1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open CErrors open Util open Cic open Term open Closure open Esubst open Environ let rec is_empty_stack = function [] -> true | Zupdate _::s -> is_empty_stack s | Zshift _::s -> is_empty_stack s | _ -> false (* Compute the lift to be performed on a term placed in a given stack *) let el_stack el stk = let n = List.fold_left (fun i z -> match z with Zshift n -> i+n | _ -> i) 0 stk in el_shft n el let compare_stack_shape stk1 stk2 = let rec compare_rec bal stk1 stk2 = match (stk1,stk2) with ([],[]) -> bal=0 | ((Zupdate _|Zshift _)::s1, _) -> compare_rec bal s1 stk2 | (_, (Zupdate _|Zshift _)::s2) -> compare_rec bal stk1 s2 | (Zapp l1::s1, _) -> compare_rec (bal+Array.length l1) s1 stk2 | (_, Zapp l2::s2) -> compare_rec (bal-Array.length l2) stk1 s2 | (Zproj (n1,m1,p1)::s1, Zproj (n2,m2,p2)::s2) -> Int.equal bal 0 && compare_rec 0 s1 s2 | ((Zcase(c1,_,_)|ZcaseT(c1,_,_,_))::s1, (Zcase(c2,_,_)|ZcaseT(c2,_,_,_))::s2) -> bal=0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2 | (Zfix(_,a1)::s1, Zfix(_,a2)::s2) -> bal=0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2 | (_,_) -> false in compare_rec 0 stk1 stk2 type lft_constr_stack_elt = Zlapp of (lift * fconstr) array | Zlproj of Names.projection * lift | Zlfix of (lift * fconstr) * lft_constr_stack | Zlcase of case_info * lift * fconstr * fconstr array and lft_constr_stack = lft_constr_stack_elt list let rec zlapp v = function Zlapp v2 :: s -> zlapp (Array.append v v2) s | s -> Zlapp v :: s let pure_stack lfts stk = let rec pure_rec lfts stk = match stk with [] -> (lfts,[]) | zi::s -> (match (zi,pure_rec lfts s) with (Zupdate _,lpstk) -> lpstk | (Zshift n,(l,pstk)) -> (el_shft n l, pstk) | (Zapp a, (l,pstk)) -> (l,zlapp (Array.map (fun t -> (l,t)) a) pstk) | (Zproj (n,m,c), (l,pstk)) -> (l, Zlproj (c,l)::pstk) | (Zfix(fx,a),(l,pstk)) -> let (lfx,pa) = pure_rec l a in (l, Zlfix((lfx,fx),pa)::pstk) | (ZcaseT(ci,p,br,env),(l,pstk)) -> (l,Zlcase(ci,l,mk_clos env p,mk_clos_vect env br)::pstk) | (Zcase(ci,p,br),(l,pstk)) -> (l,Zlcase(ci,l,p,br)::pstk)) in snd (pure_rec lfts stk) (****************************************************************************) (* Reduction Functions *) (****************************************************************************) let whd_betaiotazeta x = match x with | (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _) -> x | _ -> whd_val (create_clos_infos betaiotazeta empty_env) (inject x) let whd_all env t = match t with | (Sort _|Meta _|Evar _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _) -> t | _ -> whd_val (create_clos_infos betadeltaiota env) (inject t) let whd_allnolet env t = match t with | (Sort _|Meta _|Evar _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _|LetIn _) -> t | _ -> whd_val (create_clos_infos betadeltaiotanolet env) (inject t) (* Beta *) let beta_appvect c v = let rec stacklam env t stack = match t, stack with Lambda(_,_,c), arg::stacktl -> stacklam (arg::env) c stacktl | _ -> applist (substl env t, stack) in stacklam [] c (Array.to_list v) (********************************************************************) (* Conversion *) (********************************************************************) type conv_pb = | CONV | CUMUL (* Conversion utility functions *) type 'a conversion_function = env -> 'a -> 'a -> unit exception NotConvertible exception NotConvertibleVect of int let convert_universes univ u u' = if Univ.Instance.check_eq univ u u' then () else raise NotConvertible let compare_stacks f fmind lft1 stk1 lft2 stk2 = let rec cmp_rec pstk1 pstk2 = match (pstk1,pstk2) with | (z1::s1, z2::s2) -> cmp_rec s1 s2; (match (z1,z2) with | (Zlapp a1,Zlapp a2) -> Array.iter2 f a1 a2 | (Zlfix(fx1,a1),Zlfix(fx2,a2)) -> f fx1 fx2; cmp_rec a1 a2 | (Zlproj (c1,l1),Zlproj (c2,l2)) -> if not (Names.eq_con_chk (Names.Projection.constant c1) (Names.Projection.constant c2)) then raise NotConvertible | (Zlcase(ci1,l1,p1,br1),Zlcase(ci2,l2,p2,br2)) -> if not (fmind ci1.ci_ind ci2.ci_ind) then raise NotConvertible; f (l1,p1) (l2,p2); Array.iter2 (fun c1 c2 -> f (l1,c1) (l2,c2)) br1 br2 | _ -> assert false) | _ -> () in if compare_stack_shape stk1 stk2 then cmp_rec (pure_stack lft1 stk1) (pure_stack lft2 stk2) else raise NotConvertible let convert_inductive_instances cv_pb cumi u u' univs = let len_instance = Univ.AUContext.size (Univ.ACumulativityInfo.univ_context cumi) in let ind_subtypctx = Univ.ACumulativityInfo.subtyp_context cumi in if not ((len_instance = Univ.Instance.length u) && (len_instance = Univ.Instance.length u')) then anomaly (Pp.str "Invalid inductive subtyping encountered!") else let comp_cst = let comp_subst = (Univ.Instance.append u u') in Univ.AUContext.instantiate comp_subst ind_subtypctx in let comp_cst = match cv_pb with CONV -> let comp_cst' = let comp_subst = (Univ.Instance.append u' u) in Univ.AUContext.instantiate comp_subst ind_subtypctx in Univ.Constraint.union comp_cst comp_cst' | CUMUL -> comp_cst in if (Univ.check_constraints comp_cst univs) then () else raise NotConvertible let convert_inductives cv_pb (mind, ind) u1 sv1 u2 sv2 univs = match mind.mind_universes with | Monomorphic_ind _ | Polymorphic_ind _ -> convert_universes univs u1 u2 | Cumulative_ind cumi -> let num_param_arity = mind.mind_nparams + mind.mind_packets.(ind).mind_nrealargs in if not (num_param_arity = sv1 && num_param_arity = sv2) then convert_universes univs u1 u2 else convert_inductive_instances cv_pb cumi u1 u2 univs let convert_constructors (mind, ind, cns) u1 sv1 u2 sv2 univs = match mind.mind_universes with | Monomorphic_ind _ | Polymorphic_ind _ -> convert_universes univs u1 u2 | Cumulative_ind cumi -> let num_cnstr_args = let nparamsctxt = mind.mind_nparams + mind.mind_packets.(ind).mind_nrealargs in nparamsctxt + mind.mind_packets.(ind).mind_consnrealargs.(cns - 1) in if not (num_cnstr_args = sv1 && num_cnstr_args = sv2) then convert_universes univs u1 u2 else convert_inductive_instances CONV cumi u1 u2 univs (* Convertibility of sorts *) let sort_cmp env univ pb s0 s1 = match (s0,s1) with | (Prop c1, Prop c2) when pb = CUMUL -> if c1 = Pos && c2 = Null then raise NotConvertible | (Prop c1, Prop c2) -> if c1 <> c2 then raise NotConvertible | (Prop c1, Type u) -> (match pb with CUMUL -> () | _ -> raise NotConvertible) | (Type u1, Type u2) -> (** FIXME: handle type-in-type option here *) if (* snd (engagement env) == StratifiedType && *) not (match pb with | CONV -> Univ.check_eq univ u1 u2 | CUMUL -> Univ.check_leq univ u1 u2) then begin if !Flags.debug then begin let op = match pb with CONV -> "=" | CUMUL -> "<=" in Format.eprintf "sort_cmp: @[%a@]\n%!" Pp.pp_with Pp.( str"Error: " ++ Univ.pr_uni u1 ++ str op ++ Univ.pr_uni u2 ++ str ":" ++ cut() ++ Univ.pr_universes univ) end; raise NotConvertible end | (_, _) -> raise NotConvertible let rec no_arg_available = function | [] -> true | Zupdate _ :: stk -> no_arg_available stk | Zshift _ :: stk -> no_arg_available stk | Zapp v :: stk -> Array.length v = 0 && no_arg_available stk | Zproj _ :: _ -> true | Zcase _ :: _ -> true | ZcaseT _ :: _ -> true | Zfix _ :: _ -> true let rec no_nth_arg_available n = function | [] -> true | Zupdate _ :: stk -> no_nth_arg_available n stk | Zshift _ :: stk -> no_nth_arg_available n stk | Zapp v :: stk -> let k = Array.length v in if n >= k then no_nth_arg_available (n-k) stk else false | Zproj _ :: _ -> true | Zcase _ :: _ -> true | ZcaseT _ :: _ -> true | Zfix _ :: _ -> true let rec no_case_available = function | [] -> true | Zupdate _ :: stk -> no_case_available stk | Zshift _ :: stk -> no_case_available stk | Zapp _ :: stk -> no_case_available stk | Zproj (_,_,_) :: _ -> false | Zcase _ :: _ -> false | ZcaseT _ :: _ -> false | Zfix _ :: _ -> true let in_whnf (t,stk) = match fterm_of t with | (FLetIn _ | FCase _ | FCaseT _ | FApp _ | FCLOS _ | FLIFT _ | FCast _) -> false | FLambda _ -> no_arg_available stk | FConstruct _ -> no_case_available stk | FCoFix _ -> no_case_available stk | FFix(((ri,n),(_,_,_)),_) -> no_nth_arg_available ri.(n) stk | (FFlex _ | FProd _ | FEvar _ | FInd _ | FAtom _ | FRel _ | FProj _) -> true | FLOCKED -> assert false let oracle_order fl1 fl2 = match fl1,fl2 with ConstKey c1, ConstKey c2 -> (*height c1 > height c2*)false | _, ConstKey _ -> true | _ -> false let unfold_projection infos p c = let pb = lookup_projection p (infos_env infos) in let s = Zproj (pb.proj_npars, pb.proj_arg, p) in (c, s) (* Conversion between [lft1]term1 and [lft2]term2 *) let rec ccnv univ cv_pb infos lft1 lft2 term1 term2 = eqappr univ cv_pb infos (lft1, (term1,[])) (lft2, (term2,[])) (* Conversion between [lft1](hd1 v1) and [lft2](hd2 v2) *) and eqappr univ cv_pb infos (lft1,st1) (lft2,st2) = Control.check_for_interrupt (); (* First head reduce both terms *) let rec whd_both (t1,stk1) (t2,stk2) = let st1' = whd_stack infos t1 stk1 in let st2' = whd_stack infos t2 stk2 in (* Now, whd_stack on term2 might have modified st1 (due to sharing), and st1 might not be in whnf anymore. If so, we iterate ccnv. *) if in_whnf st1' then (st1',st2') else whd_both st1' st2' in let ((hd1,v1),(hd2,v2)) = whd_both st1 st2 in let appr1 = (lft1,(hd1,v1)) and appr2 = (lft2,(hd2,v2)) in (* compute the lifts that apply to the head of the term (hd1 and hd2) *) let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in match (fterm_of hd1, fterm_of hd2) with (* case of leaves *) | (FAtom a1, FAtom a2) -> (match a1, a2 with | (Sort s1, Sort s2) -> assert (is_empty_stack v1 && is_empty_stack v2); sort_cmp (infos_env infos) univ cv_pb s1 s2 | (Meta n, Meta m) -> if n=m then convert_stacks univ infos lft1 lft2 v1 v2 else raise NotConvertible | _ -> raise NotConvertible) | (FEvar (ev1,args1), FEvar (ev2,args2)) -> if ev1=ev2 then (convert_stacks univ infos lft1 lft2 v1 v2; convert_vect univ infos el1 el2 args1 args2) else raise NotConvertible (* 2 index known to be bound to no constant *) | (FRel n, FRel m) -> if reloc_rel n el1 = reloc_rel m el2 then convert_stacks univ infos lft1 lft2 v1 v2 else raise NotConvertible (* 2 constants, 2 local defined vars or 2 defined rels *) | (FFlex fl1, FFlex fl2) -> (try (* try first intensional equality *) if eq_table_key fl1 fl2 then convert_stacks univ infos lft1 lft2 v1 v2 else raise NotConvertible with NotConvertible -> (* else the oracle tells which constant is to be expanded *) let (app1,app2) = if oracle_order fl1 fl2 then match unfold_reference infos fl1 with | Some def1 -> ((lft1, whd_stack infos def1 v1), appr2) | None -> (match unfold_reference infos fl2 with | Some def2 -> (appr1, (lft2, whd_stack infos def2 v2)) | None -> raise NotConvertible) else match unfold_reference infos fl2 with | Some def2 -> (appr1, (lft2, whd_stack infos def2 v2)) | None -> (match unfold_reference infos fl1 with | Some def1 -> ((lft1, whd_stack infos def1 v1), appr2) | None -> raise NotConvertible) in eqappr univ cv_pb infos app1 app2) | (FProj (p1,c1), _) -> let (def1, s1) = unfold_projection infos p1 c1 in eqappr univ cv_pb infos (lft1, whd_stack infos def1 (s1 :: v1)) appr2 | (_, FProj (p2,c2)) -> let (def2, s2) = unfold_projection infos p2 c2 in eqappr univ cv_pb infos appr1 (lft2, whd_stack infos def2 (s2 :: v2)) (* other constructors *) | (FLambda _, FLambda _) -> (* Inconsistency: we tolerate that v1, v2 contain shift and update but we throw them away *) assert (is_empty_stack v1 && is_empty_stack v2); let (_,ty1,bd1) = destFLambda mk_clos hd1 in let (_,ty2,bd2) = destFLambda mk_clos hd2 in ccnv univ CONV infos el1 el2 ty1 ty2; ccnv univ CONV infos (el_lift el1) (el_lift el2) bd1 bd2 | (FProd (_,c1,c2), FProd (_,c'1,c'2)) -> assert (is_empty_stack v1 && is_empty_stack v2); (* Luo's system *) ccnv univ CONV infos el1 el2 c1 c'1; ccnv univ cv_pb infos (el_lift el1) (el_lift el2) c2 c'2 (* Eta-expansion on the fly *) | (FLambda _, _) -> if v1 <> [] then anomaly (Pp.str "conversion was given unreduced term (FLambda)."); let (_,_ty1,bd1) = destFLambda mk_clos hd1 in eqappr univ CONV infos (el_lift lft1,(bd1,[])) (el_lift lft2,(hd2,eta_expand_stack v2)) | (_, FLambda _) -> if v2 <> [] then anomaly (Pp.str "conversion was given unreduced term (FLambda)."); let (_,_ty2,bd2) = destFLambda mk_clos hd2 in eqappr univ CONV infos (el_lift lft1,(hd1,eta_expand_stack v1)) (el_lift lft2,(bd2,[])) (* only one constant, defined var or defined rel *) | (FFlex fl1, c2) -> (match unfold_reference infos fl1 with | Some def1 -> eqappr univ cv_pb infos (lft1, whd_stack infos def1 v1) appr2 | None -> match c2 with | FConstruct ((ind2,j2),u2) -> (try let v2, v1 = eta_expand_ind_stack (infos_env infos) ind2 hd2 v2 (snd appr1) in convert_stacks univ infos lft1 lft2 v1 v2 with Not_found -> raise NotConvertible) | _ -> raise NotConvertible) | (c1, FFlex fl2) -> (match unfold_reference infos fl2 with | Some def2 -> eqappr univ cv_pb infos appr1 (lft2, whd_stack infos def2 v2) | None -> match c1 with | FConstruct ((ind1,j1),u1) -> (try let v1, v2 = eta_expand_ind_stack (infos_env infos) ind1 hd1 v1 (snd appr2) in convert_stacks univ infos lft1 lft2 v1 v2 with Not_found -> raise NotConvertible) | _ -> raise NotConvertible) (* Inductive types: MutInd MutConstruct Fix Cofix *) | (FInd (ind1,u1), FInd (ind2,u2)) -> if mind_equiv_infos infos ind1 ind2 then if Univ.Instance.length u1 = 0 || Univ.Instance.length u2 = 0 then begin convert_universes univ u1 u2; convert_stacks univ infos lft1 lft2 v1 v2 end else let mind = Environ.lookup_mind (fst ind1) (infos_env infos) in let () = convert_inductives cv_pb (mind, snd ind1) u1 (stack_args_size v1) u2 (stack_args_size v2) univ in convert_stacks univ infos lft1 lft2 v1 v2 else raise NotConvertible | (FConstruct ((ind1,j1),u1), FConstruct ((ind2,j2),u2)) -> if Int.equal j1 j2 && mind_equiv_infos infos ind1 ind2 then if Univ.Instance.length u1 = 0 || Univ.Instance.length u2 = 0 then begin convert_universes univ u1 u2; convert_stacks univ infos lft1 lft2 v1 v2 end else let mind = Environ.lookup_mind (fst ind1) (infos_env infos) in let () = convert_constructors (mind, snd ind1, j1) u1 (stack_args_size v1) u2 (stack_args_size v2) univ in convert_stacks univ infos lft1 lft2 v1 v2 else raise NotConvertible (* Eta expansion of records *) | (FConstruct ((ind1,j1),u1), _) -> (try let v1, v2 = eta_expand_ind_stack (infos_env infos) ind1 hd1 v1 (snd appr2) in convert_stacks univ infos lft1 lft2 v1 v2 with Not_found -> raise NotConvertible) | (_, FConstruct ((ind2,j2),u2)) -> (try let v2, v1 = eta_expand_ind_stack (infos_env infos) ind2 hd2 v2 (snd appr1) in convert_stacks univ infos lft1 lft2 v1 v2 with Not_found -> raise NotConvertible) | (FFix ((op1,(_,tys1,cl1)),e1), FFix((op2,(_,tys2,cl2)),e2)) -> if op1 = op2 then let n = Array.length cl1 in let fty1 = Array.map (mk_clos e1) tys1 in let fty2 = Array.map (mk_clos e2) tys2 in let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in convert_vect univ infos el1 el2 fty1 fty2; convert_vect univ infos (el_liftn n el1) (el_liftn n el2) fcl1 fcl2; convert_stacks univ infos lft1 lft2 v1 v2 else raise NotConvertible | (FCoFix ((op1,(_,tys1,cl1)),e1), FCoFix((op2,(_,tys2,cl2)),e2)) -> if op1 = op2 then let n = Array.length cl1 in let fty1 = Array.map (mk_clos e1) tys1 in let fty2 = Array.map (mk_clos e2) tys2 in let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in convert_vect univ infos el1 el2 fty1 fty2; convert_vect univ infos (el_liftn n el1) (el_liftn n el2) fcl1 fcl2; convert_stacks univ infos lft1 lft2 v1 v2 else raise NotConvertible (* Should not happen because both (hd1,v1) and (hd2,v2) are in whnf *) | ( (FLetIn _, _) | (FCase _,_) | (FCaseT _,_) | (FApp _,_) | (FCLOS _,_) | (FLIFT _,_) | (_, FLetIn _) | (_,FCase _) | (_,FCaseT _) | (_,FApp _) | (_,FCLOS _) | (_,FLIFT _) | (FLOCKED,_) | (_,FLOCKED) ) -> assert false (* In all other cases, terms are not convertible *) | _ -> raise NotConvertible and convert_stacks univ infos lft1 lft2 stk1 stk2 = compare_stacks (fun (l1,t1) (l2,t2) -> ccnv univ CONV infos l1 l2 t1 t2) (mind_equiv_infos infos) lft1 stk1 lft2 stk2 and convert_vect univ infos lft1 lft2 v1 v2 = Array.iter2 (fun t1 t2 -> ccnv univ CONV infos lft1 lft2 t1 t2) v1 v2 let clos_fconv cv_pb eager_delta env t1 t2 = let infos = create_clos_infos (if eager_delta then betadeltaiota else betaiotazeta) env in let univ = universes env in ccnv univ cv_pb infos el_id el_id (inject t1) (inject t2) let fconv cv_pb eager_delta env t1 t2 = if eq_constr t1 t2 then () else clos_fconv cv_pb eager_delta env t1 t2 let conv = fconv CONV false let conv_leq = fconv CUMUL false (* option for conversion : no compilation for the checker *) let vm_conv cv_pb = fconv cv_pb true (********************************************************************) (* Special-Purpose Reduction *) (********************************************************************) (* pseudo-reduction rule: * [hnf_prod_app env s (Prod(_,B)) N --> B[N] * with an HNF on the first argument to produce a product. * if this does not work, then we use the string S as part of our * error message. *) let hnf_prod_app env t n = match whd_all env t with | Prod (_,_,b) -> subst1 n b | _ -> anomaly ~label:"hnf_prod_app" (Pp.str "Need a product.") let hnf_prod_applist env t nl = List.fold_left (hnf_prod_app env) t nl (* Dealing with arities *) let dest_prod env = let rec decrec env m c = let t = whd_all env c in match t with | Prod (n,a,c0) -> let d = LocalAssum (n,a) in decrec (push_rel d env) (d::m) c0 | _ -> m,t in decrec env empty_rel_context (* The same but preserving lets in the context, not internal ones. *) let dest_prod_assum env = let rec prodec_rec env l ty = let rty = whd_allnolet env ty in match rty with | Prod (x,t,c) -> let d = LocalAssum (x,t) in prodec_rec (push_rel d env) (d::l) c | LetIn (x,b,t,c) -> let d = LocalDef (x,b,t) in prodec_rec (push_rel d env) (d::l) c | Cast (c,_,_) -> prodec_rec env l c | _ -> let rty' = whd_all env rty in if Term.eq_constr rty' rty then l, rty else prodec_rec env l rty' in prodec_rec env empty_rel_context let dest_lam_assum env = let rec lamec_rec env l ty = let rty = whd_allnolet env ty in match rty with | Lambda (x,t,c) -> let d = LocalAssum (x,t) in lamec_rec (push_rel d env) (d::l) c | LetIn (x,b,t,c) -> let d = LocalDef (x,b,t) in lamec_rec (push_rel d env) (d::l) c | Cast (c,_,_) -> lamec_rec env l c | _ -> l,rty in lamec_rec env empty_rel_context let dest_arity env c = let l, c = dest_prod_assum env c in match c with | Sort s -> l,s | _ -> user_err Pp.(str "not an arity")