1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Miniml open Constr open Declarations open Names open ModPath open Libnames open Globnames open Pp open CErrors open Util open Table open Extraction open Modutil open Common (***************************************) (*S Part I: computing Coq environment. *) (***************************************) let toplevel_env () = let get_reference = function | (_,kn), Lib.Leaf o -> let mp,_,l = KerName.repr kn in begin match Libobject.object_tag o with | "CONSTANT" -> let constant = Global.lookup_constant (Constant.make1 kn) in Some (l, SFBconst constant) | "INDUCTIVE" -> let inductive = Global.lookup_mind (MutInd.make1 kn) in Some (l, SFBmind inductive) | "MODULE" -> let modl = Global.lookup_module (MPdot (mp, l)) in Some (l, SFBmodule modl) | "MODULE TYPE" -> let modtype = Global.lookup_modtype (MPdot (mp, l)) in Some (l, SFBmodtype modtype) | "INCLUDE" -> user_err Pp.(str "No extraction of toplevel Include yet.") | _ -> None end | _ -> None in List.rev (List.map_filter get_reference (Lib.contents ())) let environment_until dir_opt = let rec parse = function | [] when Option.is_empty dir_opt -> [Lib.current_mp (), toplevel_env ()] | [] -> [] | d :: l -> let meb = Modops.destr_nofunctor (Global.lookup_module (MPfile d)).mod_type in match dir_opt with | Some d' when DirPath.equal d d' -> [MPfile d, meb] | _ -> (MPfile d, meb) :: (parse l) in parse (Library.loaded_libraries ()) (*s Visit: a structure recording the needed dependencies for the current extraction *) module type VISIT = sig (* Reset the dependencies by emptying the visit lists *) val reset : unit -> unit (* Add the module_path and all its prefixes to the mp visit list. We'll keep all fields of these modules. *) val add_mp_all : ModPath.t -> unit (* Add reference / ... in the visit lists. These functions silently add the mp of their arg in the mp list *) val add_ref : global_reference -> unit val add_kn : KerName.t -> unit val add_decl_deps : ml_decl -> unit val add_spec_deps : ml_spec -> unit (* Test functions: is a particular object a needed dependency for the current extraction ? *) val needed_ind : MutInd.t -> bool val needed_cst : Constant.t -> bool val needed_mp : ModPath.t -> bool val needed_mp_all : ModPath.t -> bool end module Visit : VISIT = struct type must_visit = { mutable kn : KNset.t; mutable mp : MPset.t; mutable mp_all : MPset.t } (* the imperative internal visit lists *) let v = { kn = KNset.empty; mp = MPset.empty; mp_all = MPset.empty } (* the accessor functions *) let reset () = v.kn <- KNset.empty; v.mp <- MPset.empty; v.mp_all <- MPset.empty let needed_ind i = KNset.mem (MutInd.user i) v.kn let needed_cst c = KNset.mem (Constant.user c) v.kn let needed_mp mp = MPset.mem mp v.mp || MPset.mem mp v.mp_all let needed_mp_all mp = MPset.mem mp v.mp_all let add_mp mp = check_loaded_modfile mp; v.mp <- MPset.union (prefixes_mp mp) v.mp let add_mp_all mp = check_loaded_modfile mp; v.mp <- MPset.union (prefixes_mp mp) v.mp; v.mp_all <- MPset.add mp v.mp_all let add_kn kn = v.kn <- KNset.add kn v.kn; add_mp (KerName.modpath kn) let add_ref = function | ConstRef c -> add_kn (Constant.user c) | IndRef (ind,_) | ConstructRef ((ind,_),_) -> add_kn (MutInd.user ind) | VarRef _ -> assert false let add_decl_deps = decl_iter_references add_ref add_ref add_ref let add_spec_deps = spec_iter_references add_ref add_ref add_ref end let add_field_label mp = function | (lab, (SFBconst _|SFBmind _)) -> Visit.add_kn (KerName.make2 mp lab) | (lab, (SFBmodule _|SFBmodtype _)) -> Visit.add_mp_all (MPdot (mp,lab)) let rec add_labels mp = function | MoreFunctor (_,_,m) -> add_labels mp m | NoFunctor sign -> List.iter (add_field_label mp) sign exception Impossible let check_arity env cb = let t = cb.const_type in if Reduction.is_arity env t then raise Impossible let check_fix env cb i = match cb.const_body with | Def lbody -> (match Constr.kind (Mod_subst.force_constr lbody) with | Fix ((_,j),recd) when Int.equal i j -> check_arity env cb; (true,recd) | CoFix (j,recd) when Int.equal i j -> check_arity env cb; (false,recd) | _ -> raise Impossible) | Undef _ | OpaqueDef _ -> raise Impossible let prec_declaration_equal (na1, ca1, ta1) (na2, ca2, ta2) = Array.equal Name.equal na1 na2 && Array.equal Constr.equal ca1 ca2 && Array.equal Constr.equal ta1 ta2 let factor_fix env l cb msb = let _,recd as check = check_fix env cb 0 in let n = Array.length (let fi,_,_ = recd in fi) in if Int.equal n 1 then [|l|], recd, msb else begin if List.length msb < n-1 then raise Impossible; let msb', msb'' = List.chop (n-1) msb in let labels = Array.make n l in List.iteri (fun j -> function | (l,SFBconst cb') -> let check' = check_fix env cb' (j+1) in if not ((fst check : bool) == (fst check') && prec_declaration_equal (snd check) (snd check')) then raise Impossible; labels.(j+1) <- l; | _ -> raise Impossible) msb'; labels, recd, msb'' end (** Expanding a [module_alg_expr] into a version without abbreviations or functor applications. This is done via a detour to entries (hack proposed by Elie) *) let expand_mexpr env mpo me = let inl = Some (Flags.get_inline_level()) in Mod_typing.translate_mse env mpo inl me let expand_modtype env mp me = let inl = Some (Flags.get_inline_level()) in Mod_typing.translate_modtype env mp inl ([],me) let no_delta = Mod_subst.empty_delta_resolver let flatten_modtype env mp me_alg struc_opt = match struc_opt with | Some me -> me, no_delta | None -> let mtb = expand_modtype env mp me_alg in mtb.mod_type, mtb.mod_delta (** Ad-hoc update of environment, inspired by [Mod_typing.check_with_aux_def]. *) let env_for_mtb_with_def env mp me reso idl = let struc = Modops.destr_nofunctor me in let l = Label.of_id (List.hd idl) in let spot = function (l',SFBconst _) -> Label.equal l l' | _ -> false in let before = fst (List.split_when spot struc) in Modops.add_structure mp before reso env let make_cst resolver mp l = Mod_subst.constant_of_delta_kn resolver (KerName.make2 mp l) let make_mind resolver mp l = Mod_subst.mind_of_delta_kn resolver (KerName.make2 mp l) (* From a [structure_body] (i.e. a list of [structure_field_body]) to specifications. *) let rec extract_structure_spec env mp reso = function | [] -> [] | (l,SFBconst cb) :: msig -> let c = make_cst reso mp l in let s = extract_constant_spec env c cb in let specs = extract_structure_spec env mp reso msig in if logical_spec s then specs else begin Visit.add_spec_deps s; (l,Spec s) :: specs end | (l,SFBmind _) :: msig -> let mind = make_mind reso mp l in let s = Sind (mind, extract_inductive env mind) in let specs = extract_structure_spec env mp reso msig in if logical_spec s then specs else begin Visit.add_spec_deps s; (l,Spec s) :: specs end | (l,SFBmodule mb) :: msig -> let specs = extract_structure_spec env mp reso msig in let spec = extract_mbody_spec env mb.mod_mp mb in (l,Smodule spec) :: specs | (l,SFBmodtype mtb) :: msig -> let specs = extract_structure_spec env mp reso msig in let spec = extract_mbody_spec env mtb.mod_mp mtb in (l,Smodtype spec) :: specs (* From [module_expression] to specifications *) (* Invariant: the [me_alg] given to [extract_mexpr_spec] and [extract_mexpression_spec] should come from a [mod_type_alg] field. This way, any encountered [MEident] should be a true module type. *) and extract_mexpr_spec env mp1 (me_struct_o,me_alg) = match me_alg with | MEident mp -> Visit.add_mp_all mp; MTident mp | MEwith(me',WithDef(idl,(c,ctx)))-> let me_struct,delta = flatten_modtype env mp1 me' me_struct_o in let env' = env_for_mtb_with_def env mp1 me_struct delta idl in let mt = extract_mexpr_spec env mp1 (None,me') in (match extract_with_type env' c with (* cb may contain some kn *) | None -> mt | Some (vl,typ) -> type_iter_references Visit.add_ref typ; MTwith(mt,ML_With_type(idl,vl,typ))) | MEwith(me',WithMod(idl,mp))-> Visit.add_mp_all mp; MTwith(extract_mexpr_spec env mp1 (None,me'), ML_With_module(idl,mp)) | MEapply _ -> (* No higher-order module type in OCaml : we use the expanded version *) let me_struct,delta = flatten_modtype env mp1 me_alg me_struct_o in extract_msignature_spec env mp1 delta me_struct and extract_mexpression_spec env mp1 (me_struct,me_alg) = match me_alg with | MoreFunctor (mbid, mtb, me_alg') -> let me_struct' = match me_struct with | MoreFunctor (mbid',_,me') when MBId.equal mbid' mbid -> me' | _ -> assert false in let mp = MPbound mbid in let env' = Modops.add_module_type mp mtb env in MTfunsig (mbid, extract_mbody_spec env mp mtb, extract_mexpression_spec env' mp1 (me_struct',me_alg')) | NoFunctor m -> extract_mexpr_spec env mp1 (Some me_struct,m) and extract_msignature_spec env mp1 reso = function | NoFunctor struc -> let env' = Modops.add_structure mp1 struc reso env in MTsig (mp1, extract_structure_spec env' mp1 reso struc) | MoreFunctor (mbid, mtb, me) -> let mp = MPbound mbid in let env' = Modops.add_module_type mp mtb env in MTfunsig (mbid, extract_mbody_spec env mp mtb, extract_msignature_spec env' mp1 reso me) and extract_mbody_spec : 'a. _ -> _ -> 'a generic_module_body -> _ = fun env mp mb -> match mb.mod_type_alg with | Some ty -> extract_mexpression_spec env mp (mb.mod_type,ty) | None -> extract_msignature_spec env mp mb.mod_delta mb.mod_type (* From a [structure_body] (i.e. a list of [structure_field_body]) to implementations. NB: when [all=false], the evaluation order of the list is important: last to first ensures correct dependencies. *) let rec extract_structure env mp reso ~all = function | [] -> [] | (l,SFBconst cb) :: struc -> (try let vl,recd,struc = factor_fix env l cb struc in let vc = Array.map (make_cst reso mp) vl in let ms = extract_structure env mp reso ~all struc in let b = Array.exists Visit.needed_cst vc in if all || b then let d = extract_fixpoint env vc recd in if (not b) && (logical_decl d) then ms else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end else ms with Impossible -> let ms = extract_structure env mp reso ~all struc in let c = make_cst reso mp l in let b = Visit.needed_cst c in if all || b then let d = extract_constant env c cb in if (not b) && (logical_decl d) then ms else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end else ms) | (l,SFBmind mib) :: struc -> let ms = extract_structure env mp reso ~all struc in let mind = make_mind reso mp l in let b = Visit.needed_ind mind in if all || b then let d = Dind (mind, extract_inductive env mind) in if (not b) && (logical_decl d) then ms else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end else ms | (l,SFBmodule mb) :: struc -> let ms = extract_structure env mp reso ~all struc in let mp = MPdot (mp,l) in let all' = all || Visit.needed_mp_all mp in if all' || Visit.needed_mp mp then (l,SEmodule (extract_module env mp ~all:all' mb)) :: ms else ms | (l,SFBmodtype mtb) :: struc -> let ms = extract_structure env mp reso ~all struc in let mp = MPdot (mp,l) in if all || Visit.needed_mp mp then (l,SEmodtype (extract_mbody_spec env mp mtb)) :: ms else ms (* From [module_expr] and [module_expression] to implementations *) and extract_mexpr env mp = function | MEwith _ -> assert false (* no 'with' syntax for modules *) | me when lang () != Ocaml || Table.is_extrcompute () -> (* In Haskell/Scheme, we expand everything. For now, we also extract everything, dead code will be removed later (see [Modutil.optimize_struct]. *) let sign,_,delta,_ = expand_mexpr env (Some mp) me in extract_msignature env mp delta ~all:true sign | MEident mp -> if is_modfile mp && not (modular ()) then error_MPfile_as_mod mp false; Visit.add_mp_all mp; Miniml.MEident mp | MEapply (me, arg) -> Miniml.MEapply (extract_mexpr env mp me, extract_mexpr env mp (MEident arg)) and extract_mexpression env mp = function | NoFunctor me -> extract_mexpr env mp me | MoreFunctor (mbid, mtb, me) -> let mp1 = MPbound mbid in let env' = Modops.add_module_type mp1 mtb env in Miniml.MEfunctor (mbid, extract_mbody_spec env mp1 mtb, extract_mexpression env' mp me) and extract_msignature env mp reso ~all = function | NoFunctor struc -> let env' = Modops.add_structure mp struc reso env in Miniml.MEstruct (mp,extract_structure env' mp reso ~all struc) | MoreFunctor (mbid, mtb, me) -> let mp1 = MPbound mbid in let env' = Modops.add_module_type mp1 mtb env in Miniml.MEfunctor (mbid, extract_mbody_spec env mp1 mtb, extract_msignature env' mp reso ~all me) and extract_module env mp ~all mb = (* A module has an empty [mod_expr] when : - it is a module variable (for instance X inside a Module F [X:SIG]) - it is a module assumption (Declare Module). Since we look at modules from outside, we shouldn't have variables. But a Declare Module at toplevel seems legal (cf #2525). For the moment we don't support this situation. *) let impl = match mb.mod_expr with | Abstract -> error_no_module_expr mp | Algebraic me -> extract_mexpression env mp me | Struct sign -> (* This module has a signature, otherwise it would be FullStruct. We extract just the elements required by this signature. *) let () = add_labels mp mb.mod_type in extract_msignature env mp mb.mod_delta ~all:false sign | FullStruct -> extract_msignature env mp mb.mod_delta ~all mb.mod_type in (* Slight optimization: for modules without explicit signatures ([FullStruct] case), we build the type out of the extracted implementation *) let typ = match mb.mod_expr with | FullStruct -> assert (Option.is_empty mb.mod_type_alg); mtyp_of_mexpr impl | _ -> extract_mbody_spec env mp mb in { ml_mod_expr = impl; ml_mod_type = typ } let mono_environment refs mpl = Visit.reset (); List.iter Visit.add_ref refs; List.iter Visit.add_mp_all mpl; let env = Global.env () in let l = List.rev (environment_until None) in List.rev_map (fun (mp,struc) -> mp, extract_structure env mp no_delta ~all:(Visit.needed_mp_all mp) struc) l (**************************************) (*S Part II : Input/Output primitives *) (**************************************) let descr () = match lang () with | Ocaml -> Ocaml.ocaml_descr | Haskell -> Haskell.haskell_descr | Scheme -> Scheme.scheme_descr | JSON -> Json.json_descr (* From a filename string "foo.ml" or "foo", builds "foo.ml" and "foo.mli" Works similarly for the other languages. *) let default_id = Id.of_string "Main" let mono_filename f = let d = descr () in match f with | None -> None, None, default_id | Some f -> let f = if Filename.check_suffix f d.file_suffix then Filename.chop_suffix f d.file_suffix else f in let id = if lang () != Haskell then default_id else try Id.of_string (Filename.basename f) with UserError _ -> user_err Pp.(str "Extraction: provided filename is not a valid identifier") in Some (f^d.file_suffix), Option.map ((^) f) d.sig_suffix, id (* Builds a suitable filename from a module id *) let module_filename mp = let f = file_of_modfile mp in let d = descr () in let p = d.file_naming mp ^ d.file_suffix in Some p, Option.map ((^) f) d.sig_suffix, Id.of_string f (*s Extraction of one decl to stdout. *) let print_one_decl struc mp decl = let d = descr () in reset_renaming_tables AllButExternal; set_phase Pre; ignore (d.pp_struct struc); set_phase Impl; push_visible mp []; let ans = d.pp_decl decl in pop_visible (); v 0 ans (*s Extraction of a ml struct to a file. *) (** For Recursive Extraction, writing directly on stdout won't work with coqide, we use a buffer instead *) let buf = Buffer.create 1000 let formatter dry file = let ft = if dry then Format.make_formatter (fun _ _ _ -> ()) (fun _ -> ()) else match file with | Some f -> Topfmt.with_output_to f | None -> Format.formatter_of_buffer buf in (* XXX: Fixme, this shouldn't depend on Topfmt *) (* We never want to see ellipsis ... in extracted code *) Format.pp_set_max_boxes ft max_int; (* We reuse the width information given via "Set Printing Width" *) (match Topfmt.get_margin () with | None -> () | Some i -> Format.pp_set_margin ft i; Format.pp_set_max_indent ft (i-10)); (* note: max_indent should be < margin above, otherwise it's ignored *) ft let get_comment () = let s = file_comment () in if String.is_empty s then None else let split_comment = Str.split (Str.regexp "[ \t\n]+") s in Some (prlist_with_sep spc str split_comment) let print_structure_to_file (fn,si,mo) dry struc = Buffer.clear buf; let d = descr () in reset_renaming_tables AllButExternal; let unsafe_needs = { mldummy = struct_ast_search Mlutil.isMLdummy struc; tdummy = struct_type_search Mlutil.isTdummy struc; tunknown = struct_type_search ((==) Tunknown) struc; magic = if lang () != Haskell then false else struct_ast_search (function MLmagic _ -> true | _ -> false) struc } in (* First, a dry run, for computing objects to rename or duplicate *) set_phase Pre; ignore (d.pp_struct struc); let opened = opened_libraries () in (* Print the implementation *) let cout = if dry then None else Option.map open_out fn in let ft = formatter dry cout in let comment = get_comment () in begin try (* The real printing of the implementation *) set_phase Impl; pp_with ft (d.preamble mo comment opened unsafe_needs); pp_with ft (d.pp_struct struc); Format.pp_print_flush ft (); Option.iter close_out cout; with reraise -> Format.pp_print_flush ft (); Option.iter close_out cout; raise reraise end; if not dry then Option.iter info_file fn; (* Now, let's print the signature *) Option.iter (fun si -> let cout = open_out si in let ft = formatter false (Some cout) in begin try set_phase Intf; pp_with ft (d.sig_preamble mo comment opened unsafe_needs); pp_with ft (d.pp_sig (signature_of_structure struc)); Format.pp_print_flush ft (); close_out cout; with reraise -> Format.pp_print_flush ft (); close_out cout; raise reraise end; info_file si) (if dry then None else si); (* Print the buffer content via Coq standard formatter (ok with coqide). *) if not (Int.equal (Buffer.length buf) 0) then begin Feedback.msg_notice (str (Buffer.contents buf)); Buffer.reset buf end (*********************************************) (*s Part III: the actual extraction commands *) (*********************************************) let reset () = Visit.reset (); reset_tables (); reset_renaming_tables Everything let init ?(compute=false) modular library = check_inside_section (); check_inside_module (); set_keywords (descr ()).keywords; set_modular modular; set_library library; set_extrcompute compute; reset (); if modular && lang () == Scheme then error_scheme () let warns () = warning_opaques (access_opaque ()); warning_axioms () (* From a list of [reference], let's retrieve whether they correspond to modules or [global_reference]. Warn the user if both is possible. *) let rec locate_ref = function | [] -> [],[] | r::l -> let q = snd (qualid_of_reference r) in let mpo = try Some (Nametab.locate_module q) with Not_found -> None and ro = try Some (Smartlocate.global_with_alias r) with Nametab.GlobalizationError _ | UserError _ -> None in match mpo, ro with | None, None -> Nametab.error_global_not_found q | None, Some r -> let refs,mps = locate_ref l in r::refs,mps | Some mp, None -> let refs,mps = locate_ref l in refs,mp::mps | Some mp, Some r -> warning_ambiguous_name (q,mp,r); let refs,mps = locate_ref l in refs,mp::mps (*s Recursive extraction in the Coq toplevel. The vernacular command is \verb!Recursive Extraction! [qualid1] ... [qualidn]. Also used when extracting to a file with the command: \verb!Extraction "file"! [qualid1] ... [qualidn]. *) let full_extr f (refs,mps) = init false false; List.iter (fun mp -> if is_modfile mp then error_MPfile_as_mod mp true) mps; let struc = optimize_struct (refs,mps) (mono_environment refs mps) in warns (); print_structure_to_file (mono_filename f) false struc; reset () let full_extraction f lr = full_extr f (locate_ref lr) (*s Separate extraction is similar to recursive extraction, with the output decomposed in many files, one per Coq .v file *) let separate_extraction lr = init true false; let refs,mps = locate_ref lr in let struc = optimize_struct (refs,mps) (mono_environment refs mps) in warns (); let print = function | (MPfile dir as mp, sel) as e -> print_structure_to_file (module_filename mp) false [e] | _ -> assert false in List.iter print struc; reset () (*s Simple extraction in the Coq toplevel. The vernacular command is \verb!Extraction! [qualid]. *) let simple_extraction r = Vernacentries.dump_global (Misctypes.AN r); match locate_ref [r] with | ([], [mp]) as p -> full_extr None p | [r],[] -> init false false; let struc = optimize_struct ([r],[]) (mono_environment [r] []) in let d = get_decl_in_structure r struc in warns (); let flag = if is_custom r then str "(** User defined extraction *)" ++ fnl() else mt () in let ans = flag ++ print_one_decl struc (modpath_of_r r) d in reset (); Feedback.msg_notice ans | _ -> assert false (*s (Recursive) Extraction of a library. The vernacular command is \verb!(Recursive) Extraction Library! [M]. *) let extraction_library is_rec m = init true true; let dir_m = let q = qualid_of_ident m in try Nametab.full_name_module q with Not_found -> error_unknown_module q in Visit.add_mp_all (MPfile dir_m); let env = Global.env () in let l = List.rev (environment_until (Some dir_m)) in let select l (mp,struc) = if Visit.needed_mp mp then (mp, extract_structure env mp no_delta ~all:true struc) :: l else l in let struc = List.fold_left select [] l in let struc = optimize_struct ([],[]) struc in warns (); let print = function | (MPfile dir as mp, sel) as e -> let dry = not is_rec && not (DirPath.equal dir dir_m) in print_structure_to_file (module_filename mp) dry [e] | _ -> assert false in List.iter print struc; reset () (** For extraction compute, we flatten all the module structure, getting rid of module types or unapplied functors *) let flatten_structure struc = let rec flatten_elem (lab,elem) = match elem with |SEdecl d -> [d] |SEmodtype _ -> [] |SEmodule m -> match m.ml_mod_expr with |MEfunctor _ -> [] |MEident _ | MEapply _ -> assert false (* should be expanded *) |MEstruct (_,elems) -> flatten_elems elems and flatten_elems l = List.flatten (List.map flatten_elem l) in flatten_elems (List.flatten (List.map snd struc)) let structure_for_compute c = init false false ~compute:true; let env = Global.env () in let ast, mlt = Extraction.extract_constr env c in let ast = Mlutil.normalize ast in let refs = ref Refset.empty in let add_ref r = refs := Refset.add r !refs in let () = ast_iter_references add_ref add_ref add_ref ast in let refs = Refset.elements !refs in let struc = optimize_struct (refs,[]) (mono_environment refs []) in (flatten_structure struc), ast, mlt (* For the test-suite : extraction to a temporary file + run ocamlc on it *) let compile f = try let args = ["ocamlc";"-I";Filename.dirname f;"-c";f^"i";f] in let res = CUnix.sys_command (Envars.ocamlfind ()) args in match res with | Unix.WEXITED 0 -> () | Unix.WEXITED n | Unix.WSIGNALED n | Unix.WSTOPPED n -> CErrors.user_err Pp.(str "Compilation of file " ++ str f ++ str " failed with exit code " ++ int n) with Unix.Unix_error (e,_,_) -> CErrors.user_err Pp.(str "Compilation of file " ++ str f ++ str " failed with error " ++ str (Unix.error_message e)) let remove f = if Sys.file_exists f then Sys.remove f let extract_and_compile l = if lang () != Ocaml then CErrors.user_err (Pp.str "This command only works with OCaml extraction"); let f = Filename.temp_file "testextraction" ".ml" in let () = full_extraction (Some f) l in let () = compile f in let () = remove f; remove (f^"i") in let base = Filename.chop_suffix f ".ml" in let () = remove (base^".cmo"); remove (base^".cmi") in Feedback.msg_notice (str "Extracted code successfully compiled")