1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* The type of positivstellensatz -- used to communicate with sos *) open Num type vname = string;; type term = | Zero | Const of Num.num | Var of vname | Inv of term | Opp of term | Add of (term * term) | Sub of (term * term) | Mul of (term * term) | Div of (term * term) | Pow of (term * int);; let rec output_term o t = match t with | Zero -> output_string o "0" | Const n -> output_string o (string_of_num n) | Var n -> Printf.fprintf o "v%s" n | Inv t -> Printf.fprintf o "1/(%a)" output_term t | Opp t -> Printf.fprintf o "- (%a)" output_term t | Add(t1,t2) -> Printf.fprintf o "(%a)+(%a)" output_term t1 output_term t2 | Sub(t1,t2) -> Printf.fprintf o "(%a)-(%a)" output_term t1 output_term t2 | Mul(t1,t2) -> Printf.fprintf o "(%a)*(%a)" output_term t1 output_term t2 | Div(t1,t2) -> Printf.fprintf o "(%a)/(%a)" output_term t1 output_term t2 | Pow(t1,i) -> Printf.fprintf o "(%a)^(%i)" output_term t1 i (* ------------------------------------------------------------------------- *) (* Data structure for Positivstellensatz refutations. *) (* ------------------------------------------------------------------------- *) type positivstellensatz = Axiom_eq of int | Axiom_le of int | Axiom_lt of int | Rational_eq of num | Rational_le of num | Rational_lt of num | Square of term | Monoid of int list | Eqmul of term * positivstellensatz | Sum of positivstellensatz * positivstellensatz | Product of positivstellensatz * positivstellensatz;; let rec output_psatz o = function | Axiom_eq i -> Printf.fprintf o "Aeq(%i)" i | Axiom_le i -> Printf.fprintf o "Ale(%i)" i | Axiom_lt i -> Printf.fprintf o "Alt(%i)" i | Rational_eq n -> Printf.fprintf o "eq(%s)" (string_of_num n) | Rational_le n -> Printf.fprintf o "le(%s)" (string_of_num n) | Rational_lt n -> Printf.fprintf o "lt(%s)" (string_of_num n) | Square t -> Printf.fprintf o "(%a)^2" output_term t | Monoid l -> Printf.fprintf o "monoid" | Eqmul (t,ps) -> Printf.fprintf o "%a * %a" output_term t output_psatz ps | Sum (t1,t2) -> Printf.fprintf o "%a + %a" output_psatz t1 output_psatz t2 | Product (t1,t2) -> Printf.fprintf o "%a * %a" output_psatz t1 output_psatz t2