1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open CErrors open Util open Names open Univ open Sorts open Constr open Vars open Declarations open Environ open Reduction open Inductive open Type_errors module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration let conv_leq l2r env x y = default_conv CUMUL ~l2r env x y let conv_leq_vecti env v1 v2 = Array.fold_left2_i (fun i _ t1 t2 -> try conv_leq false env t1 t2 with NotConvertible -> raise (NotConvertibleVect i)) () v1 v2 let check_constraints cst env = if Environ.check_constraints cst env then () else error_unsatisfied_constraints env cst (* This should be a type (a priori without intention to be an assumption) *) let check_type env c t = match kind(whd_all env t) with | Sort s -> s | _ -> error_not_type env (make_judge c t) (* This should be a type intended to be assumed. The error message is not as useful as for [type_judgment]. *) let check_assumption env t ty = try let _ = check_type env t ty in t with TypeError _ -> error_assumption env (make_judge t ty) (************************************************) (* Incremental typing rules: builds a typing judgment given the *) (* judgments for the subterms. *) (*s Type of sorts *) (* Prop and Set *) let type1 = mkSort Sorts.type1 (* Type of Type(i). *) let type_of_type u = let uu = Universe.super u in mkType uu let type_of_sort = function | Prop c -> type1 | Type u -> type_of_type u (*s Type of a de Bruijn index. *) let type_of_relative env n = try env |> lookup_rel n |> RelDecl.get_type |> lift n with Not_found -> error_unbound_rel env n (* Type of variables *) let type_of_variable env id = try named_type id env with Not_found -> error_unbound_var env id (* Management of context of variables. *) (* Checks if a context of variables can be instantiated by the variables of the current env. Order does not have to be checked assuming that all names are distinct *) let check_hyps_inclusion env f c sign = Context.Named.fold_outside (fun d1 () -> let open Context.Named.Declaration in let id = NamedDecl.get_id d1 in try let d2 = lookup_named id env in conv env (get_type d2) (get_type d1); (match d2,d1 with | LocalAssum _, LocalAssum _ -> () | LocalAssum _, LocalDef _ -> (* This is wrong, because we don't know if the body is needed or not for typechecking: *) () | LocalDef _, LocalAssum _ -> raise NotConvertible | LocalDef (_,b2,_), LocalDef (_,b1,_) -> conv env b2 b1); with Not_found | NotConvertible | Option.Heterogeneous -> error_reference_variables env id (f c)) sign ~init:() (* Instantiation of terms on real arguments. *) (* Make a type polymorphic if an arity *) (* Type of constants *) let type_of_constant env (kn,u as cst) = let cb = lookup_constant kn env in let () = check_hyps_inclusion env mkConstU cst cb.const_hyps in let ty, cu = constant_type env cst in let () = check_constraints cu env in ty let type_of_constant_in env (kn,u as cst) = let cb = lookup_constant kn env in let () = check_hyps_inclusion env mkConstU cst cb.const_hyps in constant_type_in env cst (* Type of a lambda-abstraction. *) (* [judge_of_abstraction env name var j] implements the rule env, name:typ |- j.uj_val:j.uj_type env, |- (name:typ)j.uj_type : s ----------------------------------------------------------------------- env |- [name:typ]j.uj_val : (name:typ)j.uj_type Since all products are defined in the Calculus of Inductive Constructions and no upper constraint exists on the sort $s$, we don't need to compute $s$ *) let type_of_abstraction env name var ty = mkProd (name, var, ty) (* Type of an application. *) let make_judgev c t = Array.map2 make_judge c t let type_of_apply env func funt argsv argstv = let len = Array.length argsv in let rec apply_rec i typ = if Int.equal i len then typ else (match kind (whd_all env typ) with | Prod (_,c1,c2) -> let arg = argsv.(i) and argt = argstv.(i) in (try let () = conv_leq false env argt c1 in apply_rec (i+1) (subst1 arg c2) with NotConvertible -> error_cant_apply_bad_type env (i+1,c1,argt) (make_judge func funt) (make_judgev argsv argstv)) | _ -> error_cant_apply_not_functional env (make_judge func funt) (make_judgev argsv argstv)) in apply_rec 0 funt (* Type of product *) let sort_of_product env domsort rangsort = match (domsort, rangsort) with (* Product rule (s,Prop,Prop) *) | (_, Prop Null) -> rangsort (* Product rule (Prop/Set,Set,Set) *) | (Prop _, Prop Pos) -> rangsort (* Product rule (Type,Set,?) *) | (Type u1, Prop Pos) -> if is_impredicative_set env then (* Rule is (Type,Set,Set) in the Set-impredicative calculus *) rangsort else (* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *) Type (Universe.sup Universe.type0 u1) (* Product rule (Prop,Type_i,Type_i) *) | (Prop Pos, Type u2) -> Type (Universe.sup Universe.type0 u2) (* Product rule (Prop,Type_i,Type_i) *) | (Prop Null, Type _) -> rangsort (* Product rule (Type_i,Type_i,Type_i) *) | (Type u1, Type u2) -> Type (Universe.sup u1 u2) (* [judge_of_product env name (typ1,s1) (typ2,s2)] implements the rule env |- typ1:s1 env, name:typ1 |- typ2 : s2 ------------------------------------------------------------------------- s' >= (s1,s2), env |- (name:typ)j.uj_val : s' where j.uj_type is convertible to a sort s2 *) let type_of_product env name s1 s2 = let s = sort_of_product env s1 s2 in mkSort s (* Type of a type cast *) (* [judge_of_cast env (c,typ1) (typ2,s)] implements the rule env |- c:typ1 env |- typ2:s env |- typ1 <= typ2 --------------------------------------------------------------------- env |- c:typ2 *) let check_cast env c ct k expected_type = try match k with | VMcast -> vm_conv CUMUL env ct expected_type | DEFAULTcast -> default_conv ~l2r:false CUMUL env ct expected_type | REVERTcast -> default_conv ~l2r:true CUMUL env ct expected_type | NATIVEcast -> let sigma = Nativelambda.empty_evars in Nativeconv.native_conv CUMUL sigma env ct expected_type with NotConvertible -> error_actual_type env (make_judge c ct) expected_type (* Inductive types. *) (* The type is parametric over the uniform parameters whose conclusion is in Type; to enforce the internal constraints between the parameters and the instances of Type occurring in the type of the constructors, we use the level variables _statically_ assigned to the conclusions of the parameters as mediators: e.g. if a parameter has conclusion Type(alpha), static constraints of the form alpha<=v exist between alpha and the Type's occurring in the constructor types; when the parameters is finally instantiated by a term of conclusion Type(u), then the constraints u<=alpha is computed in the App case of execute; from this constraints, the expected dynamic constraints of the form u<=v are enforced *) let type_of_inductive_knowing_parameters env (ind,u as indu) args = let (mib,mip) as spec = lookup_mind_specif env ind in check_hyps_inclusion env mkIndU indu mib.mind_hyps; let t,cst = Inductive.constrained_type_of_inductive_knowing_parameters env (spec,u) args in check_constraints cst env; t let type_of_inductive env (ind,u as indu) = let (mib,mip) = lookup_mind_specif env ind in check_hyps_inclusion env mkIndU indu mib.mind_hyps; let t,cst = Inductive.constrained_type_of_inductive env ((mib,mip),u) in check_constraints cst env; t (* Constructors. *) let type_of_constructor env (c,u as cu) = let () = let ((kn,_),_) = c in let mib = lookup_mind kn env in check_hyps_inclusion env mkConstructU cu mib.mind_hyps in let specif = lookup_mind_specif env (inductive_of_constructor c) in let t,cst = constrained_type_of_constructor cu specif in let () = check_constraints cst env in t (* Case. *) let check_branch_types env (ind,u) c ct lft explft = try conv_leq_vecti env lft explft with NotConvertibleVect i -> error_ill_formed_branch env c ((ind,i+1),u) lft.(i) explft.(i) | Invalid_argument _ -> error_number_branches env (make_judge c ct) (Array.length explft) let type_of_case env ci p pt c ct lf lft = let (pind, _ as indspec) = try find_rectype env ct with Not_found -> error_case_not_inductive env (make_judge c ct) in let () = check_case_info env pind ci in let (bty,rslty) = type_case_branches env indspec (make_judge p pt) c in let () = check_branch_types env pind c ct lft bty in rslty let type_of_projection env p c ct = let pb = lookup_projection p env in let (ind,u), args = try find_rectype env ct with Not_found -> error_case_not_inductive env (make_judge c ct) in assert(MutInd.equal pb.proj_ind (fst ind)); let ty = Vars.subst_instance_constr u pb.Declarations.proj_type in substl (c :: CList.rev args) ty (* Fixpoints. *) (* Checks the type of a general (co)fixpoint, i.e. without checking *) (* the specific guard condition. *) let check_fixpoint env lna lar vdef vdeft = let lt = Array.length vdeft in assert (Int.equal (Array.length lar) lt); try conv_leq_vecti env vdeft (Array.map (fun ty -> lift lt ty) lar) with NotConvertibleVect i -> error_ill_typed_rec_body env i lna (make_judgev vdef vdeft) lar (************************************************************************) (************************************************************************) (* The typing machine. *) (* ATTENTION : faudra faire le typage du contexte des Const, Ind et Constructsi un jour cela devient des constructions arbitraires et non plus des variables *) let rec execute env cstr = let open Context.Rel.Declaration in match kind cstr with (* Atomic terms *) | Sort s -> type_of_sort s | Rel n -> type_of_relative env n | Var id -> type_of_variable env id | Const c -> type_of_constant env c | Proj (p, c) -> let ct = execute env c in type_of_projection env p c ct (* Lambda calculus operators *) | App (f,args) -> let argst = execute_array env args in let ft = match kind f with | Ind ind when Environ.template_polymorphic_pind ind env -> let args = Array.map (fun t -> lazy t) argst in type_of_inductive_knowing_parameters env ind args | _ -> (* No template polymorphism *) execute env f in type_of_apply env f ft args argst | Lambda (name,c1,c2) -> let _ = execute_is_type env c1 in let env1 = push_rel (LocalAssum (name,c1)) env in let c2t = execute env1 c2 in type_of_abstraction env name c1 c2t | Prod (name,c1,c2) -> let vars = execute_is_type env c1 in let env1 = push_rel (LocalAssum (name,c1)) env in let vars' = execute_is_type env1 c2 in type_of_product env name vars vars' | LetIn (name,c1,c2,c3) -> let c1t = execute env c1 in let _c2s = execute_is_type env c2 in let () = check_cast env c1 c1t DEFAULTcast c2 in let env1 = push_rel (LocalDef (name,c1,c2)) env in let c3t = execute env1 c3 in subst1 c1 c3t | Cast (c,k,t) -> let ct = execute env c in let _ts = (check_type env t (execute env t)) in let () = check_cast env c ct k t in t (* Inductive types *) | Ind ind -> type_of_inductive env ind | Construct c -> type_of_constructor env c | Case (ci,p,c,lf) -> let ct = execute env c in let pt = execute env p in let lft = execute_array env lf in type_of_case env ci p pt c ct lf lft | Fix ((vn,i as vni),recdef) -> let (fix_ty,recdef') = execute_recdef env recdef i in let fix = (vni,recdef') in check_fix env fix; fix_ty | CoFix (i,recdef) -> let (fix_ty,recdef') = execute_recdef env recdef i in let cofix = (i,recdef') in check_cofix env cofix; fix_ty (* Partial proofs: unsupported by the kernel *) | Meta _ -> anomaly (Pp.str "the kernel does not support metavariables.") | Evar _ -> anomaly (Pp.str "the kernel does not support existential variables.") and execute_is_type env constr = let t = execute env constr in check_type env constr t and execute_recdef env (names,lar,vdef) i = let lart = execute_array env lar in let lara = Array.map2 (check_assumption env) lar lart in let env1 = push_rec_types (names,lara,vdef) env in let vdeft = execute_array env1 vdef in let () = check_fixpoint env1 names lara vdef vdeft in (lara.(i),(names,lara,vdef)) and execute_array env = Array.map (execute env) (* Derived functions *) let infer env constr = let t = execute env constr in make_judge constr t let infer = if Flags.profile then let infer_key = CProfile.declare_profile "Fast_infer" in CProfile.profile2 infer_key (fun b c -> infer b c) else (fun b c -> infer b c) let assumption_of_judgment env {uj_val=c; uj_type=t} = check_assumption env c t let type_judgment env {uj_val=c; uj_type=t} = let s = check_type env c t in {utj_val = c; utj_type = s } let infer_type env constr = let t = execute env constr in let s = check_type env constr t in {utj_val = constr; utj_type = s} let infer_v env cv = let jv = execute_array env cv in make_judgev cv jv (* Typing of several terms. *) let infer_local_decl env id = function | Entries.LocalDefEntry c -> let t = execute env c in RelDecl.LocalDef (Name id, c, t) | Entries.LocalAssumEntry c -> let t = execute env c in RelDecl.LocalAssum (Name id, check_assumption env c t) let infer_local_decls env decls = let rec inferec env = function | (id, d) :: l -> let (env, l) = inferec env l in let d = infer_local_decl env id d in (push_rel d env, Context.Rel.add d l) | [] -> (env, Context.Rel.empty) in inferec env decls let judge_of_prop = make_judge mkProp type1 let judge_of_set = make_judge mkSet type1 let judge_of_type u = make_judge (mkType u) (type_of_type u) let judge_of_prop_contents = function | Null -> judge_of_prop | Pos -> judge_of_set let judge_of_relative env k = make_judge (mkRel k) (type_of_relative env k) let judge_of_variable env x = make_judge (mkVar x) (type_of_variable env x) let judge_of_constant env cst = make_judge (mkConstU cst) (type_of_constant env cst) let judge_of_projection env p cj = make_judge (mkProj (p,cj.uj_val)) (type_of_projection env p cj.uj_val cj.uj_type) let dest_judgev v = Array.map j_val v, Array.map j_type v let judge_of_apply env funj argjv = let args, argtys = dest_judgev argjv in make_judge (mkApp (funj.uj_val, args)) (type_of_apply env funj.uj_val funj.uj_type args argtys) let judge_of_abstraction env x varj bodyj = make_judge (mkLambda (x, varj.utj_val, bodyj.uj_val)) (type_of_abstraction env x varj.utj_val bodyj.uj_type) let judge_of_product env x varj outj = make_judge (mkProd (x, varj.utj_val, outj.utj_val)) (mkSort (sort_of_product env varj.utj_type outj.utj_type)) let judge_of_letin env name defj typj j = make_judge (mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val)) (subst1 defj.uj_val j.uj_type) let judge_of_cast env cj k tj = let () = check_cast env cj.uj_val cj.uj_type k tj.utj_val in let c = match k with | REVERTcast -> cj.uj_val | _ -> mkCast (cj.uj_val, k, tj.utj_val) in make_judge c tj.utj_val let judge_of_inductive env indu = make_judge (mkIndU indu) (type_of_inductive env indu) let judge_of_constructor env cu = make_judge (mkConstructU cu) (type_of_constructor env cu) let judge_of_case env ci pj cj lfj = let lf, lft = dest_judgev lfj in make_judge (mkCase (ci, (*nf_betaiota*) pj.uj_val, cj.uj_val, lft)) (type_of_case env ci pj.uj_val pj.uj_type cj.uj_val cj.uj_type lf lft) let type_of_projection_constant env (p,u) = let cst = Projection.constant p in let cb = lookup_constant cst env in match cb.const_proj with | Some pb -> if Declareops.constant_is_polymorphic cb then Vars.subst_instance_constr u pb.proj_type else pb.proj_type | None -> raise (Invalid_argument "type_of_projection: not a projection")