1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* *) (* Micromega: A reflexive tactic using the Positivstellensatz *) (* *) (* Frédéric Besson (Irisa/Inria) 2006-20011 *) (* *) (************************************************************************) open Num module Utils = Mutils open Utils type var = int let (<+>) = add_num let (<->) = minus_num let (<*>) = mult_num module Monomial : sig type t val const : t val is_const : t -> bool val var : var -> t val is_var : t -> bool val find : var -> t -> int val mult : var -> t -> t val prod : t -> t -> t val exp : t -> int -> t val div : t -> t -> t * int val compare : t -> t -> int val pp : out_channel -> t -> unit val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a val sqrt : t -> t option end = struct (* A monomial is represented by a multiset of variables *) module Map = Map.Make(Int) open Map type t = int Map.t let pp o m = Map.iter (fun k v -> if v = 1 then Printf.fprintf o "x%i." k else Printf.fprintf o "x%i^%i." k v) m (* The monomial that corresponds to a constant *) let const = Map.empty let sum_degree m = Map.fold (fun _ n s -> s + n) m 0 (* Total ordering of monomials *) let compare: t -> t -> int = fun m1 m2 -> let s1 = sum_degree m1 and s2 = sum_degree m2 in if Int.equal s1 s2 then Map.compare Int.compare m1 m2 else Int.compare s1 s2 let is_const m = (m = Map.empty) (* The monomial 'x' *) let var x = Map.add x 1 Map.empty let is_var m = try not (Map.fold (fun _ i fk -> if fk = true (* first key *) then if i = 1 then false else raise Not_found else raise Not_found) m true) with Not_found -> false let sqrt m = if is_const m then None else try Some (Map.fold (fun v i acc -> let i' = i / 2 in if i mod 2 = 0 then add v i' m else raise Not_found) m const) with Not_found -> None (* Get the degre of a variable in a monomial *) let find x m = try find x m with Not_found -> 0 (* Multiply a monomial by a variable *) let mult x m = add x ( (find x m) + 1) m (* Product of monomials *) let prod m1 m2 = Map.fold (fun k d m -> add k ((find k m) + d) m) m1 m2 let exp m n = let rec exp acc n = if n = 0 then acc else exp (prod acc m) (n - 1) in exp const n (* [div m1 m2 = mr,n] such that mr * (m2)^n = m1 *) let div m1 m2 = let n = fold (fun x i n -> let i' = find x m1 in let nx = i' / i in min n nx) m2 max_int in let mr = fold (fun x i' m -> let i = find x m2 in let ir = i' - i * n in if ir = 0 then m else add x ir m) m1 empty in (mr,n) let fold = fold end module Poly : (* A polynomial is a map of monomials *) (* This is probably a naive implementation (expected to be fast enough - Coq is probably the bottleneck) *The new ring contribution is using a sparse Horner representation. *) sig type t val get : Monomial.t -> t -> num val variable : var -> t val add : Monomial.t -> num -> t -> t val constant : num -> t val mult : Monomial.t -> num -> t -> t val product : t -> t -> t val addition : t -> t -> t val uminus : t -> t val fold : (Monomial.t -> num -> 'a -> 'a) -> t -> 'a -> 'a val pp : out_channel -> t -> unit val compare : t -> t -> int val is_null : t -> bool val is_linear : t -> bool end = struct (*normalisation bug : 0*x ... *) module P = Map.Make(Monomial) open P type t = num P.t let pp o p = P.iter (fun k v -> if Monomial.compare Monomial.const k = 0 then Printf.fprintf o "%s " (string_of_num v) else Printf.fprintf o "%s*%a " (string_of_num v) Monomial.pp k) p (* Get the coefficient of monomial mn *) let get : Monomial.t -> t -> num = fun mn p -> try find mn p with Not_found -> (Int 0) (* The polynomial 1.x *) let variable : var -> t = fun x -> add (Monomial.var x) (Int 1) empty (*The constant polynomial *) let constant : num -> t = fun c -> add (Monomial.const) c empty (* The addition of a monomial *) let add : Monomial.t -> num -> t -> t = fun mn v p -> if sign_num v = 0 then p else let vl = (get mn p) <+> v in if sign_num vl = 0 then remove mn p else add mn vl p (** Design choice: empty is not a polynomial I do not remember why .... **) (* The product by a monomial *) let mult : Monomial.t -> num -> t -> t = fun mn v p -> if sign_num v = 0 then constant (Int 0) else fold (fun mn' v' res -> P.add (Monomial.prod mn mn') (v<*>v') res) p empty let addition : t -> t -> t = fun p1 p2 -> fold (fun mn v p -> add mn v p) p1 p2 let product : t -> t -> t = fun p1 p2 -> fold (fun mn v res -> addition (mult mn v p2) res ) p1 empty let uminus : t -> t = fun p -> map (fun v -> minus_num v) p let fold = P.fold let is_null p = fold (fun mn vl b -> b && sign_num vl = 0) p true let compare = compare compare_num let is_linear p = P.fold (fun m _ acc -> acc && (Monomial.is_const m || Monomial.is_var m)) p true (* let is_linear p = let res = is_linear p in Printf.printf "is_linear %a = %b\n" pp p res ; res *) end module Vect = struct (** [t] is the type of vectors. A vector [(x1,v1) ; ... ; (xn,vn)] is such that: - variables indexes are ordered (x1 <c ... < xn - values are all non-zero *) type var = int type t = (var * num) list (** [equal v1 v2 = true] if the vectors are syntactically equal. *) let rec equal v1 v2 = match v1 , v2 with | [] , [] -> true | [] , _ -> false | _::_ , [] -> false | (i1,n1)::v1 , (i2,n2)::v2 -> (Int.equal i1 i2) && n1 =/ n2 && equal v1 v2 let hash v = let rec hash i = function | [] -> i | (vr,vl)::l -> hash (i + (Hashtbl.hash (vr, float_of_num vl))) l in Hashtbl.hash (hash 0 v ) let null = [] let pp_vect o vect = List.iter (fun (v,n) -> Printf.printf "%sx%i + " (string_of_num n) v) vect let from_list (l: num list) = let rec xfrom_list i l = match l with | [] -> [] | e::l -> if e <>/ Int 0 then (i,e)::(xfrom_list (i+1) l) else xfrom_list (i+1) l in xfrom_list 0 l let zero_num = Int 0 let unit_num = Int 1 let to_list m = let rec xto_list i l = match l with | [] -> [] | (x,v)::l' -> if i = x then v::(xto_list (i+1) l') else zero_num ::(xto_list (i+1) l) in xto_list 0 m let cons i v rst = if v =/ Int 0 then rst else (i,v)::rst let rec update i f t = match t with | [] -> cons i (f zero_num) [] | (k,v)::l -> match Int.compare i k with | 0 -> cons k (f v) l | -1 -> cons i (f zero_num) t | 1 -> (k,v) ::(update i f l) | _ -> failwith "compare_num" let rec set i n t = match t with | [] -> cons i n [] | (k,v)::l -> match Int.compare i k with | 0 -> cons k n l | -1 -> cons i n t | 1 -> (k,v) :: (set i n l) | _ -> failwith "compare_num" let gcd m = let res = List.fold_left (fun x (i,e) -> Big_int.gcd_big_int x (Utils.numerator e)) Big_int.zero_big_int m in if Big_int.compare_big_int res Big_int.zero_big_int = 0 then Big_int.unit_big_int else res let mul z t = match z with | Int 0 -> [] | Int 1 -> t | _ -> List.map (fun (i,n) -> (i, mult_num z n)) t let rec add v1 v2 = match v1 , v2 with | (x1,n1)::v1' , (x2,n2)::v2' -> if x1 = x2 then let n' = n1 +/ n2 in if n' =/ Int 0 then add v1' v2' else let res = add v1' v2' in (x1,n') ::res else if x1 < x2 then let res = add v1' v2 in (x1, n1)::res else let res = add v1 v2' in (x2, n2)::res | [] , [] -> [] | [] , _ -> v2 | _ , [] -> v1 let compare : t -> t -> int = Utils.Cmp.compare_list (fun x y -> Utils.Cmp.compare_lexical [ (fun () -> Int.compare (fst x) (fst y)); (fun () -> compare_num (snd x) (snd y))]) (** [tail v vect] returns - [None] if [v] is not a variable of the vector [vect] - [Some(vl,rst)] where [vl] is the value of [v] in vector [vect] and [rst] is the remaining of the vector We exploit that vectors are ordered lists *) let rec tail (v:var) (vect:t) = match vect with | [] -> None | (v',vl)::vect' -> match Int.compare v' v with | 0 -> Some (vl,vect) (* Ok, found *) | -1 -> tail v vect' (* Might be in the tail *) | _ -> None (* Hopeless *) let get v vect = match tail v vect with | None -> None | Some(vl,_) -> Some vl let rec fresh v = match v with | [] -> 1 | [v,_] -> v + 1 | _::v -> fresh v end type vector = Vect.t type cstr_compat = {coeffs : vector ; op : op ; cst : num} and op = |Eq | Ge let string_of_op = function Eq -> "=" | Ge -> ">=" let output_cstr o {coeffs = coeffs ; op = op ; cst = cst} = Printf.fprintf o "%a %s %s" Vect.pp_vect coeffs (string_of_op op) (string_of_num cst) let opMult o1 o2 = match o1, o2 with | Eq , Eq -> Eq | Eq , Ge | Ge , Eq -> Ge | Ge , Ge -> Ge let opAdd o1 o2 = match o1 , o2 with | Eq , _ | _ , Eq -> Eq | Ge , Ge -> Ge open Big_int type index = int type prf_rule = | Hyp of int | Def of int | Cst of big_int | Zero | Square of (Vect.t * num) | MulC of (Vect.t * num) * prf_rule | Gcd of big_int * prf_rule | MulPrf of prf_rule * prf_rule | AddPrf of prf_rule * prf_rule | CutPrf of prf_rule type proof = | Done | Step of int * prf_rule * proof | Enum of int * prf_rule * Vect.t * prf_rule * proof list let rec output_prf_rule o = function | Hyp i -> Printf.fprintf o "Hyp %i" i | Def i -> Printf.fprintf o "Def %i" i | Cst c -> Printf.fprintf o "Cst %s" (string_of_big_int c) | Zero -> Printf.fprintf o "Zero" | Square _ -> Printf.fprintf o "( )^2" | MulC(p,pr) -> Printf.fprintf o "P * %a" output_prf_rule pr | MulPrf(p1,p2) -> Printf.fprintf o "%a * %a" output_prf_rule p1 output_prf_rule p2 | AddPrf(p1,p2) -> Printf.fprintf o "%a + %a" output_prf_rule p1 output_prf_rule p2 | CutPrf(p) -> Printf.fprintf o "[%a]" output_prf_rule p | Gcd(c,p) -> Printf.fprintf o "(%a)/%s" output_prf_rule p (string_of_big_int c) let rec output_proof o = function | Done -> Printf.fprintf o "." | Step(i,p,pf) -> Printf.fprintf o "%i:= %a ; %a" i output_prf_rule p output_proof pf | Enum(i,p1,v,p2,pl) -> Printf.fprintf o "%i{%a<=%a<=%a}%a" i output_prf_rule p1 Vect.pp_vect v output_prf_rule p2 (pp_list output_proof) pl let rec pr_rule_max_id = function | Hyp i | Def i -> i | Cst _ | Zero | Square _ -> -1 | MulC(_,p) | CutPrf p | Gcd(_,p) -> pr_rule_max_id p | MulPrf(p1,p2)| AddPrf(p1,p2) -> max (pr_rule_max_id p1) (pr_rule_max_id p2) let rec proof_max_id = function | Done -> -1 | Step(i,pr,prf) -> max i (max (pr_rule_max_id pr) (proof_max_id prf)) | Enum(i,p1,_,p2,l) -> let m = max (pr_rule_max_id p1) (pr_rule_max_id p2) in List.fold_left (fun i prf -> max i (proof_max_id prf)) (max i m) l let rec pr_rule_def_cut id = function | MulC(p,prf) -> let (bds,id',prf') = pr_rule_def_cut id prf in (bds, id', MulC(p,prf')) | MulPrf(p1,p2) -> let (bds1,id,p1) = pr_rule_def_cut id p1 in let (bds2,id,p2) = pr_rule_def_cut id p2 in (bds2@bds1,id,MulPrf(p1,p2)) | AddPrf(p1,p2) -> let (bds1,id,p1) = pr_rule_def_cut id p1 in let (bds2,id,p2) = pr_rule_def_cut id p2 in (bds2@bds1,id,AddPrf(p1,p2)) | CutPrf p -> let (bds,id,p) = pr_rule_def_cut id p in ((id,p)::bds,id+1,Def id) | Gcd(c,p) -> let (bds,id,p) = pr_rule_def_cut id p in ((id,p)::bds,id+1,Def id) | Square _|Cst _|Def _|Hyp _|Zero as x -> ([],id,x) (* Do not define top-level cuts *) let pr_rule_def_cut id = function | CutPrf p -> let (bds,ids,p') = pr_rule_def_cut id p in bds,ids, CutPrf p' | p -> pr_rule_def_cut id p let rec implicit_cut p = match p with | CutPrf p -> implicit_cut p | _ -> p let rec normalise_proof id prf = match prf with | Done -> (id,Done) | Step(i,Gcd(c,p),Done) -> normalise_proof id (Step(i,p,Done)) | Step(i,p,prf) -> let bds,id,p' = pr_rule_def_cut id p in let (id,prf) = normalise_proof id prf in let prf = List.fold_left (fun acc (i,p) -> Step(i, CutPrf p,acc)) (Step(i,p',prf)) bds in (id,prf) | Enum(i,p1,v,p2,pl) -> (* Why do I have top-level cuts ? *) (* let p1 = implicit_cut p1 in let p2 = implicit_cut p2 in let (ids,prfs) = List.split (List.map (normalise_proof id) pl) in (List.fold_left max 0 ids , Enum(i,p1,v,p2,prfs)) *) let bds1,id,p1' = pr_rule_def_cut id (implicit_cut p1) in let bds2,id,p2' = pr_rule_def_cut id (implicit_cut p2) in let (ids,prfs) = List.split (List.map (normalise_proof id) pl) in (List.fold_left max 0 ids , List.fold_left (fun acc (i,p) -> Step(i, CutPrf p,acc)) (Enum(i,p1',v,p2',prfs)) (bds2@bds1)) let normalise_proof id prf = let res = normalise_proof id prf in if debug then Printf.printf "normalise_proof %a -> %a" output_proof prf output_proof (snd res) ; res let add_proof x y = match x, y with | Zero , p | p , Zero -> p | _ -> AddPrf(x,y) let mul_proof c p = match sign_big_int c with | 0 -> Zero (* This is likely to be a bug *) | -1 -> MulC(([],Big_int c),p) (* [p] should represent an equality *) | 1 -> if eq_big_int c unit_big_int then p else MulPrf(Cst c,p) | _ -> assert false let mul_proof_ext (p,c) prf = match p with | [] -> mul_proof (numerator c) prf | _ -> MulC((p,c),prf) (* let rec scale_prf_rule = function | Hyp i -> (unit_big_int, Hyp i) | Def i -> (unit_big_int, Def i) | Cst c -> (unit_big_int, Cst i) | Zero -> (unit_big_int, Zero) | Square p -> (unit_big_int,Square p) | Div(c,pr) -> let (bi,pr') = scale_prf_rule pr in (mult_big_int c bi , pr') | MulC(p,pr) -> let bi,pr' = scale_prf_rule pr in (bi,MulC p,pr') | MulPrf(p1,p2) -> let b1,p1 = scale_prf_rule p1 in let b2,p2 = scale_prf_rule p2 in | AddPrf(p1,p2) -> let b1,p1 = scale_prf_rule p1 in let b2,p2 = scale_prf_rule p2 in let g = gcd_big_int *) module LinPoly = struct type t = Vect.t * num module MonT = struct module MonoMap = Map.Make(Monomial) module IntMap = Map.Make(Int) (** A hash table might be preferable but requires a hash function. *) let (index_of_monomial : int MonoMap.t ref) = ref (MonoMap.empty) let (monomial_of_index : Monomial.t IntMap.t ref) = ref (IntMap.empty) let fresh = ref 0 let clear () = index_of_monomial := MonoMap.empty; monomial_of_index := IntMap.empty ; fresh := 0 let register m = try MonoMap.find m !index_of_monomial with Not_found -> begin let res = !fresh in index_of_monomial := MonoMap.add m res !index_of_monomial ; monomial_of_index := IntMap.add res m !monomial_of_index ; incr fresh ; res end let retrieve i = IntMap.find i !monomial_of_index end let normalise (v,c) = (List.sort (fun x y -> Int.compare (fst x) (fst y)) v , c) let output_mon o (x,v) = Printf.fprintf o "%s.%a +" (string_of_num v) Monomial.pp (MonT.retrieve x) let output_cstr o {coeffs = coeffs ; op = op ; cst = cst} = Printf.fprintf o "%a %s %s" (pp_list output_mon) coeffs (string_of_op op) (string_of_num cst) let linpol_of_pol p = let (v,c) = Poly.fold (fun mon num (vct,cst) -> if Monomial.is_const mon then (vct,num) else let vr = MonT.register mon in ((vr,num)::vct,cst)) p ([], Int 0) in normalise (v,c) let mult v m (vect,c) = if Monomial.is_const m then (Vect.mul v vect, v <*> c) else if sign_num v <> 0 then let hd = if sign_num c <> 0 then [MonT.register m,v <*> c] else [] in let vect = hd @ (List.map (fun (x,n) -> let x = MonT.retrieve x in let x_m = MonT.register (Monomial.prod m x) in (x_m, v <*> n)) vect ) in normalise (vect , Int 0) else ([],Int 0) let mult v m (vect,c) = let (vect',c') = mult v m (vect,c) in if debug then Printf.printf "mult %s %a (%a,%s) -> (%a,%s)\n" (string_of_num v) Monomial.pp m (pp_list output_mon) vect (string_of_num c) (pp_list output_mon) vect' (string_of_num c') ; (vect',c') let make_lin_pol v mon = if Monomial.is_const mon then [] , v else [MonT.register mon, v],Int 0 let xpivot_eq (c,prf) x v (c',prf') = if debug then Printf.printf "xpivot_eq {%a} %a %s {%a}\n" output_cstr c Monomial.pp (MonT.retrieve x) (string_of_num v) output_cstr c' ; let {coeffs = coeffs ; op = op ; cst = cst} = c' in let m = MonT.retrieve x in let apply_pivot (vqn,q,n) (c',prf') = (* Morally, we have (Vect.get (q*x^n) c'.coeffs) = vmn with n >=0 *) let cc' = abs_num v in let cc_num = Int (- (sign_num v)) <*> vqn in let cc_mon = Monomial.prod q (Monomial.exp m (n-1)) in let (c_coeff,c_cst) = mult cc_num cc_mon (c.coeffs, minus_num c.cst) in let c' = {coeffs = Vect.add (Vect.mul cc' c'.coeffs) c_coeff ; op = op ; cst = (minus_num c_cst) <+> (cc' <*> c'.cst)} in let prf' = add_proof (mul_proof_ext (make_lin_pol cc_num cc_mon) prf) (mul_proof (numerator cc') prf') in if debug then Printf.printf "apply_pivot -> {%a}\n" output_cstr c' ; (c',prf') in let cmp (q,n) (q',n') = if n < n' then -1 else if n = n' then Monomial.compare q q' else 1 in let find_pivot (c',prf') = let (v,q,n) = List.fold_left (fun (v,q,n) (x,v') -> let x = MonT.retrieve x in let (q',n') = Monomial.div x m in if cmp (q,n) (q',n') = -1 then (v',q',n') else (v,q,n)) (Int 0, Monomial.const,0) c'.coeffs in if n > 0 then Some (v,q,n) else None in let rec pivot (q,n) (c',prf') = match find_pivot (c',prf') with | None -> (c',prf') | Some(v,q',n') -> if cmp (q',n') (q,n) = -1 then pivot (q',n') (apply_pivot (v,q',n') (c',prf')) else (c',prf') in pivot (Monomial.const,max_int) (c',prf') let pivot_eq x (c,prf) = match Vect.get x c.coeffs with | None -> (fun x -> None) | Some v -> fun cp' -> Some (xpivot_eq (c,prf) x v cp') end