1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* This file uses the (non-compressed) union-find structure to generate *) (* proof-trees that will be transformed into proof-terms in cctac.ml4 *) open CErrors open Constr open Ccalgo open Pp type rule= Ax of constr | SymAx of constr | Refl of term | Trans of proof*proof | Congr of proof*proof | Inject of proof*pconstructor*int*int and proof = {p_lhs:term;p_rhs:term;p_rule:rule} let prefl t = {p_lhs=t;p_rhs=t;p_rule=Refl t} let pcongr p1 p2 = match p1.p_rule,p2.p_rule with Refl t1, Refl t2 -> prefl (Appli (t1,t2)) | _, _ -> {p_lhs=Appli (p1.p_lhs,p2.p_lhs); p_rhs=Appli (p1.p_rhs,p2.p_rhs); p_rule=Congr (p1,p2)} let rec ptrans p1 p3= match p1.p_rule,p3.p_rule with Refl _, _ ->p3 | _, Refl _ ->p1 | Trans(p1,p2), _ ->ptrans p1 (ptrans p2 p3) | Congr(p1,p2), Congr(p3,p4) ->pcongr (ptrans p1 p3) (ptrans p2 p4) | Congr(p1,p2), Trans({p_rule=Congr(p3,p4)},p5) -> ptrans (pcongr (ptrans p1 p3) (ptrans p2 p4)) p5 | _, _ -> if term_equal p1.p_rhs p3.p_lhs then {p_lhs=p1.p_lhs; p_rhs=p3.p_rhs; p_rule=Trans (p1,p3)} else anomaly (Pp.str "invalid cc transitivity.") let rec psym p = match p.p_rule with Refl _ -> p | SymAx s -> {p_lhs=p.p_rhs; p_rhs=p.p_lhs; p_rule=Ax s} | Ax s-> {p_lhs=p.p_rhs; p_rhs=p.p_lhs; p_rule=SymAx s} | Inject (p0,c,n,a)-> {p_lhs=p.p_rhs; p_rhs=p.p_lhs; p_rule=Inject (psym p0,c,n,a)} | Trans (p1,p2)-> ptrans (psym p2) (psym p1) | Congr (p1,p2)-> pcongr (psym p1) (psym p2) let pax axioms s = let l,r = Constrhash.find axioms s in {p_lhs=l; p_rhs=r; p_rule=Ax s} let psymax axioms s = let l,r = Constrhash.find axioms s in {p_lhs=r; p_rhs=l; p_rule=SymAx s} let rec nth_arg t n= match t with Appli (t1,t2)-> if n>0 then nth_arg t1 (n-1) else t2 | _ -> anomaly ~label:"nth_arg" (Pp.str "not enough args.") let pinject p c n a = {p_lhs=nth_arg p.p_lhs (n-a); p_rhs=nth_arg p.p_rhs (n-a); p_rule=Inject(p,c,n,a)} let rec equal_proof uf i j= debug (fun () -> str "equal_proof " ++ pr_idx_term uf i ++ brk (1,20) ++ pr_idx_term uf j); if i=j then prefl (term uf i) else let (li,lj)=join_path uf i j in ptrans (path_proof uf i li) (psym (path_proof uf j lj)) and edge_proof uf ((i,j),eq)= debug (fun () -> str "edge_proof " ++ pr_idx_term uf i ++ brk (1,20) ++ pr_idx_term uf j); let pi=equal_proof uf i eq.lhs in let pj=psym (equal_proof uf j eq.rhs) in let pij= match eq.rule with Axiom (s,reversed)-> if reversed then psymax (axioms uf) s else pax (axioms uf) s | Congruence ->congr_proof uf eq.lhs eq.rhs | Injection (ti,ipac,tj,jpac,k) -> (* pi_k ipac = p_k jpac *) let p=ind_proof uf ti ipac tj jpac in let cinfo= get_constructor_info uf ipac.cnode in pinject p cinfo.ci_constr cinfo.ci_nhyps k in ptrans (ptrans pi pij) pj and constr_proof uf i ipac= debug (fun () -> str "constr_proof " ++ pr_idx_term uf i ++ brk (1,20)); let t=find_oldest_pac uf i ipac in let eq_it=equal_proof uf i t in if ipac.args=[] then eq_it else let fipac=tail_pac ipac in let (fi,arg)=subterms uf t in let targ=term uf arg in let p=constr_proof uf fi fipac in ptrans eq_it (pcongr p (prefl targ)) and path_proof uf i l= debug (fun () -> str "path_proof " ++ pr_idx_term uf i ++ brk (1,20) ++ str "{" ++ (prlist_with_sep (fun () -> str ",") (fun ((_,j),_) -> int j) l) ++ str "}"); match l with | [] -> prefl (term uf i) | x::q->ptrans (path_proof uf (snd (fst x)) q) (edge_proof uf x) and congr_proof uf i j= debug (fun () -> str "congr_proof " ++ pr_idx_term uf i ++ brk (1,20) ++ pr_idx_term uf j); let (i1,i2) = subterms uf i and (j1,j2) = subterms uf j in pcongr (equal_proof uf i1 j1) (equal_proof uf i2 j2) and ind_proof uf i ipac j jpac= debug (fun () -> str "ind_proof " ++ pr_idx_term uf i ++ brk (1,20) ++ pr_idx_term uf j); let p=equal_proof uf i j and p1=constr_proof uf i ipac and p2=constr_proof uf j jpac in ptrans (psym p1) (ptrans p p2) let build_proof uf= function | `Prove (i,j) -> equal_proof uf i j | `Discr (i,ci,j,cj)-> ind_proof uf i ci j cj