s2 | Cast (c1,_,_), _ -> leq c1 t2 | _, Cast (c2,_,_) -> leq t1 c2 | Prod (_,t1,c1), Prod (_,t2,c2) -> eq t1 t2 && leq c1 c2 | Lambda (_,t1,c1), Lambda (_,t2,c2) -> eq t1 t2 && eq c1 c2 | LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) -> eq b1 b2 && eq t1 t2 && leq c1 c2 (* Why do we suddenly make a special case for Cast here? *) | App (Cast(c1, _, _),l1), _ -> leq (mkApp (c1,l1)) t2 | _, App (Cast (c2, _, _),l2) -> leq t1 (mkApp (c2,l2)) | App (c1,l1), App (c2,l2) -> Int.equal (Array.length l1) (Array.length l2) && eq c1 c2 && Array.equal_norefl eq l1 l2 | Proj (p1,c1), Proj (p2,c2) -> Projection.equal p1 p2 && eq c1 c2 | Evar (e1,l1), Evar (e2,l2) -> Evar.equal e1 e2 && Array.equal eq l1 l2 | Const (c1,u1), Const (c2,u2) -> Constant.equal c1 c2 && eq_universes true u1 u2 | Ind (c1,u1), Ind (c2,u2) -> eq_ind c1 c2 && eq_universes false u1 u2 | Construct (c1,u1), Construct (c2,u2) -> eq_constructor c1 c2 && eq_universes false u1 u2 | Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) -> eq p1 p2 && eq c1 c2 && Array.equal eq bl1 bl2 | Fix ((ln1, i1),(_,tl1,bl1)), Fix ((ln2, i2),(_,tl2,bl2)) -> Int.equal i1 i2 && Array.equal Int.equal ln1 ln2 && Array.equal_norefl eq tl1 tl2 && Array.equal_norefl eq bl1 bl2 | CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) -> Int.equal ln1 ln2 && Array.equal_norefl eq tl1 tl2 && Array.equal_norefl eq bl1 bl2 | (Rel _ | Meta _ | Var _ | Sort _ | Prod _ | Lambda _ | LetIn _ | App _ | Proj _ | Evar _ | Const _ | Ind _ | Construct _ | Case _ | Fix _ | CoFix _), _ -> false (* [compare_head_gen_leq u s eq leq c1 c2] compare [c1] and [c2] using [eq] to compare the immediate subterms of [c1] of [c2] for conversion if needed, [leq] for cumulativity, [u] to compare universe instances and [s] to compare sorts; Cast's, application associativity, binders name and Cases annotations are not taken into account *) let compare_head_gen_leq eq_universes leq_sorts eq leq t1 t2 = compare_head_gen_leq_with kind kind eq_universes leq_sorts eq leq t1 t2 (* [compare_head_gen u s f c1 c2] compare [c1] and [c2] using [f] to compare the immediate subterms of [c1] of [c2] if needed, [u] to compare universe instances and [s] to compare sorts; Cast's, application associativity, binders name and Cases annotations are not taken into account. [compare_head_gen_with] is a variant taking kind-of-term functions, to expose subterms of [c1] and [c2], as arguments. *) let compare_head_gen_with kind1 kind2 eq_universes eq_sorts eq t1 t2 = compare_head_gen_leq_with kind1 kind2 eq_universes eq_sorts eq eq t1 t2 let compare_head_gen eq_universes eq_sorts eq t1 t2 = compare_head_gen_leq eq_universes eq_sorts eq eq t1 t2 let compare_head = compare_head_gen (fun _ -> Univ.Instance.equal) Sorts.equal (*******************************) (* alpha conversion functions *) (*******************************) (* alpha conversion : ignore print names and casts *) let rec eq_constr m n = (m == n) || compare_head_gen (fun _ -> Instance.equal) Sorts.equal eq_constr m n let equal m n = eq_constr m n (* to avoid tracing a recursive fun *) let eq_constr_univs univs m n = if m == n then true else let eq_universes _ = UGraph.check_eq_instances univs in let eq_sorts s1 s2 = s1 == s2 || UGraph.check_eq univs (Sorts.univ_of_sort s1) (Sorts.univ_of_sort s2) in let rec eq_constr' m n = m == n || compare_head_gen eq_universes eq_sorts eq_constr' m n in compare_head_gen eq_universes eq_sorts eq_constr' m n let leq_constr_univs univs m n = if m == n then true else let eq_universes _ = UGraph.check_eq_instances univs in let eq_sorts s1 s2 = s1 == s2 || UGraph.check_eq univs (Sorts.univ_of_sort s1) (Sorts.univ_of_sort s2) in let leq_sorts s1 s2 = s1 == s2 || UGraph.check_leq univs (Sorts.univ_of_sort s1) (Sorts.univ_of_sort s2) in let rec eq_constr' m n = m == n || compare_head_gen eq_universes eq_sorts eq_constr' m n in let rec compare_leq m n = compare_head_gen_leq eq_universes leq_sorts eq_constr' leq_constr' m n and leq_constr' m n = m == n || compare_leq m n in compare_leq m n let eq_constr_univs_infer univs m n = if m == n then true, Constraint.empty else let cstrs = ref Constraint.empty in let eq_universes strict = UGraph.check_eq_instances univs in let eq_sorts s1 s2 = if Sorts.equal s1 s2 then true else let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in if UGraph.check_eq univs u1 u2 then true else (cstrs := Univ.enforce_eq u1 u2 !cstrs; true) in let rec eq_constr' m n = m == n || compare_head_gen eq_universes eq_sorts eq_constr' m n in let res = compare_head_gen eq_universes eq_sorts eq_constr' m n in res, !cstrs let leq_constr_univs_infer univs m n = if m == n then true, Constraint.empty else let cstrs = ref Constraint.empty in let eq_universes strict l l' = UGraph.check_eq_instances univs l l' in let eq_sorts s1 s2 = if Sorts.equal s1 s2 then true else let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in if UGraph.check_eq univs u1 u2 then true else (cstrs := Univ.enforce_eq u1 u2 !cstrs; true) in let leq_sorts s1 s2 = if Sorts.equal s1 s2 then true else let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in if UGraph.check_leq univs u1 u2 then true else (cstrs := Univ.enforce_leq u1 u2 !cstrs; true) in let rec eq_constr' m n = m == n || compare_head_gen eq_universes eq_sorts eq_constr' m n in let rec compare_leq m n = compare_head_gen_leq eq_universes leq_sorts eq_constr' leq_constr' m n and leq_constr' m n = m == n || compare_leq m n in let res = compare_leq m n in res, !cstrs let always_true _ _ = true let rec eq_constr_nounivs m n = (m == n) || compare_head_gen (fun _ -> always_true) always_true eq_constr_nounivs m n let constr_ord_int f t1 t2 = let (=?) f g i1 i2 j1 j2= let c = f i1 i2 in if Int.equal c 0 then g j1 j2 else c in let (==?) fg h i1 i2 j1 j2 k1 k2= let c=fg i1 i2 j1 j2 in if Int.equal c 0 then h k1 k2 else c in let fix_cmp (a1, i1) (a2, i2) = ((Array.compare Int.compare) =? Int.compare) a1 a2 i1 i2 in match kind t1, kind t2 with | Cast (c1,_,_), _ -> f c1 t2 | _, Cast (c2,_,_) -> f t1 c2 (* Why this special case? *) | App (Cast(c1,_,_),l1), _ -> f (mkApp (c1,l1)) t2 | _, App (Cast(c2, _,_),l2) -> f t1 (mkApp (c2,l2)) | Rel n1, Rel n2 -> Int.compare n1 n2 | Rel _, _ -> -1 | _, Rel _ -> 1 | Var id1, Var id2 -> Id.compare id1 id2 | Var _, _ -> -1 | _, Var _ -> 1 | Meta m1, Meta m2 -> Int.compare m1 m2 | Meta _, _ -> -1 | _, Meta _ -> 1 | Evar (e1,l1), Evar (e2,l2) -> (Evar.compare =? (Array.compare f)) e1 e2 l1 l2 | Evar _, _ -> -1 | _, Evar _ -> 1 | Sort s1, Sort s2 -> Sorts.compare s1 s2 | Sort _, _ -> -1 | _, Sort _ -> 1 | Prod (_,t1,c1), Prod (_,t2,c2) | Lambda (_,t1,c1), Lambda (_,t2,c2) -> (f =? f) t1 t2 c1 c2 | Prod _, _ -> -1 | _, Prod _ -> 1 | Lambda _, _ -> -1 | _, Lambda _ -> 1 | LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) -> ((f =? f) ==? f) b1 b2 t1 t2 c1 c2 | LetIn _, _ -> -1 | _, LetIn _ -> 1 | App (c1,l1), App (c2,l2) -> (f =? (Array.compare f)) c1 c2 l1 l2 | App _, _ -> -1 | _, App _ -> 1 | Const (c1,u1), Const (c2,u2) -> Constant.CanOrd.compare c1 c2 | Const _, _ -> -1 | _, Const _ -> 1 | Ind (ind1, u1), Ind (ind2, u2) -> ind_ord ind1 ind2 | Ind _, _ -> -1 | _, Ind _ -> 1 | Construct (ct1,u1), Construct (ct2,u2) -> constructor_ord ct1 ct2 | Construct _, _ -> -1 | _, Construct _ -> 1 | Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) -> ((f =? f) ==? (Array.compare f)) p1 p2 c1 c2 bl1 bl2 | Case _, _ -> -1 | _, Case _ -> 1 | Fix (ln1,(_,tl1,bl1)), Fix (ln2,(_,tl2,bl2)) -> ((fix_cmp =? (Array.compare f)) ==? (Array.compare f)) ln1 ln2 tl1 tl2 bl1 bl2 | Fix _, _ -> -1 | _, Fix _ -> 1 | CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) -> ((Int.compare =? (Array.compare f)) ==? (Array.compare f)) ln1 ln2 tl1 tl2 bl1 bl2 | CoFix _, _ -> -1 | _, CoFix _ -> 1 | Proj (p1,c1), Proj (p2,c2) -> (Projection.compare =? f) p1 p2 c1 c2 let rec compare m n= constr_ord_int compare m n (*******************) (* hash-consing *) (*******************) (* Hash-consing of [constr] does not use the module [Hashcons] because [Hashcons] is not efficient on deep tree-like data structures. Indeed, [Hashcons] is based the (very efficient) generic hash function [Hashtbl.hash], which computes the hash key through a depth bounded traversal of the data structure to be hashed. As a consequence, for a deep [constr] like the natural number 1000 (S (S (... (S O)))), the same hash is assigned to all the sub [constr]s greater than the maximal depth handled by [Hashtbl.hash]. This entails a huge number of collisions in the hash table and leads to cubic hash-consing in this worst-case. In order to compute a hash key that is independent of the data structure depth while being constant-time, an incremental hashing function must be devised. A standard implementation creates a cache of the hashing function by decorating each node of the hash-consed data structure with its hash key. In that case, the hash function can deduce the hash key of a toplevel data structure by a local computation based on the cache held on its substructures. Unfortunately, this simple implementation introduces a space overhead that is damageable for the hash-consing of small [constr]s (the most common case). One can think of an heterogeneous distribution of caches on smartly chosen nodes, but this is forbidden by the use of generic equality in Coq source code. (Indeed, this forces each [constr] to have a unique canonical representation.) Given that hash-consing proceeds inductively, we can nonetheless computes the hash key incrementally during hash-consing by changing a little the signature of the hash-consing function: it now returns both the hash-consed term and its hash key. This simple solution is implemented in the following code: it does not introduce a space overhead in [constr], that's why the efficiency is unchanged for small [constr]s. Besides, it does handle deep [constr]s without introducing an unreasonable number of collisions in the hash table. Some benchmarks make us think that this implementation of hash-consing is linear in the size of the hash-consed data structure for our daily use of Coq. *) let array_eqeq t1 t2 = t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (t1.(i) == t2.(i) && aux (i + 1)) in aux 0) let hasheq t1 t2 = match t1, t2 with | Rel n1, Rel n2 -> n1 == n2 | Meta m1, Meta m2 -> m1 == m2 | Var id1, Var id2 -> id1 == id2 | Sort s1, Sort s2 -> s1 == s2 | Cast (c1,k1,t1), Cast (c2,k2,t2) -> c1 == c2 && k1 == k2 && t1 == t2 | Prod (n1,t1,c1), Prod (n2,t2,c2) -> n1 == n2 && t1 == t2 && c1 == c2 | Lambda (n1,t1,c1), Lambda (n2,t2,c2) -> n1 == n2 && t1 == t2 && c1 == c2 | LetIn (n1,b1,t1,c1), LetIn (n2,b2,t2,c2) -> n1 == n2 && b1 == b2 && t1 == t2 && c1 == c2 | App (c1,l1), App (c2,l2) -> c1 == c2 && array_eqeq l1 l2 | Proj (p1,c1), Proj(p2,c2) -> p1 == p2 && c1 == c2 | Evar (e1,l1), Evar (e2,l2) -> e1 == e2 && array_eqeq l1 l2 | Const (c1,u1), Const (c2,u2) -> c1 == c2 && u1 == u2 | Ind (ind1,u1), Ind (ind2,u2) -> ind1 == ind2 && u1 == u2 | Construct (cstr1,u1), Construct (cstr2,u2) -> cstr1 == cstr2 && u1 == u2 | Case (ci1,p1,c1,bl1), Case (ci2,p2,c2,bl2) -> ci1 == ci2 && p1 == p2 && c1 == c2 && array_eqeq bl1 bl2 | Fix ((ln1, i1),(lna1,tl1,bl1)), Fix ((ln2, i2),(lna2,tl2,bl2)) -> Int.equal i1 i2 && Array.equal Int.equal ln1 ln2 && array_eqeq lna1 lna2 && array_eqeq tl1 tl2 && array_eqeq bl1 bl2 | CoFix(ln1,(lna1,tl1,bl1)), CoFix(ln2,(lna2,tl2,bl2)) -> Int.equal ln1 ln2 && array_eqeq lna1 lna2 && array_eqeq tl1 tl2 && array_eqeq bl1 bl2 | (Rel _ | Meta _ | Var _ | Sort _ | Cast _ | Prod _ | Lambda _ | LetIn _ | App _ | Proj _ | Evar _ | Const _ | Ind _ | Construct _ | Case _ | Fix _ | CoFix _), _ -> false (** Note that the following Make has the side effect of creating once and for all the table we'll use for hash-consing all constr *) module HashsetTerm = Hashset.Make(struct type t = constr let eq = hasheq end) module HashsetTermArray = Hashset.Make(struct type t = constr array let eq = array_eqeq end) let term_table = HashsetTerm.create 19991 (* The associative table to hashcons terms. *) let term_array_table = HashsetTermArray.create 4999 (* The associative table to hashcons term arrays. *) open Hashset.Combine let hash_cast_kind = function | VMcast -> 0 | NATIVEcast -> 1 | DEFAULTcast -> 2 | REVERTcast -> 3 let sh_instance = Univ.Instance.share (* [hashcons hash_consing_functions constr] computes an hash-consed representation for [constr] using [hash_consing_functions] on leaves. *) let hashcons (sh_sort,sh_ci,sh_construct,sh_ind,sh_con,sh_na,sh_id) = let rec hash_term t = match t with | Var i -> (Var (sh_id i), combinesmall 1 (Id.hash i)) | Sort s -> (Sort (sh_sort s), combinesmall 2 (Sorts.hash s)) | Cast (c, k, t) -> let c, hc = sh_rec c in let t, ht = sh_rec t in (Cast (c, k, t), combinesmall 3 (combine3 hc (hash_cast_kind k) ht)) | Prod (na,t,c) -> let t, ht = sh_rec t and c, hc = sh_rec c in (Prod (sh_na na, t, c), combinesmall 4 (combine3 (Name.hash na) ht hc)) | Lambda (na,t,c) -> let t, ht = sh_rec t and c, hc = sh_rec c in (Lambda (sh_na na, t, c), combinesmall 5 (combine3 (Name.hash na) ht hc)) | LetIn (na,b,t,c) -> let b, hb = sh_rec b in let t, ht = sh_rec t in let c, hc = sh_rec c in (LetIn (sh_na na, b, t, c), combinesmall 6 (combine4 (Name.hash na) hb ht hc)) | App (c,l) -> let c, hc = sh_rec c in let l, hl = hash_term_array l in (App (c,l), combinesmall 7 (combine hl hc)) | Evar (e,l) -> let l, hl = hash_term_array l in (Evar (e,l), combinesmall 8 (combine (Evar.hash e) hl)) | Proj (p,c) -> let c, hc = sh_rec c in let p' = Projection.hcons p in (Proj (p', c), combinesmall 17 (combine (Projection.SyntacticOrd.hash p') hc)) | Const (c,u) -> let c' = sh_con c in let u', hu = sh_instance u in (Const (c', u'), combinesmall 9 (combine (Constant.SyntacticOrd.hash c) hu)) | Ind (ind,u) -> let u', hu = sh_instance u in (Ind (sh_ind ind, u'), combinesmall 10 (combine (ind_syntactic_hash ind) hu)) | Construct (c,u) -> let u', hu = sh_instance u in (Construct (sh_construct c, u'), combinesmall 11 (combine (constructor_syntactic_hash c) hu)) | Case (ci,p,c,bl) -> let p, hp = sh_rec p and c, hc = sh_rec c in let bl,hbl = hash_term_array bl in let hbl = combine (combine hc hp) hbl in (Case (sh_ci ci, p, c, bl), combinesmall 12 hbl) | Fix (ln,(lna,tl,bl)) -> let bl,hbl = hash_term_array bl in let tl,htl = hash_term_array tl in let () = Array.iteri (fun i x -> Array.unsafe_set lna i (sh_na x)) lna in let fold accu na = combine (Name.hash na) accu in let hna = Array.fold_left fold 0 lna in let h = combine3 hna hbl htl in (Fix (ln,(lna,tl,bl)), combinesmall 13 h) | CoFix(ln,(lna,tl,bl)) -> let bl,hbl = hash_term_array bl in let tl,htl = hash_term_array tl in let () = Array.iteri (fun i x -> Array.unsafe_set lna i (sh_na x)) lna in let fold accu na = combine (Name.hash na) accu in let hna = Array.fold_left fold 0 lna in let h = combine3 hna hbl htl in (CoFix (ln,(lna,tl,bl)), combinesmall 14 h) | Meta n -> (t, combinesmall 15 n) | Rel n -> (t, combinesmall 16 n) and sh_rec t = let (y, h) = hash_term t in (* [h] must be positive. *) let h = h land 0x3FFFFFFF in (HashsetTerm.repr h y term_table, h) (* Note : During hash-cons of arrays, we modify them *in place* *) and hash_term_array t = let accu = ref 0 in for i = 0 to Array.length t - 1 do let x, h = sh_rec (Array.unsafe_get t i) in accu := combine !accu h; Array.unsafe_set t i x done; (* [h] must be positive. *) let h = !accu land 0x3FFFFFFF in (HashsetTermArray.repr h t term_array_table, h) in (* Make sure our statically allocated Rels (1 to 16) are considered as canonical, and hence hash-consed to themselves *) ignore (hash_term_array rels); fun t -> fst (sh_rec t) (* Exported hashing fonction on constr, used mainly in plugins. Appears to have slight differences from [snd (hash_term t)] above ? *) let rec hash t = match kind t with | Var i -> combinesmall 1 (Id.hash i) | Sort s -> combinesmall 2 (Sorts.hash s) | Cast (c, k, t) -> let hc = hash c in let ht = hash t in combinesmall 3 (combine3 hc (hash_cast_kind k) ht) | Prod (_, t, c) -> combinesmall 4 (combine (hash t) (hash c)) | Lambda (_, t, c) -> combinesmall 5 (combine (hash t) (hash c)) | LetIn (_, b, t, c) -> combinesmall 6 (combine3 (hash b) (hash t) (hash c)) | App (Cast(c, _, _),l) -> hash (mkApp (c,l)) | App (c,l) -> combinesmall 7 (combine (hash_term_array l) (hash c)) | Proj (p,c) -> combinesmall 17 (combine (Projection.hash p) (hash c)) | Evar (e,l) -> combinesmall 8 (combine (Evar.hash e) (hash_term_array l)) | Const (c,u) -> combinesmall 9 (combine (Constant.hash c) (Instance.hash u)) | Ind (ind,u) -> combinesmall 10 (combine (ind_hash ind) (Instance.hash u)) | Construct (c,u) -> combinesmall 11 (combine (constructor_hash c) (Instance.hash u)) | Case (_ , p, c, bl) -> combinesmall 12 (combine3 (hash c) (hash p) (hash_term_array bl)) | Fix (ln ,(_, tl, bl)) -> combinesmall 13 (combine (hash_term_array bl) (hash_term_array tl)) | CoFix(ln, (_, tl, bl)) -> combinesmall 14 (combine (hash_term_array bl) (hash_term_array tl)) | Meta n -> combinesmall 15 n | Rel n -> combinesmall 16 n and hash_term_array t = Array.fold_left (fun acc t -> combine (hash t) acc) 0 t module CaseinfoHash = struct type t = case_info type u = inductive -> inductive let hashcons hind ci = { ci with ci_ind = hind ci.ci_ind } let pp_info_equal info1 info2 = List.equal (==) info1.ind_tags info2.ind_tags && Array.equal (List.equal (==)) info1.cstr_tags info2.cstr_tags && info1.style == info2.style let eq ci ci' = ci.ci_ind == ci'.ci_ind && Int.equal ci.ci_npar ci'.ci_npar && Array.equal Int.equal ci.ci_cstr_ndecls ci'.ci_cstr_ndecls && (* we use [Array.equal] on purpose *) Array.equal Int.equal ci.ci_cstr_nargs ci'.ci_cstr_nargs && (* we use [Array.equal] on purpose *) pp_info_equal ci.ci_pp_info ci'.ci_pp_info (* we use (=) on purpose *) open Hashset.Combine let hash_bool b = if b then 0 else 1 let hash_bool_list = List.fold_left (fun n b -> combine n (hash_bool b)) let hash_pp_info info = let h1 = match info.style with | LetStyle -> 0 | IfStyle -> 1 | LetPatternStyle -> 2 | MatchStyle -> 3 | RegularStyle -> 4 in let h2 = hash_bool_list 0 info.ind_tags in let h3 = Array.fold_left hash_bool_list 0 info.cstr_tags in combine3 h1 h2 h3 let hash ci = let h1 = ind_hash ci.ci_ind in let h2 = Int.hash ci.ci_npar in let h3 = Array.fold_left combine 0 ci.ci_cstr_ndecls in let h4 = Array.fold_left combine 0 ci.ci_cstr_nargs in let h5 = hash_pp_info ci.ci_pp_info in combine5 h1 h2 h3 h4 h5 end module Hcaseinfo = Hashcons.Make(CaseinfoHash) let case_info_hash = CaseinfoHash.hash let hcons_caseinfo = Hashcons.simple_hcons Hcaseinfo.generate Hcaseinfo.hcons hcons_ind let hcons = hashcons (Sorts.hcons, hcons_caseinfo, hcons_construct, hcons_ind, hcons_con, Name.hcons, Id.hcons) (* let hcons_types = hcons_constr *) (*******) (* Type of abstract machine values *) (** FIXME: nothing to do there *) type values