1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

open Ltac_plugin
open Declarations
open CErrors
open Util
open Names
open Term
open Constr
open EConstr
open Vars
open Pp
open Globnames
open Tacticals
open Tactics
open Indfun_common
open Tacmach
open Misctypes
open Termops
open Context.Rel.Declaration

module RelDecl = Context.Rel.Declaration

(* The local debugging mechanism *)
(* let msgnl = Pp.msgnl *)

let observe strm =
  if do_observe ()
  then Feedback.msg_debug strm
  else ()

(*let observennl strm =
  if do_observe ()
  then begin Pp.msg strm;Pp.pp_flush () end
  else ()*)


let do_observe_tac s tac g =
  let goal =
    try Printer.pr_goal g
    with e when CErrors.noncritical e -> assert false
  in
  try
    let v = tac g in
    msgnl (goal ++ fnl () ++ s ++(str " ")++(str "finished")); v
  with reraise ->
    let reraise = CErrors.push reraise in
    let e = ExplainErr.process_vernac_interp_error reraise in
    observe (hov 0 (str "observation "++ s++str " raised exception " ++
             CErrors.iprint e ++ str " on goal" ++ fnl() ++ goal ));
    iraise reraise;;


let observe_tac_strm s tac g =
  if do_observe ()
  then do_observe_tac s tac g
  else tac g

let observe_tac s tac g =
  if do_observe ()
  then do_observe_tac (str s) tac g
  else tac g

(* [nf_zeta] $\zeta$-normalization of a term *)
let nf_zeta =
  Reductionops.clos_norm_flags  (CClosure.RedFlags.mkflags [CClosure.RedFlags.fZETA])
    Environ.empty_env
    Evd.empty

let thin ids gl = Proofview.V82.of_tactic (Tactics.clear ids) gl

(* (\* [id_to_constr id] finds the term associated to [id] in the global environment *\) *)
(* let id_to_constr id = *)
(*   try *)
(*     Constrintern.global_reference id *)
(*   with Not_found -> *)
(*     raise (UserError ("",str "Cannot find " ++ Ppconstr.pr_id id)) *)


let make_eq () =
  try
    EConstr.of_constr (Universes.constr_of_global (Coqlib.build_coq_eq ()))
  with _ -> assert false 
let make_eq_refl () =
  try
    EConstr.of_constr (Universes.constr_of_global (Coqlib.build_coq_eq_refl ()))
  with _ -> assert false

          
(* [generate_type g_to_f f graph i] build the completeness (resp. correctness) lemma type if [g_to_f = true]
   (resp. g_to_f = false) where [graph]  is the graph of [f] and is the [i]th function in the block.

   [generate_type true f i] returns
   \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res,
   graph\ x_1\ldots x_n\ res \rightarrow res = fv \] decomposed as the context and the conclusion

   [generate_type false f i] returns
   \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res,
   res = fv \rightarrow graph\ x_1\ldots x_n\ res\] decomposed as the context and the conclusion
 *)

let generate_type evd g_to_f f graph i =
  (*i we deduce the number of arguments of the function and its returned type from the graph i*)
  let evd',graph =
    Evd.fresh_global  (Global.env ()) !evd  (Globnames.IndRef (fst (destInd !evd graph)))
  in
  let graph = EConstr.of_constr graph in
  evd:=evd';
  let graph_arity = Typing.e_type_of (Global.env ()) evd graph in
  let ctxt,_ = decompose_prod_assum !evd graph_arity in
  let fun_ctxt,res_type =
    match ctxt with
      | [] | [_] -> anomaly (Pp.str "Not a valid context.")
      | decl :: fun_ctxt -> fun_ctxt, RelDecl.get_type decl
  in
  let rec args_from_decl i accu = function
  | [] -> accu
  | LocalDef _ :: l ->
    args_from_decl (succ i) accu l
  | _ :: l ->
    let t = mkRel i in
    args_from_decl (succ i) (t :: accu) l
  in
  (*i We need to name the vars [res] and [fv] i*)
  let filter = fun decl -> match RelDecl.get_name decl with
                           | Name id -> Some id
                           | Anonymous -> None
  in
  let named_ctxt = Id.Set.of_list (List.map_filter filter fun_ctxt) in
  let res_id = Namegen.next_ident_away_in_goal (Id.of_string "_res") named_ctxt in
  let fv_id = Namegen.next_ident_away_in_goal (Id.of_string "fv") (Id.Set.add res_id named_ctxt) in
  (*i we can then type the argument to be applied to the function [f] i*)
  let args_as_rels = Array.of_list (args_from_decl 1 [] fun_ctxt) in
  (*i
    the hypothesis [res = fv] can then be computed
    We will need to lift it by one in order to use it as a conclusion
    i*)
  let make_eq = make_eq ()
  in
  let res_eq_f_of_args =
    mkApp(make_eq ,[|lift 2 res_type;mkRel 1;mkRel 2|])
  in
  (*i
    The hypothesis [graph\ x_1\ldots x_n\ res] can then be computed
    We will need to lift it by one in order to use it as a conclusion
    i*)
  let args_and_res_as_rels = Array.of_list (args_from_decl 3 [] fun_ctxt) in
  let args_and_res_as_rels = Array.append args_and_res_as_rels [|mkRel 1|] in
  let graph_applied = mkApp(graph, args_and_res_as_rels) in
  (*i The [pre_context]  is the defined to be the context corresponding to
    \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res,  \]
    i*)
  let pre_ctxt =
    LocalAssum (Name res_id, lift 1 res_type) :: LocalDef (Name fv_id, mkApp (f,args_as_rels), res_type) :: fun_ctxt
  in
  (*i and we can return the solution depending on which lemma type we are defining i*)
  if g_to_f
  then LocalAssum (Anonymous,graph_applied)::pre_ctxt,(lift 1 res_eq_f_of_args),graph
  else LocalAssum (Anonymous,res_eq_f_of_args)::pre_ctxt,(lift 1 graph_applied),graph


(*
   [find_induction_principle f] searches and returns the [body] and the [type] of [f_rect]

   WARNING: while convertible, [type_of body] and [type] can be non equal
*)
let find_induction_principle evd f =
  let f_as_constant,u =  match EConstr.kind !evd f with
    | Const c' -> c'
    | _ -> user_err Pp.(str "Must be used with a function")
  in
  let infos = find_Function_infos f_as_constant in
  match infos.rect_lemma with
    | None -> raise Not_found
    | Some rect_lemma ->
       let evd',rect_lemma = Evd.fresh_global  (Global.env ()) !evd  (Globnames.ConstRef rect_lemma) in
       let rect_lemma = EConstr.of_constr rect_lemma in
       let evd',typ = Typing.type_of ~refresh:true (Global.env ()) evd' rect_lemma in
       evd:=evd';
       rect_lemma,typ


let rec generate_fresh_id x avoid i =
  if i == 0
  then []
  else
    let id = Namegen.next_ident_away_in_goal x (Id.Set.of_list avoid) in
    id::(generate_fresh_id x (id::avoid) (pred i))


(* [prove_fun_correct functional_induction funs_constr graphs_constr schemes lemmas_types_infos i ]
   is the tactic used to prove correctness lemma.

   [functional_induction] is the tactic defined in [indfun] (dependency problem)
   [funs_constr], [graphs_constr] [schemes] [lemmas_types_infos] are the mutually recursive functions
   (resp. graphs of the functions and principles and correctness lemma types) to prove correct.

   [i] is the indice of the function to prove correct

   The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is
   it looks like~:
   [\forall (x_1:t_1)\ldots(x_n:t_n), forall res,
   res = f x_1\ldots x_n in, \rightarrow graph\ x_1\ldots x_n\ res]


   The sketch of the proof is the following one~:
   \begin{enumerate}
   \item intros until $x_n$
   \item $functional\ induction\ (f.(i)\ x_1\ldots x_n)$ using schemes.(i)
   \item for each generated branch intro [res] and [hres :res = f x_1\ldots x_n], rewrite [hres] and the
   apply the corresponding constructor of the corresponding graph inductive.
   \end{enumerate}

*)
let prove_fun_correct evd functional_induction funs_constr graphs_constr schemes lemmas_types_infos i : Tacmach.tactic =
  fun g ->
    (* first of all we recreate the lemmas types to be used as predicates of the induction principle
       that is~:
       \[fun (x_1:t_1)\ldots(x_n:t_n)=> fun  fv => fun res => res = fv \rightarrow graph\ x_1\ldots x_n\ res\]
    *)
    (* we the get the definition of the graphs block *)
    let graph_ind,u = destInd evd graphs_constr.(i) in
    let kn = fst graph_ind in
    let mib,_ = Global.lookup_inductive graph_ind in
    (* and the principle to use in this lemma in $\zeta$ normal form *)
    let f_principle,princ_type = schemes.(i) in
    let princ_type =  nf_zeta princ_type in
    let princ_infos = Tactics.compute_elim_sig evd princ_type in
    (* The number of args of the function is then easily computable *)
    let nb_fun_args = nb_prod (project g) (pf_concl g) - 2 in
    let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in
    let ids = args_names@(pf_ids_of_hyps g) in
    (* Since we cannot ensure that the functional principle is defined in the
       environment and due to the bug #1174, we will need to pose the principle
       using a name
    *)
    let principle_id = Namegen.next_ident_away_in_goal (Id.of_string "princ") (Id.Set.of_list ids) in
    let ids = principle_id :: ids in
    (* We get the branches of the principle *)
    let branches = List.rev princ_infos.branches in
    (* and built the intro pattern for each of them *)
    let intro_pats =
      List.map
        (fun decl ->
           List.map
             (fun id -> Loc.tag @@ IntroNaming (IntroIdentifier id))
             (generate_fresh_id (Id.of_string "y") ids (List.length (fst (decompose_prod_assum evd (RelDecl.get_type decl)))))
        )
        branches
    in
    (* before building the full intro pattern for the principle *)
    let eq_ind = make_eq () in
    let eq_construct = mkConstructUi (destInd evd eq_ind, 1) in
    (* The next to referencies will be used to find out which constructor to apply in each branch *)
    let ind_number = ref 0
    and min_constr_number = ref 0 in
    (* The tactic to prove the ith branch of the principle *)
    let prove_branche i g =
      (* We get the identifiers of this branch *)
      let pre_args =
              List.fold_right
                (fun (_,pat) acc ->
                   match pat with
               | IntroNaming (IntroIdentifier id) -> id::acc
                     | _ -> anomaly (Pp.str "Not an identifier.")
                )
                (List.nth intro_pats (pred i))
                []
      in
      (* and get the real args of the branch by unfolding the defined constant *)
      (*
         We can then recompute the arguments of the constructor.
         For each [hid] introduced by this branch, if [hid] has type
         $forall res, res=fv -> graph.(j)\ x_1\ x_n res$ the corresponding arguments of the constructor are
         [ fv (hid fv (refl_equal fv)) ].
         If [hid] has another type the corresponding argument of the constructor is [hid]
      *)
      let constructor_args g =
        List.fold_right 
          (fun hid acc ->
             let type_of_hid = pf_unsafe_type_of g (mkVar hid) in
             let sigma = project g in
             match EConstr.kind sigma type_of_hid with
               | Prod(_,_,t') ->
                   begin
                     match EConstr.kind sigma t' with
                       | Prod(_,t'',t''') ->
                           begin
                             match EConstr.kind sigma t'',EConstr.kind sigma t''' with
                               | App(eq,args), App(graph',_)
                                   when
                                     (EConstr.eq_constr sigma eq eq_ind) &&
                                       Array.exists  (EConstr.eq_constr_nounivs sigma graph') graphs_constr ->
                                   (args.(2)::(mkApp(mkVar hid,[|args.(2);(mkApp(eq_construct,[|args.(0);args.(2)|]))|]))
                                    ::acc)
                               | _ -> mkVar hid ::  acc
                           end
                       | _ -> mkVar hid :: acc
                   end
               | _ -> mkVar hid :: acc
          ) pre_args []
      in
      (* in fact we must also add the parameters to the constructor args *)
      let constructor_args g =
        let params_id = fst (List.chop princ_infos.nparams args_names) in
        (List.map mkVar params_id)@((constructor_args g))
      in
      (* We then get the constructor corresponding to this branch and
         modifies the references has needed i.e.
         if the constructor is the last one of the current inductive then
         add one the number of the inductive to take and add the number of constructor of the previous
         graph to the minimal constructor number
      *)
      let constructor =
        let constructor_num = i - !min_constr_number in
        let length = Array.length (mib.Declarations.mind_packets.(!ind_number).Declarations.mind_consnames) in
        if constructor_num <= length
        then
          begin
            (kn,!ind_number),constructor_num
          end
        else
          begin
            incr ind_number;
            min_constr_number := !min_constr_number + length ;
            (kn,!ind_number),1
          end
      in
      (* we can then build the final proof term *)
      let app_constructor g = applist((mkConstructU(constructor,u)),constructor_args g) in
      (* an apply the tactic *)
      let res,hres =
        match generate_fresh_id (Id.of_string "z") (ids(* @this_branche_ids *)) 2 with
          | [res;hres] -> res,hres
          | _ -> assert false
      in
      (* observe (str "constructor := " ++ Printer.pr_lconstr_env (pf_env g) app_constructor); *)
      (
        tclTHENLIST
          [
            observe_tac("h_intro_patterns ")  (let l = (List.nth intro_pats (pred i)) in 
                                               match l with 
                                                 | [] -> tclIDTAC 
                                                 | _ -> Proofview.V82.of_tactic (intro_patterns false l));
            (* unfolding of all the defined variables introduced by this branch *)
            (* observe_tac "unfolding" pre_tac; *)
            (* $zeta$ normalizing of the conclusion *)
            Proofview.V82.of_tactic (reduce
              (Genredexpr.Cbv
                 { Redops.all_flags with
                     Genredexpr.rDelta = false ;
                     Genredexpr.rConst = []
                 }
              )
              Locusops.onConcl);
            observe_tac ("toto ") tclIDTAC;
    
            (* introducing the the result of the graph and the equality hypothesis *)
            observe_tac "introducing" (tclMAP (fun x -> Proofview.V82.of_tactic (Simple.intro x)) [res;hres]);
            (* replacing [res] with its value *)
            observe_tac "rewriting res value" (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar hres)));
            (* Conclusion *)
            observe_tac "exact" (fun g ->
                                 Proofview.V82.of_tactic (exact_check (app_constructor g)) g)  
          ]
      )
        g
    in
    (* end of branche proof *)
    let lemmas =
      Array.map
        (fun ((_,(ctxt,concl))) ->
           match ctxt with
             | [] | [_] | [_;_] -> anomaly (Pp.str "bad context.")
             | hres::res::decl::ctxt ->
                let res = EConstr.it_mkLambda_or_LetIn
                            (EConstr.it_mkProd_or_LetIn concl [hres;res])
                            (LocalAssum (RelDecl.get_name decl, RelDecl.get_type decl) :: ctxt)
                in
                res
        )
        lemmas_types_infos
    in
    let param_names = fst (List.chop princ_infos.nparams args_names) in
    let params = List.map mkVar param_names in
    let lemmas = Array.to_list (Array.map (fun c -> applist(c,params)) lemmas) in
    (* The bindings of the principle
       that is the params of the principle and the different lemma types
    *)
    let bindings =
      let params_bindings,avoid =
        List.fold_left2
          (fun (bindings,avoid) decl p ->
             let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in
             p::bindings,id::avoid
          )
          ([],pf_ids_of_hyps g)
          princ_infos.params
          (List.rev params)
      in
      let lemmas_bindings =
        List.rev (fst  (List.fold_left2
          (fun (bindings,avoid) decl p ->
             let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in
             (nf_zeta p)::bindings,id::avoid)
          ([],avoid)
          princ_infos.predicates
          (lemmas)))
      in
      (params_bindings@lemmas_bindings)
    in
    tclTHENLIST
      [ 
        observe_tac "principle" (Proofview.V82.of_tactic (assert_by
          (Name principle_id)
          princ_type
          (exact_check f_principle)));
        observe_tac "intro args_names" (tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) args_names);
        (* observe_tac "titi" (pose_proof (Name (Id.of_string "__")) (Reductionops.nf_beta Evd.empty  ((mkApp (mkVar principle_id,Array.of_list bindings))))); *)
        observe_tac "idtac" tclIDTAC;
        tclTHEN_i
          (observe_tac
             "functional_induction" (
               (fun gl ->
                let term = mkApp (mkVar principle_id,Array.of_list bindings) in
                let gl', _ty = pf_eapply (Typing.type_of ~refresh:true)  gl term in
                Proofview.V82.of_tactic (apply term) gl')
           ))
          (fun i g -> observe_tac ("proving branche "^string_of_int i) (prove_branche i) g )
      ]
      g




(* [generalize_dependent_of x hyp g]
   generalize every hypothesis which depends of [x] but [hyp]
*)
let generalize_dependent_of x hyp g =
  let open Context.Named.Declaration in
  tclMAP
    (function
       | LocalAssum (id,t) when not (Id.equal id hyp) &&
           (Termops.occur_var (pf_env g) (project g) x t) -> tclTHEN (Proofview.V82.of_tactic (Tactics.generalize [mkVar id])) (thin [id])
       | _ -> tclIDTAC
    )
    (pf_hyps g)
    g


(* [intros_with_rewrite] do the intros in each branch and treat each new hypothesis
       (unfolding, substituting, destructing cases \ldots)
 *)
let tauto =
  let dp = List.map Id.of_string ["Tauto" ; "Init"; "Coq"] in
  let mp = ModPath.MPfile (DirPath.make dp) in
  let kn = KerName.make2 mp (Label.make "tauto") in
  Proofview.tclBIND (Proofview.tclUNIT ()) begin fun () ->
    let body = Tacenv.interp_ltac kn in
    Tacinterp.eval_tactic body
  end

let  rec intros_with_rewrite g =
  observe_tac "intros_with_rewrite" intros_with_rewrite_aux g
and intros_with_rewrite_aux : Tacmach.tactic =
  fun g ->
    let eq_ind = make_eq () in
    let sigma = project g in
    match EConstr.kind sigma (pf_concl g) with
          | Prod(_,t,t') ->
              begin
                match EConstr.kind sigma t with
                  | App(eq,args) when (EConstr.eq_constr sigma eq eq_ind)  ->
                       if Reductionops.is_conv (pf_env g) (project g) args.(1) args.(2)
                      then
                        let id = pf_get_new_id (Id.of_string "y") g  in
                        tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id); thin [id]; intros_with_rewrite ] g
                      else if isVar sigma args.(1) && (Environ.evaluable_named (destVar sigma args.(1)) (pf_env g)) 
                      then tclTHENLIST[
                        Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))]);
                        tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))] ((destVar sigma args.(1)),Locus.InHyp) )))
                          (pf_ids_of_hyps g);
                        intros_with_rewrite
                      ] g
                      else if isVar sigma args.(2) && (Environ.evaluable_named (destVar sigma args.(2)) (pf_env g)) 
                      then tclTHENLIST[
                        Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))]);
                        tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))] ((destVar sigma args.(2)),Locus.InHyp) )))
                          (pf_ids_of_hyps g);
                        intros_with_rewrite
                      ] g
                      else if isVar sigma args.(1)
                      then
                        let id = pf_get_new_id (Id.of_string "y") g  in
                        tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);
                                     generalize_dependent_of (destVar sigma args.(1)) id;
                                     tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id)));
                                     intros_with_rewrite
                                   ]
                          g
                      else if isVar sigma args.(2) 
                      then 
                        let id = pf_get_new_id (Id.of_string "y") g  in
                        tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);
                                     generalize_dependent_of (destVar sigma args.(2)) id;
                                     tclTRY (Proofview.V82.of_tactic (Equality.rewriteRL (mkVar id)));
                                     intros_with_rewrite
                                   ]
                          g
                      else
                        begin
                          let id = pf_get_new_id (Id.of_string "y") g  in
                          tclTHENLIST[
                            Proofview.V82.of_tactic (Simple.intro id);
                            tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id)));
                            intros_with_rewrite
                          ] g
                        end
                  | Ind _ when EConstr.eq_constr sigma t (EConstr.of_constr (Universes.constr_of_global @@ Coqlib.build_coq_False ())) ->
                      Proofview.V82.of_tactic tauto g
                  | Case(_,_,v,_) ->
                      tclTHENLIST[
                        Proofview.V82.of_tactic (simplest_case v);
                        intros_with_rewrite
                      ] g
                  | LetIn _ ->
                      tclTHENLIST[
                        Proofview.V82.of_tactic (reduce
                          (Genredexpr.Cbv
                             {Redops.all_flags
                              with Genredexpr.rDelta = false;
                             })
                          Locusops.onConcl)
                        ;
                        intros_with_rewrite
                      ] g
                  | _ ->
                      let id = pf_get_new_id (Id.of_string "y") g  in
                      tclTHENLIST [ Proofview.V82.of_tactic (Simple.intro id);intros_with_rewrite] g
              end
          | LetIn _ ->
              tclTHENLIST[
                Proofview.V82.of_tactic (reduce
                  (Genredexpr.Cbv
                     {Redops.all_flags
                      with Genredexpr.rDelta = false;
                     })
                  Locusops.onConcl)
                ;
                intros_with_rewrite
              ] g
          | _ -> tclIDTAC g

let rec reflexivity_with_destruct_cases g =
  let destruct_case () =
    try
      match EConstr.kind (project g) (snd (destApp (project g) (pf_concl g))).(2) with
        | Case(_,_,v,_) ->
            tclTHENLIST[
              Proofview.V82.of_tactic (simplest_case v);
              Proofview.V82.of_tactic intros;
              observe_tac "reflexivity_with_destruct_cases" reflexivity_with_destruct_cases
            ]
        | _ -> Proofview.V82.of_tactic reflexivity
    with e when CErrors.noncritical e -> Proofview.V82.of_tactic reflexivity
  in
  let eq_ind = make_eq () in
  let my_inj_flags = Some {
    Equality.keep_proof_equalities = false;
    injection_in_context = false; (* for compatibility, necessary *)
    injection_pattern_l2r_order = false; (* probably does not matter; except maybe with dependent hyps *)
  } in
  let discr_inject =
    Tacticals.onAllHypsAndConcl (
       fun sc g ->
         match sc with
             None -> tclIDTAC g
           | Some id ->
               match EConstr.kind (project g) (pf_unsafe_type_of g (mkVar id)) with
                 | App(eq,[|_;t1;t2|]) when EConstr.eq_constr (project g) eq eq_ind ->
                     if Equality.discriminable (pf_env g) (project g) t1 t2
                     then Proofview.V82.of_tactic (Equality.discrHyp id) g
                     else if Equality.injectable (pf_env g) (project g) ~keep_proofs:None t1 t2
                     then tclTHENLIST [Proofview.V82.of_tactic (Equality.injHyp my_inj_flags None id);thin [id];intros_with_rewrite]  g
                     else tclIDTAC g
                 | _ -> tclIDTAC g
    )
  in
  (tclFIRST
    [ observe_tac "reflexivity_with_destruct_cases : reflexivity" (Proofview.V82.of_tactic reflexivity);
      observe_tac "reflexivity_with_destruct_cases : destruct_case" ((destruct_case ()));
      (*  We reach this point ONLY if
          the same value is matched (at least) two times
          along binding path.
          In this case, either we have a discriminable hypothesis and we are done,
          either at least an injectable one and we do the injection before continuing
      *)
      observe_tac "reflexivity_with_destruct_cases : others" (tclTHEN (tclPROGRESS discr_inject ) reflexivity_with_destruct_cases)
    ])
    g


(* [prove_fun_complete funs graphs schemes lemmas_types_infos i]
   is the tactic used to prove completness lemma.

   [funcs], [graphs] [schemes] [lemmas_types_infos] are the mutually recursive functions
   (resp. definitions of the graphs of the functions, principles and correctness lemma types) to prove correct.

   [i] is the indice of the function to prove complete

   The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is
   it looks like~:
   [\forall (x_1:t_1)\ldots(x_n:t_n), forall res,
   graph\ x_1\ldots x_n\ res, \rightarrow  res = f x_1\ldots x_n in]


   The sketch of the proof is the following one~:
   \begin{enumerate}
   \item intros until $H:graph\ x_1\ldots x_n\ res$
   \item $elim\ H$ using schemes.(i)
   \item for each generated branch, intro  the news hyptohesis, for each such hyptohesis [h], if [h] has
   type [x=?] with [x] a variable, then subst [x],
   if [h] has type [t=?] with [t] not a variable then rewrite [t] in the subterms, else
   if [h] is a match then destruct it, else do just introduce it,
   after all intros, the conclusion should be a reflexive equality.
   \end{enumerate}

*)


let prove_fun_complete funcs graphs schemes lemmas_types_infos i : Tacmach.tactic =
  fun g ->
    (* We compute the types of the different mutually recursive lemmas
       in $\zeta$ normal form
    *)
    let lemmas =
      Array.map
        (fun (_,(ctxt,concl)) -> nf_zeta (EConstr.it_mkLambda_or_LetIn concl ctxt))
        lemmas_types_infos
    in
    (* We get the constant and the principle corresponding to this lemma *)
    let f = funcs.(i) in
    let graph_principle = nf_zeta (EConstr.of_constr schemes.(i))  in
    let princ_type = pf_unsafe_type_of g graph_principle in
    let princ_infos = Tactics.compute_elim_sig (project g) princ_type in
    (* Then we get the number of argument of the function
       and compute a fresh name for each of them
    *)
    let nb_fun_args = nb_prod (project g) (pf_concl g) - 2 in
    let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in
    let ids = args_names@(pf_ids_of_hyps g) in
    (* and fresh names for res H and the principle (cf bug bug #1174) *)
    let res,hres,graph_principle_id =
      match generate_fresh_id (Id.of_string "z") ids 3 with
        | [res;hres;graph_principle_id] -> res,hres,graph_principle_id
        | _ -> assert false
    in
    let ids = res::hres::graph_principle_id::ids in
    (* we also compute fresh names for each hyptohesis of each branch
       of the principle *)
    let branches = List.rev princ_infos.branches in
    let intro_pats =
      List.map
        (fun decl ->
           List.map
             (fun id -> id)
             (generate_fresh_id (Id.of_string "y") ids (nb_prod (project g) (RelDecl.get_type decl)))
        )
        branches
    in
    (* We will need to change the function by its body
       using [f_equation] if it is recursive (that is the graph is infinite
       or unfold if the graph is finite
    *)
    let rewrite_tac j ids : Tacmach.tactic =
      let graph_def = graphs.(j) in
      let infos =
        try find_Function_infos (fst (destConst (project g) funcs.(j)))
        with Not_found ->  user_err Pp.(str "No graph found")
      in
      if infos.is_general
        || Rtree.is_infinite Declareops.eq_recarg graph_def.mind_recargs
      then
        let eq_lemma =
          try Option.get (infos).equation_lemma
          with Option.IsNone -> anomaly (Pp.str "Cannot find equation lemma.")
        in
        tclTHENLIST[
          tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) ids;
          Proofview.V82.of_tactic (Equality.rewriteLR (mkConst eq_lemma));
          (* Don't forget to $\zeta$ normlize the term since the principles
             have been $\zeta$-normalized *)
          Proofview.V82.of_tactic (reduce
            (Genredexpr.Cbv
               {Redops.all_flags
                with Genredexpr.rDelta = false;
               })
            Locusops.onConcl)
          ;
          Proofview.V82.of_tactic (generalize (List.map mkVar ids));
          thin ids
        ]
      else
        Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalConstRef (fst (destConst (project g) f)))])
    in
    (* The proof of each branche itself *)
    let ind_number = ref 0 in
    let min_constr_number = ref 0 in
    let prove_branche i g =
      (* we fist compute the inductive corresponding to the branch *)
      let this_ind_number =
        let constructor_num = i - !min_constr_number in
        let length = Array.length (graphs.(!ind_number).Declarations.mind_consnames) in
        if constructor_num <= length
        then !ind_number
        else
          begin
            incr ind_number;
            min_constr_number := !min_constr_number + length;
            !ind_number
          end
      in
      let this_branche_ids = List.nth intro_pats (pred i) in
      tclTHENLIST[
        (* we expand the definition of the function *)
        observe_tac "rewrite_tac" (rewrite_tac this_ind_number this_branche_ids);
        (* introduce hypothesis with some rewrite *)
        observe_tac "intros_with_rewrite (all)" intros_with_rewrite;
        (* The proof is (almost) complete *)
        observe_tac "reflexivity" (reflexivity_with_destruct_cases)
      ]
        g
    in
    let params_names = fst (List.chop princ_infos.nparams args_names) in
    let open EConstr in
    let params = List.map mkVar params_names in
    tclTHENLIST
      [ tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) (args_names@[res;hres]);
        observe_tac "h_generalize"
        (Proofview.V82.of_tactic (generalize [mkApp(applist(graph_principle,params),Array.map (fun c -> applist(c,params)) lemmas)]));
        Proofview.V82.of_tactic (Simple.intro graph_principle_id);
        observe_tac "" (tclTHEN_i
          (observe_tac "elim" (Proofview.V82.of_tactic (elim false None (mkVar hres,NoBindings) (Some (mkVar graph_principle_id,NoBindings)))))
          (fun i g -> observe_tac "prove_branche" (prove_branche i) g ))
      ]
      g


(* [derive_correctness make_scheme functional_induction funs graphs] create correctness and completeness
   lemmas for each function in [funs] w.r.t. [graphs]

   [make_scheme] is Functional_principle_types.make_scheme (dependency pb) and
   [functional_induction] is Indfun.functional_induction (same pb)
*)

let derive_correctness make_scheme functional_induction (funs: pconstant list) (graphs:inductive list) =
  assert (funs <> []);
  assert (graphs <> []);
  let funs = Array.of_list funs and graphs = Array.of_list graphs in
  let map (c, u) = mkConstU (c, EInstance.make u) in
  let funs_constr = Array.map map funs  in
  (* XXX STATE Why do we need this... why is the toplevel protection not enought *)
  funind_purify
    (fun () ->
     let env = Global.env () in
     let evd = ref (Evd.from_env env) in 
     let graphs_constr = Array.map mkInd graphs in
     let lemmas_types_infos =
       Util.Array.map2_i
         (fun i f_constr graph ->
         (* let const_of_f,u = destConst f_constr in *)
         let (type_of_lemma_ctxt,type_of_lemma_concl,graph) =
           generate_type evd false f_constr graph i
         in
         let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in
         graphs_constr.(i) <- graph;
         let type_of_lemma = EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt in
         let _ = Typing.e_type_of (Global.env ()) evd type_of_lemma in 
           let type_of_lemma = nf_zeta type_of_lemma in
           observe (str "type_of_lemma := " ++ Printer.pr_leconstr_env (Global.env ()) !evd type_of_lemma);
           type_of_lemma,type_info
        )
        funs_constr
        graphs_constr
    in
    let schemes =
      (* The functional induction schemes are computed and not saved if there is more that one function
         if the block contains only one function we can safely reuse [f_rect]
       *)
      try
        if not (Int.equal (Array.length funs_constr) 1) then raise Not_found;
        [| find_induction_principle evd funs_constr.(0) |]
      with Not_found ->
        (
        
          Array.of_list
            (List.map
               (fun entry ->
                  (EConstr.of_constr (fst (fst(Future.force entry.Entries.const_entry_body))), EConstr.of_constr (Option.get entry.Entries.const_entry_type ))
               )
               (make_scheme evd (Array.map_to_list (fun const -> const,Sorts.InType) funs))
            )
        )
    in
    let proving_tac =
      prove_fun_correct !evd functional_induction funs_constr graphs_constr schemes lemmas_types_infos
    in
    Array.iteri
      (fun i f_as_constant ->
         let f_id = Label.to_id (Constant.label (fst f_as_constant)) in
         (*i The next call to mk_correct_id is valid since we are constructing the lemma
             Ensures by: obvious
         i*)
         let lem_id = mk_correct_id f_id in
         let (typ,_) = lemmas_types_infos.(i) in 
         Lemmas.start_proof
           lem_id
           (Decl_kinds.Global,Flags.is_universe_polymorphism (),((Decl_kinds.Proof Decl_kinds.Theorem)))
           !evd
           typ
           (Lemmas.mk_hook (fun _ _ -> ()));
         ignore (Pfedit.by
                   (Proofview.V82.tactic (observe_tac ("prove correctness ("^(Id.to_string f_id)^")")
                                                      (proving_tac i))));
         (Lemmas.save_proof (Vernacexpr.(Proved(Transparent,None))));
         let finfo = find_Function_infos (fst f_as_constant) in
         (* let lem_cst = fst (destConst (Constrintern.global_reference lem_id)) in *)
         let _,lem_cst_constr = Evd.fresh_global
                                  (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in
        let lem_cst_constr = EConstr.of_constr lem_cst_constr in
         let (lem_cst,_) = destConst !evd lem_cst_constr in
         update_Function {finfo with correctness_lemma = Some lem_cst};

      )
      funs;
    let lemmas_types_infos =
      Util.Array.map2_i
        (fun i f_constr graph ->
         let (type_of_lemma_ctxt,type_of_lemma_concl,graph)   =
           generate_type evd true f_constr graph i
         in
         let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in
         graphs_constr.(i) <- graph;
         let type_of_lemma =
           EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt
         in
         let type_of_lemma = nf_zeta type_of_lemma in
         observe (str "type_of_lemma := " ++ Printer.pr_leconstr_env env !evd type_of_lemma);
         type_of_lemma,type_info
        )
        funs_constr
        graphs_constr
    in

    let (kn,_) as graph_ind,u  = (destInd !evd graphs_constr.(0)) in
    let mib,mip = Global.lookup_inductive graph_ind in
    let sigma, scheme = 
        (Indrec.build_mutual_induction_scheme (Global.env ()) !evd
           (Array.to_list
              (Array.mapi
                 (fun i _ -> ((kn,i), EInstance.kind !evd u),true,InType)
                 mib.Declarations.mind_packets
              )
           )
        )
    in
    let schemes =
      Array.of_list scheme
    in
    let proving_tac =
      prove_fun_complete funs_constr mib.Declarations.mind_packets schemes lemmas_types_infos
    in
    Array.iteri
      (fun i f_as_constant ->
         let f_id = Label.to_id (Constant.label (fst f_as_constant)) in
         (*i The next call to mk_complete_id is valid since we are constructing the lemma
             Ensures by: obvious
           i*)
         let lem_id = mk_complete_id f_id in
         Lemmas.start_proof lem_id
           (Decl_kinds.Global,Flags.is_universe_polymorphism (),(Decl_kinds.Proof Decl_kinds.Theorem)) sigma
         (fst lemmas_types_infos.(i))
           (Lemmas.mk_hook (fun _ _ -> ()));
         ignore (Pfedit.by
           (Proofview.V82.tactic (observe_tac ("prove completeness ("^(Id.to_string f_id)^")")
              (proving_tac i)))) ;
         (Lemmas.save_proof (Vernacexpr.(Proved(Transparent,None))));
         let finfo = find_Function_infos (fst f_as_constant) in
         let _,lem_cst_constr = Evd.fresh_global
                                  (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in
         let lem_cst_constr = EConstr.of_constr lem_cst_constr in
         let (lem_cst,_) = destConst !evd lem_cst_constr in
         update_Function {finfo with completeness_lemma = Some lem_cst}
      )
      funs)
    ()

(***********************************************)

(* [revert_graph kn post_tac hid] transforme an hypothesis [hid] having type Ind(kn,num) t1 ... tn res
   when [kn] denotes a graph block  into
   f_num t1... tn = res (by applying [f_complete] to the first type) before apply post_tac on the result

   if the type of hypothesis has not this form or if we cannot find the completeness lemma then we do nothing
*)
let revert_graph kn post_tac hid g =
    let sigma = project g in
    let typ = pf_unsafe_type_of g (mkVar hid) in
    match EConstr.kind sigma typ with
      | App(i,args) when isInd sigma i ->
          let ((kn',num) as ind'),u = destInd sigma i in
          if MutInd.equal kn kn'
          then (* We have generated a graph hypothesis so that we must change it if we can *)
            let info =
              try find_Function_of_graph ind'
              with Not_found -> (* The graphs are mutually recursive but we cannot find one of them !*)
                anomaly (Pp.str "Cannot retrieve infos about a mutual block.")
            in
            (* if we can find a completeness lemma for this function
               then we can come back to the functional form. If not, we do nothing
            *)
            match info.completeness_lemma with
              | None -> tclIDTAC g
              | Some f_complete ->
                  let f_args,res = Array.chop (Array.length args - 1) args in
                  tclTHENLIST
                    [
                      Proofview.V82.of_tactic (generalize [applist(mkConst f_complete,(Array.to_list f_args)@[res.(0);mkVar hid])]);
                      thin [hid];
                      Proofview.V82.of_tactic (Simple.intro hid);
                      post_tac hid
                    ]
                    g

          else tclIDTAC g
      | _ -> tclIDTAC g


(*
   [functional_inversion hid fconst f_correct ] is the functional version of [inversion]

   [hid] is the hypothesis to invert, [fconst] is the function to invert and  [f_correct]
   is the correctness lemma for [fconst].

   The sketch is the follwing~:
   \begin{enumerate}
   \item Transforms the hypothesis [hid] such that its type is now $res\ =\ f\ t_1 \ldots t_n$
   (fails if it is not possible)
   \item replace [hid] with $R\_f t_1 \ldots t_n res$ using [f_correct]
   \item apply [inversion] on [hid]
   \item finally in each branch, replace each  hypothesis [R\_f ..]  by [f ...] using [f_complete] (whenever
   such a lemma exists)
   \end{enumerate}
*)

let functional_inversion kn hid fconst f_correct : Tacmach.tactic =
  fun g ->
    let old_ids = List.fold_right Id.Set.add  (pf_ids_of_hyps g) Id.Set.empty in
    let sigma = project g in
    let type_of_h = pf_unsafe_type_of g (mkVar hid) in
    match EConstr.kind sigma type_of_h with
      | App(eq,args) when EConstr.eq_constr sigma eq (make_eq ())  ->
          let pre_tac,f_args,res =
            match EConstr.kind sigma args.(1),EConstr.kind sigma args.(2) with
              | App(f,f_args),_ when EConstr.eq_constr sigma f fconst ->
                  ((fun hid -> Proofview.V82.of_tactic (intros_symmetry (Locusops.onHyp hid))),f_args,args.(2))
              |_,App(f,f_args) when EConstr.eq_constr sigma f fconst ->
                 ((fun hid -> tclIDTAC),f_args,args.(1))
              | _ -> (fun hid -> tclFAIL 1 (mt ())),[||],args.(2)
          in
          tclTHENLIST [
            pre_tac hid;
            Proofview.V82.of_tactic (generalize [applist(f_correct,(Array.to_list f_args)@[res;mkVar hid])]);
            thin [hid];
            Proofview.V82.of_tactic (Simple.intro hid);
            Proofview.V82.of_tactic (Inv.inv FullInversion None (NamedHyp hid));
            (fun g ->
               let new_ids = List.filter (fun id -> not (Id.Set.mem id old_ids)) (pf_ids_of_hyps g) in
               tclMAP (revert_graph kn pre_tac)  (hid::new_ids)  g
            );
          ] g
      | _ -> tclFAIL 1 (mt ()) g


let error msg = user_err Pp.(str msg)

let invfun qhyp f  =
  let f =
    match f with
      | ConstRef f -> f
      | _ -> raise (CErrors.UserError(None,str "Not a function"))
  in
  try
    let finfos = find_Function_infos f in
    let f_correct = mkConst(Option.get finfos.correctness_lemma)
    and kn = fst finfos.graph_ind
    in
    Proofview.V82.of_tactic (
      Tactics.try_intros_until (fun hid -> Proofview.V82.tactic (functional_inversion kn hid (mkConst f)  f_correct)) qhyp
    )
  with
    | Not_found ->  error "No graph found"
    | Option.IsNone  -> error "Cannot use equivalence with graph!"

exception NoFunction
let invfun qhyp f g =
  match f with
    | Some f -> invfun qhyp f g
    | None ->
       Proofview.V82.of_tactic begin
        Tactics.try_intros_until
          (fun hid -> Proofview.V82.tactic begin fun g ->
            let sigma = project g in
             let hyp_typ = pf_unsafe_type_of g (mkVar hid)  in
             match EConstr.kind sigma hyp_typ with
               | App(eq,args) when EConstr.eq_constr sigma eq (make_eq ()) ->
                   begin
                     let f1,_ = decompose_app sigma args.(1) in
                     try
                       if not (isConst sigma f1) then raise NoFunction;
                       let finfos = find_Function_infos (fst (destConst sigma f1)) in
                       let f_correct = mkConst(Option.get finfos.correctness_lemma)
                       and kn = fst finfos.graph_ind
                       in
                       functional_inversion kn hid f1 f_correct g
                     with | NoFunction | Option.IsNone | Not_found ->
                       try
                         let f2,_ = decompose_app sigma args.(2) in
                         if not (isConst sigma f2) then raise NoFunction;
                         let finfos = find_Function_infos (fst (destConst sigma f2)) in
                         let f_correct = mkConst(Option.get finfos.correctness_lemma)
                         and kn = fst finfos.graph_ind
                         in
                         functional_inversion kn hid  f2 f_correct g
                       with
                         | NoFunction ->
                             user_err  (str "Hypothesis " ++ Ppconstr.pr_id hid ++ str " must contain at least one Function")
                         | Option.IsNone  ->
                             if do_observe ()
                             then
                               error "Cannot use equivalence with graph for any side of the equality"
                             else user_err  (str "Cannot find inversion information for hypothesis " ++ Ppconstr.pr_id hid)
                         | Not_found ->
                             if do_observe ()
                             then
                               error "No graph found for any side of equality"
                             else user_err  (str "Cannot find inversion information for hypothesis " ++ Ppconstr.pr_id hid)
                   end
               | _ -> user_err  (Ppconstr.pr_id hid ++ str " must be an equality ")
          end)
          qhyp
          end
          g