1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Pp open CErrors open Util open Names open Term open Termops open EConstr open Inductiveops open Constr_matching open Coqlib open Declarations open Tacmach.New open Context.Rel.Declaration module RelDecl = Context.Rel.Declaration (* I implemented the following functions which test whether a term t is an inductive but non-recursive type, a general conjuction, a general disjunction, or a type with no constructors. They are more general than matching with or_term, and_term, etc, since they do not depend on the name of the type. Hence, they also work on ad-hoc disjunctions introduced by the user. -- Eduardo (6/8/97). *) type 'a matching_function = Evd.evar_map -> EConstr.constr -> 'a option type testing_function = Evd.evar_map -> EConstr.constr -> bool let mkmeta n = Nameops.make_ident "X" (Some n) let meta1 = mkmeta 1 let meta2 = mkmeta 2 let meta3 = mkmeta 3 let op2bool = function Some _ -> true | None -> false let match_with_non_recursive_type sigma t = match EConstr.kind sigma t with | App _ -> let (hdapp,args) = decompose_app sigma t in (match EConstr.kind sigma hdapp with | Ind (ind,u) -> if (Global.lookup_mind (fst ind)).mind_finite == Decl_kinds.CoFinite then Some (hdapp,args) else None | _ -> None) | _ -> None let is_non_recursive_type sigma t = op2bool (match_with_non_recursive_type sigma t) (* Test dependencies *) (* NB: we consider also the let-in case in the following function, since they may appear in types of inductive constructors (see #2629) *) let rec has_nodep_prod_after n sigma c = match EConstr.kind sigma c with | Prod (_,_,b) | LetIn (_,_,_,b) -> ( n>0 || Vars.noccurn sigma 1 b) && (has_nodep_prod_after (n-1) sigma b) | _ -> true let has_nodep_prod sigma c = has_nodep_prod_after 0 sigma c (* A general conjunctive type is a non-recursive with-no-indices inductive type with only one constructor and no dependencies between argument; it is strict if it has the form "Inductive I A1 ... An := C (_:A1) ... (_:An)" *) (* style: None = record; Some false = conjunction; Some true = strict conj *) let is_strict_conjunction = function | Some true -> true | _ -> false let is_lax_conjunction = function | Some false -> true | _ -> false let prod_assum sigma t = fst (decompose_prod_assum sigma t) let match_with_one_constructor sigma style onlybinary allow_rec t = let (hdapp,args) = decompose_app sigma t in let res = match EConstr.kind sigma hdapp with | Ind ind -> let (mib,mip) = Global.lookup_inductive (fst ind) in if Int.equal (Array.length mip.mind_consnames) 1 && (allow_rec || not (mis_is_recursive (fst ind,mib,mip))) && (Int.equal mip.mind_nrealargs 0) then if is_strict_conjunction style (* strict conjunction *) then let ctx = (prod_assum sigma (snd (decompose_prod_n_assum sigma mib.mind_nparams (EConstr.of_constr mip.mind_nf_lc.(0))))) in if List.for_all (fun decl -> let c = RelDecl.get_type decl in is_local_assum decl && isRel sigma c && Int.equal (destRel sigma c) mib.mind_nparams) ctx then Some (hdapp,args) else None else let ctyp = Termops.prod_applist sigma (EConstr.of_constr mip.mind_nf_lc.(0)) args in let cargs = List.map RelDecl.get_type (prod_assum sigma ctyp) in if not (is_lax_conjunction style) || has_nodep_prod sigma ctyp then (* Record or non strict conjunction *) Some (hdapp,List.rev cargs) else None else None | _ -> None in match res with | Some (hdapp, args) when not onlybinary -> res | Some (hdapp, [_; _]) -> res | _ -> None let match_with_conjunction ?(strict=false) ?(onlybinary=false) sigma t = match_with_one_constructor sigma (Some strict) onlybinary false t let match_with_record sigma t = match_with_one_constructor sigma None false false t let is_conjunction ?(strict=false) ?(onlybinary=false) sigma t = op2bool (match_with_conjunction sigma ~strict ~onlybinary t) let is_record sigma t = op2bool (match_with_record sigma t) let match_with_tuple sigma t = let t = match_with_one_constructor sigma None false true t in Option.map (fun (hd,l) -> let ind = destInd sigma hd in let ind = on_snd (fun u -> EInstance.kind sigma u) ind in let (mib,mip) = Global.lookup_pinductive ind in let isrec = mis_is_recursive (fst ind,mib,mip) in (hd,l,isrec)) t let is_tuple sigma t = op2bool (match_with_tuple sigma t) (* A general disjunction type is a non-recursive with-no-indices inductive type with of which all constructors have a single argument; it is strict if it has the form "Inductive I A1 ... An := C1 (_:A1) | ... | Cn : (_:An)" *) let test_strict_disjunction n lc = let open Term in Array.for_all_i (fun i c -> match (prod_assum (snd (decompose_prod_n_assum n c))) with | [LocalAssum (_,c)] -> Constr.isRel c && Int.equal (Constr.destRel c) (n - i) | _ -> false) 0 lc let match_with_disjunction ?(strict=false) ?(onlybinary=false) sigma t = let (hdapp,args) = decompose_app sigma t in let res = match EConstr.kind sigma hdapp with | Ind (ind,u) -> let car = constructors_nrealargs ind in let (mib,mip) = Global.lookup_inductive ind in if Array.for_all (fun ar -> Int.equal ar 1) car && not (mis_is_recursive (ind,mib,mip)) && (Int.equal mip.mind_nrealargs 0) then if strict then if test_strict_disjunction mib.mind_nparams mip.mind_nf_lc then Some (hdapp,args) else None else let cargs = Array.map (fun ar -> pi2 (destProd sigma (prod_applist sigma (EConstr.of_constr ar) args))) mip.mind_nf_lc in Some (hdapp,Array.to_list cargs) else None | _ -> None in match res with | Some (hdapp,args) when not onlybinary -> res | Some (hdapp,[_; _]) -> res | _ -> None let is_disjunction ?(strict=false) ?(onlybinary=false) sigma t = op2bool (match_with_disjunction ~strict ~onlybinary sigma t) (* An empty type is an inductive type, possible with indices, that has no constructors *) let match_with_empty_type sigma t = let (hdapp,args) = decompose_app sigma t in match EConstr.kind sigma hdapp with | Ind (ind, _) -> let (mib,mip) = Global.lookup_inductive ind in let nconstr = Array.length mip.mind_consnames in if Int.equal nconstr 0 then Some hdapp else None | _ -> None let is_empty_type sigma t = op2bool (match_with_empty_type sigma t) (* This filters inductive types with one constructor with no arguments; Parameters and indices are allowed *) let match_with_unit_or_eq_type sigma t = let (hdapp,args) = decompose_app sigma t in match EConstr.kind sigma hdapp with | Ind (ind , _) -> let (mib,mip) = Global.lookup_inductive ind in let constr_types = mip.mind_nf_lc in let nconstr = Array.length mip.mind_consnames in let zero_args c = Int.equal (nb_prod sigma (EConstr.of_constr c)) mib.mind_nparams in if Int.equal nconstr 1 && zero_args constr_types.(0) then Some hdapp else None | _ -> None let is_unit_or_eq_type sigma t = op2bool (match_with_unit_or_eq_type sigma t) (* A unit type is an inductive type with no indices but possibly (useless) parameters, and that has no arguments in its unique constructor *) let is_unit_type sigma t = match match_with_conjunction sigma t with | Some (_,[]) -> true | _ -> false (* Checks if a given term is an application of an inductive binary relation R, so that R has only one constructor establishing its reflexivity. *) type equation_kind = | MonomorphicLeibnizEq of constr * constr | PolymorphicLeibnizEq of constr * constr * constr | HeterogenousEq of constr * constr * constr * constr exception NoEquationFound open Glob_term open Decl_kinds open Evar_kinds let mkPattern c = snd (Patternops.pattern_of_glob_constr c) let mkGApp f args = DAst.make @@ GApp (f, args) let mkGHole = DAst.make @@ GHole (QuestionMark (Define false,Anonymous), Misctypes.IntroAnonymous, None) let mkGProd id c1 c2 = DAst.make @@ GProd (Name (Id.of_string id), Explicit, c1, c2) let mkGArrow c1 c2 = DAst.make @@ GProd (Anonymous, Explicit, c1, c2) let mkGVar id = DAst.make @@ GVar (Id.of_string id) let mkGPatVar id = DAst.make @@ GPatVar(Evar_kinds.FirstOrderPatVar (Id.of_string id)) let mkGRef r = DAst.make @@ GRef (Lazy.force r, None) let mkGAppRef r args = mkGApp (mkGRef r) args (** forall x : _, _ x x *) let coq_refl_leibniz1_pattern = mkPattern (mkGProd "x" mkGHole (mkGApp mkGHole [mkGVar "x"; mkGVar "x";])) (** forall A:_, forall x:A, _ A x x *) let coq_refl_leibniz2_pattern = mkPattern (mkGProd "A" mkGHole (mkGProd "x" (mkGVar "A") (mkGApp mkGHole [mkGVar "A"; mkGVar "x"; mkGVar "x";]))) (** forall A:_, forall x:A, _ A x A x *) let coq_refl_jm_pattern = mkPattern (mkGProd "A" mkGHole (mkGProd "x" (mkGVar "A") (mkGApp mkGHole [mkGVar "A"; mkGVar "x"; mkGVar "A"; mkGVar "x";]))) open Globnames let match_with_equation env sigma t = if not (isApp sigma t) then raise NoEquationFound; let (hdapp,args) = destApp sigma t in match EConstr.kind sigma hdapp with | Ind (ind,u) -> if eq_gr (IndRef ind) glob_eq then Some (build_coq_eq_data()),hdapp, PolymorphicLeibnizEq(args.(0),args.(1),args.(2)) else if eq_gr (IndRef ind) glob_identity then Some (build_coq_identity_data()),hdapp, PolymorphicLeibnizEq(args.(0),args.(1),args.(2)) else if eq_gr (IndRef ind) glob_jmeq then Some (build_coq_jmeq_data()),hdapp, HeterogenousEq(args.(0),args.(1),args.(2),args.(3)) else let (mib,mip) = Global.lookup_inductive ind in let constr_types = mip.mind_nf_lc in let nconstr = Array.length mip.mind_consnames in if Int.equal nconstr 1 then if is_matching env sigma coq_refl_leibniz1_pattern (EConstr.of_constr constr_types.(0)) then None, hdapp, MonomorphicLeibnizEq(args.(0),args.(1)) else if is_matching env sigma coq_refl_leibniz2_pattern (EConstr.of_constr constr_types.(0)) then None, hdapp, PolymorphicLeibnizEq(args.(0),args.(1),args.(2)) else if is_matching env sigma coq_refl_jm_pattern (EConstr.of_constr constr_types.(0)) then None, hdapp, HeterogenousEq(args.(0),args.(1),args.(2),args.(3)) else raise NoEquationFound else raise NoEquationFound | _ -> raise NoEquationFound (* Note: An "equality type" is any type with a single argument-free constructor: it captures eq, eq_dep, JMeq, eq_true, etc. but also True/unit which is the degenerate equality type (isomorphic to ()=()); in particular, True/unit are provable by "reflexivity" *) let is_inductive_equality ind = let (mib,mip) = Global.lookup_inductive ind in let nconstr = Array.length mip.mind_consnames in Int.equal nconstr 1 && Int.equal (constructor_nrealargs (ind,1)) 0 let match_with_equality_type sigma t = let (hdapp,args) = decompose_app sigma t in match EConstr.kind sigma hdapp with | Ind (ind,_) when is_inductive_equality ind -> Some (hdapp,args) | _ -> None let is_equality_type sigma t = op2bool (match_with_equality_type sigma t) (* Arrows/Implication/Negation *) (** X1 -> X2 **) let coq_arrow_pattern = mkPattern (mkGArrow (mkGPatVar "X1") (mkGPatVar "X2")) let match_arrow_pattern env sigma t = let result = matches env sigma coq_arrow_pattern t in match Id.Map.bindings result with | [(m1,arg);(m2,mind)] -> assert (Id.equal m1 meta1 && Id.equal m2 meta2); (arg, mind) | _ -> anomaly (Pp.str "Incorrect pattern matching.") let match_with_imp_term sigma c = match EConstr.kind sigma c with | Prod (_,a,b) when Vars.noccurn sigma 1 b -> Some (a,b) | _ -> None let is_imp_term sigma c = op2bool (match_with_imp_term sigma c) let match_with_nottype env sigma t = try let (arg,mind) = match_arrow_pattern env sigma t in if is_empty_type sigma mind then Some (mind,arg) else None with PatternMatchingFailure -> None let is_nottype env sigma t = op2bool (match_with_nottype env sigma t) (* Forall *) let match_with_forall_term sigma c= match EConstr.kind sigma c with | Prod (nam,a,b) -> Some (nam,a,b) | _ -> None let is_forall_term sigma c = op2bool (match_with_forall_term sigma c) let match_with_nodep_ind sigma t = let (hdapp,args) = decompose_app sigma t in match EConstr.kind sigma hdapp with | Ind (ind, _) -> let (mib,mip) = Global.lookup_inductive ind in if Array.length (mib.mind_packets)>1 then None else let nodep_constr c = has_nodep_prod_after mib.mind_nparams sigma (EConstr.of_constr c) in if Array.for_all nodep_constr mip.mind_nf_lc then let params= if Int.equal mip.mind_nrealargs 0 then args else fst (List.chop mib.mind_nparams args) in Some (hdapp,params,mip.mind_nrealargs) else None | _ -> None let is_nodep_ind sigma t = op2bool (match_with_nodep_ind sigma t) let match_with_sigma_type sigma t = let (hdapp,args) = decompose_app sigma t in match EConstr.kind sigma hdapp with | Ind (ind, _) -> let (mib,mip) = Global.lookup_inductive ind in if Int.equal (Array.length (mib.mind_packets)) 1 && (Int.equal mip.mind_nrealargs 0) && (Int.equal (Array.length mip.mind_consnames)1) && has_nodep_prod_after (mib.mind_nparams+1) sigma (EConstr.of_constr mip.mind_nf_lc.(0)) then (*allowing only 1 existential*) Some (hdapp,args) else None | _ -> None let is_sigma_type sigma t = op2bool (match_with_sigma_type sigma t) (***** Destructing patterns bound to some theory *) let rec first_match matcher = function | [] -> raise PatternMatchingFailure | (pat,check,build_set)::l when check () -> (try (build_set (),matcher pat) with PatternMatchingFailure -> first_match matcher l) | _::l -> first_match matcher l (*** Equality *) let match_eq sigma eqn (ref, hetero) = let ref = try Lazy.force ref with e when CErrors.noncritical e -> raise PatternMatchingFailure in match EConstr.kind sigma eqn with | App (c, [|t; x; y|]) -> if not hetero && Termops.is_global sigma ref c then PolymorphicLeibnizEq (t, x, y) else raise PatternMatchingFailure | App (c, [|t; x; t'; x'|]) -> if hetero && Termops.is_global sigma ref c then HeterogenousEq (t, x, t', x') else raise PatternMatchingFailure | _ -> raise PatternMatchingFailure let no_check () = true let check_jmeq_loaded () = Library.library_is_loaded Coqlib.jmeq_module let equalities = [(coq_eq_ref, false), no_check, build_coq_eq_data; (coq_jmeq_ref, true), check_jmeq_loaded, build_coq_jmeq_data; (coq_identity_ref, false), no_check, build_coq_identity_data] let find_eq_data sigma eqn = (* fails with PatternMatchingFailure *) let d,k = first_match (match_eq sigma eqn) equalities in let hd,u = destInd sigma (fst (destApp sigma eqn)) in d,u,k let extract_eq_args gl = function | MonomorphicLeibnizEq (e1,e2) -> let t = pf_unsafe_type_of gl e1 in (t,e1,e2) | PolymorphicLeibnizEq (t,e1,e2) -> (t,e1,e2) | HeterogenousEq (t1,e1,t2,e2) -> if pf_conv_x gl t1 t2 then (t1,e1,e2) else raise PatternMatchingFailure let find_eq_data_decompose gl eqn = let (lbeq,u,eq_args) = find_eq_data (project gl) eqn in (lbeq,u,extract_eq_args gl eq_args) let find_this_eq_data_decompose gl eqn = let (lbeq,u,eq_args) = try (*first_match (match_eq eqn) inversible_equalities*) find_eq_data (project gl) eqn with PatternMatchingFailure -> user_err (str "No primitive equality found.") in let eq_args = try extract_eq_args gl eq_args with PatternMatchingFailure -> user_err Pp.(str "Don't know what to do with JMeq on arguments not of same type.") in (lbeq,u,eq_args) let match_eq_nf gls eqn (ref, hetero) = let n = if hetero then 4 else 3 in let args = List.init n (fun i -> mkGPatVar ("X" ^ string_of_int (i + 1))) in let pat = mkPattern (mkGAppRef ref args) in match Id.Map.bindings (pf_matches gls pat eqn) with | [(m1,t);(m2,x);(m3,y)] -> assert (Id.equal m1 meta1 && Id.equal m2 meta2 && Id.equal m3 meta3); (t,pf_whd_all gls x,pf_whd_all gls y) | _ -> anomaly ~label:"match_eq" (Pp.str "an eq pattern should match 3 terms.") let dest_nf_eq gls eqn = try snd (first_match (match_eq_nf gls eqn) equalities) with PatternMatchingFailure -> user_err Pp.(str "Not an equality.") (*** Sigma-types *) let match_sigma env sigma ex = match EConstr.kind sigma ex with | App (f, [| a; p; car; cdr |]) when Termops.is_global sigma (Lazy.force coq_exist_ref) f -> build_sigma (), (snd (destConstruct sigma f), a, p, car, cdr) | App (f, [| a; p; car; cdr |]) when Termops.is_global sigma (Lazy.force coq_existT_ref) f -> build_sigma_type (), (snd (destConstruct sigma f), a, p, car, cdr) | _ -> raise PatternMatchingFailure let find_sigma_data_decompose env ex = (* fails with PatternMatchingFailure *) match_sigma env ex (* Pattern "(sig ?1 ?2)" *) let coq_sig_pattern = lazy (mkPattern (mkGAppRef coq_sig_ref [mkGPatVar "X1"; mkGPatVar "X2"])) let match_sigma env sigma t = match Id.Map.bindings (matches env sigma (Lazy.force coq_sig_pattern) t) with | [(_,a); (_,p)] -> (a,p) | _ -> anomaly (Pp.str "Unexpected pattern.") let is_matching_sigma env sigma t = is_matching env sigma (Lazy.force coq_sig_pattern) t (*** Decidable equalities *) (* The expected form of the goal for the tactic Decide Equality *) (* Pattern "{<?1>x=y}+{~(<?1>x=y)}" *) (* i.e. "(sumbool (eq ?1 x y) ~(eq ?1 x y))" *) let coq_eqdec ~sum ~rev = lazy ( let eqn = mkGAppRef coq_eq_ref (List.map mkGPatVar ["X1"; "X2"; "X3"]) in let args = [eqn; mkGAppRef coq_not_ref [eqn]] in let args = if rev then List.rev args else args in mkPattern (mkGAppRef sum args) ) (** { ?X2 = ?X3 :> ?X1 } + { ~ ?X2 = ?X3 :> ?X1 } *) let coq_eqdec_inf_pattern = coq_eqdec ~sum:coq_sumbool_ref ~rev:false (** { ~ ?X2 = ?X3 :> ?X1 } + { ?X2 = ?X3 :> ?X1 } *) let coq_eqdec_inf_rev_pattern = coq_eqdec ~sum:coq_sumbool_ref ~rev:true (** %coq_or_ref (?X2 = ?X3 :> ?X1) (~ ?X2 = ?X3 :> ?X1) *) let coq_eqdec_pattern = coq_eqdec ~sum:coq_or_ref ~rev:false (** %coq_or_ref (~ ?X2 = ?X3 :> ?X1) (?X2 = ?X3 :> ?X1) *) let coq_eqdec_rev_pattern = coq_eqdec ~sum:coq_or_ref ~rev:true let op_or = coq_or_ref let op_sum = coq_sumbool_ref let match_eqdec env sigma t = let eqonleft,op,subst = try true,op_sum,matches env sigma (Lazy.force coq_eqdec_inf_pattern) t with PatternMatchingFailure -> try false,op_sum,matches env sigma (Lazy.force coq_eqdec_inf_rev_pattern) t with PatternMatchingFailure -> try true,op_or,matches env sigma (Lazy.force coq_eqdec_pattern) t with PatternMatchingFailure -> false,op_or,matches env sigma (Lazy.force coq_eqdec_rev_pattern) t in match Id.Map.bindings subst with | [(_,typ);(_,c1);(_,c2)] -> eqonleft, Lazy.force op, c1, c2, typ | _ -> anomaly (Pp.str "Unexpected pattern.") (* Patterns "~ ?" and "? -> False" *) let coq_not_pattern = lazy (mkPattern (mkGAppRef coq_not_ref [mkGHole])) let coq_imp_False_pattern = lazy (mkPattern (mkGArrow mkGHole (mkGRef coq_False_ref))) let is_matching_not env sigma t = is_matching env sigma (Lazy.force coq_not_pattern) t let is_matching_imp_False env sigma t = is_matching env sigma (Lazy.force coq_imp_False_pattern) t (* Remark: patterns that have references to the standard library must be evaluated lazily (i.e. at the time they are used, not a the time coqtop starts) *)