1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773

(** val negb : bool -> bool **)

let negb = function
| true -> false
| false -> true

type nat =
| O
| S of nat

(** val app : 'a1 list -> 'a1 list -> 'a1 list **)

let rec app l m =
  match l with
  | [] -> m
  | a::l1 -> a::(app l1 m)

type comparison =
| Eq
| Lt
| Gt

(** val compOpp : comparison -> comparison **)

let compOpp = function
| Eq -> Eq
| Lt -> Gt
| Gt -> Lt

module Coq__1 = struct
 (** val add : nat -> nat -> nat **)
 let rec add n0 m =
   match n0 with
   | O -> m
   | S p -> S (add p m)
end
include Coq__1

type positive =
| XI of positive
| XO of positive
| XH

type n =
| N0
| Npos of positive

type z =
| Z0
| Zpos of positive
| Zneg of positive

module Pos =
 struct
  type mask =
  | IsNul
  | IsPos of positive
  | IsNeg
 end

module Coq_Pos =
 struct
  (** val succ : positive -> positive **)

  let rec succ = function
  | XI p -> XO (succ p)
  | XO p -> XI p
  | XH -> XO XH

  (** val add : positive -> positive -> positive **)

  let rec add x y =
    match x with
    | XI p ->
      (match y with
       | XI q0 -> XO (add_carry p q0)
       | XO q0 -> XI (add p q0)
       | XH -> XO (succ p))
    | XO p ->
      (match y with
       | XI q0 -> XI (add p q0)
       | XO q0 -> XO (add p q0)
       | XH -> XI p)
    | XH -> (match y with
             | XI q0 -> XO (succ q0)
             | XO q0 -> XI q0
             | XH -> XO XH)

  (** val add_carry : positive -> positive -> positive **)

  and add_carry x y =
    match x with
    | XI p ->
      (match y with
       | XI q0 -> XI (add_carry p q0)
       | XO q0 -> XO (add_carry p q0)
       | XH -> XI (succ p))
    | XO p ->
      (match y with
       | XI q0 -> XO (add_carry p q0)
       | XO q0 -> XI (add p q0)
       | XH -> XO (succ p))
    | XH ->
      (match y with
       | XI q0 -> XI (succ q0)
       | XO q0 -> XO (succ q0)
       | XH -> XI XH)

  (** val pred_double : positive -> positive **)

  let rec pred_double = function
  | XI p -> XI (XO p)
  | XO p -> XI (pred_double p)
  | XH -> XH

  type mask = Pos.mask =
  | IsNul
  | IsPos of positive
  | IsNeg

  (** val succ_double_mask : mask -> mask **)

  let succ_double_mask = function
  | IsNul -> IsPos XH
  | IsPos p -> IsPos (XI p)
  | IsNeg -> IsNeg

  (** val double_mask : mask -> mask **)

  let double_mask = function
  | IsPos p -> IsPos (XO p)
  | x0 -> x0

  (** val double_pred_mask : positive -> mask **)

  let double_pred_mask = function
  | XI p -> IsPos (XO (XO p))
  | XO p -> IsPos (XO (pred_double p))
  | XH -> IsNul

  (** val sub_mask : positive -> positive -> mask **)

  let rec sub_mask x y =
    match x with
    | XI p ->
      (match y with
       | XI q0 -> double_mask (sub_mask p q0)
       | XO q0 -> succ_double_mask (sub_mask p q0)
       | XH -> IsPos (XO p))
    | XO p ->
      (match y with
       | XI q0 -> succ_double_mask (sub_mask_carry p q0)
       | XO q0 -> double_mask (sub_mask p q0)
       | XH -> IsPos (pred_double p))
    | XH -> (match y with
             | XH -> IsNul
             | _ -> IsNeg)

  (** val sub_mask_carry : positive -> positive -> mask **)

  and sub_mask_carry x y =
    match x with
    | XI p ->
      (match y with
       | XI q0 -> succ_double_mask (sub_mask_carry p q0)
       | XO q0 -> double_mask (sub_mask p q0)
       | XH -> IsPos (pred_double p))
    | XO p ->
      (match y with
       | XI q0 -> double_mask (sub_mask_carry p q0)
       | XO q0 -> succ_double_mask (sub_mask_carry p q0)
       | XH -> double_pred_mask p)
    | XH -> IsNeg

  (** val sub : positive -> positive -> positive **)

  let sub x y =
    match sub_mask x y with
    | IsPos z0 -> z0
    | _ -> XH

  (** val mul : positive -> positive -> positive **)

  let rec mul x y =
    match x with
    | XI p -> add y (XO (mul p y))
    | XO p -> XO (mul p y)
    | XH -> y

  (** val size_nat : positive -> nat **)

  let rec size_nat = function
  | XI p2 -> S (size_nat p2)
  | XO p2 -> S (size_nat p2)
  | XH -> S O

  (** val compare_cont : comparison -> positive -> positive -> comparison **)

  let rec compare_cont r x y =
    match x with
    | XI p ->
      (match y with
       | XI q0 -> compare_cont r p q0
       | XO q0 -> compare_cont Gt p q0
       | XH -> Gt)
    | XO p ->
      (match y with
       | XI q0 -> compare_cont Lt p q0
       | XO q0 -> compare_cont r p q0
       | XH -> Gt)
    | XH -> (match y with
             | XH -> r
             | _ -> Lt)

  (** val compare : positive -> positive -> comparison **)

  let compare =
    compare_cont Eq

  (** val gcdn : nat -> positive -> positive -> positive **)

  let rec gcdn n0 a b =
    match n0 with
    | O -> XH
    | S n1 ->
      (match a with
       | XI a' ->
         (match b with
          | XI b' ->
            (match compare a' b' with
             | Eq -> a
             | Lt -> gcdn n1 (sub b' a') a
             | Gt -> gcdn n1 (sub a' b') b)
          | XO b0 -> gcdn n1 a b0
          | XH -> XH)
       | XO a0 ->
         (match b with
          | XI _ -> gcdn n1 a0 b
          | XO b0 -> XO (gcdn n1 a0 b0)
          | XH -> XH)
       | XH -> XH)

  (** val gcd : positive -> positive -> positive **)

  let gcd a b =
    gcdn (Coq__1.add (size_nat a) (size_nat b)) a b

  (** val of_succ_nat : nat -> positive **)

  let rec of_succ_nat = function
  | O -> XH
  | S x -> succ (of_succ_nat x)
 end

module N =
 struct
  (** val of_nat : nat -> n **)

  let of_nat = function
  | O -> N0
  | S n' -> Npos (Coq_Pos.of_succ_nat n')
 end

(** val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1 **)

let rec pow_pos rmul x = function
| XI i0 -> let p = pow_pos rmul x i0 in rmul x (rmul p p)
| XO i0 -> let p = pow_pos rmul x i0 in rmul p p
| XH -> x

(** val nth : nat -> 'a1 list -> 'a1 -> 'a1 **)

let rec nth n0 l default =
  match n0 with
  | O -> (match l with
          | [] -> default
          | x::_ -> x)
  | S m -> (match l with
            | [] -> default
            | _::t0 -> nth m t0 default)

(** val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list **)

let rec map f = function
| [] -> []
| a::t0 -> (f a)::(map f t0)

(** val fold_right : ('a2 -> 'a1 -> 'a1) -> 'a1 -> 'a2 list -> 'a1 **)

let rec fold_right f a0 = function
| [] -> a0
| b::t0 -> f b (fold_right f a0 t0)

module Z =
 struct
  (** val double : z -> z **)

  let double = function
  | Z0 -> Z0
  | Zpos p -> Zpos (XO p)
  | Zneg p -> Zneg (XO p)

  (** val succ_double : z -> z **)

  let succ_double = function
  | Z0 -> Zpos XH
  | Zpos p -> Zpos (XI p)
  | Zneg p -> Zneg (Coq_Pos.pred_double p)

  (** val pred_double : z -> z **)

  let pred_double = function
  | Z0 -> Zneg XH
  | Zpos p -> Zpos (Coq_Pos.pred_double p)
  | Zneg p -> Zneg (XI p)

  (** val pos_sub : positive -> positive -> z **)

  let rec pos_sub x y =
    match x with
    | XI p ->
      (match y with
       | XI q0 -> double (pos_sub p q0)
       | XO q0 -> succ_double (pos_sub p q0)
       | XH -> Zpos (XO p))
    | XO p ->
      (match y with
       | XI q0 -> pred_double (pos_sub p q0)
       | XO q0 -> double (pos_sub p q0)
       | XH -> Zpos (Coq_Pos.pred_double p))
    | XH ->
      (match y with
       | XI q0 -> Zneg (XO q0)
       | XO q0 -> Zneg (Coq_Pos.pred_double q0)
       | XH -> Z0)

  (** val add : z -> z -> z **)

  let add x y =
    match x with
    | Z0 -> y
    | Zpos x' ->
      (match y with
       | Z0 -> x
       | Zpos y' -> Zpos (Coq_Pos.add x' y')
       | Zneg y' -> pos_sub x' y')
    | Zneg x' ->
      (match y with
       | Z0 -> x
       | Zpos y' -> pos_sub y' x'
       | Zneg y' -> Zneg (Coq_Pos.add x' y'))

  (** val opp : z -> z **)

  let opp = function
  | Z0 -> Z0
  | Zpos x0 -> Zneg x0
  | Zneg x0 -> Zpos x0

  (** val sub : z -> z -> z **)

  let sub m n0 =
    add m (opp n0)

  (** val mul : z -> z -> z **)

  let mul x y =
    match x with
    | Z0 -> Z0
    | Zpos x' ->
      (match y with
       | Z0 -> Z0
       | Zpos y' -> Zpos (Coq_Pos.mul x' y')
       | Zneg y' -> Zneg (Coq_Pos.mul x' y'))
    | Zneg x' ->
      (match y with
       | Z0 -> Z0
       | Zpos y' -> Zneg (Coq_Pos.mul x' y')
       | Zneg y' -> Zpos (Coq_Pos.mul x' y'))

  (** val compare : z -> z -> comparison **)

  let compare x y =
    match x with
    | Z0 -> (match y with
             | Z0 -> Eq
             | Zpos _ -> Lt
             | Zneg _ -> Gt)
    | Zpos x' -> (match y with
                  | Zpos y' -> Coq_Pos.compare x' y'
                  | _ -> Gt)
    | Zneg x' ->
      (match y with
       | Zneg y' -> compOpp (Coq_Pos.compare x' y')
       | _ -> Lt)

  (** val leb : z -> z -> bool **)

  let leb x y =
    match compare x y with
    | Gt -> false
    | _ -> true

  (** val ltb : z -> z -> bool **)

  let ltb x y =
    match compare x y with
    | Lt -> true
    | _ -> false

  (** val gtb : z -> z -> bool **)

  let gtb x y =
    match compare x y with
    | Gt -> true
    | _ -> false

  (** val max : z -> z -> z **)

  let max n0 m =
    match compare n0 m with
    | Lt -> m
    | _ -> n0

  (** val abs : z -> z **)

  let abs = function
  | Zneg p -> Zpos p
  | x -> x

  (** val to_N : z -> n **)

  let to_N = function
  | Zpos p -> Npos p
  | _ -> N0

  (** val pos_div_eucl : positive -> z -> z * z **)

  let rec pos_div_eucl a b =
    match a with
    | XI a' ->
      let q0,r = pos_div_eucl a' b in
      let r' = add (mul (Zpos (XO XH)) r) (Zpos XH) in
      if ltb r' b
      then (mul (Zpos (XO XH)) q0),r'
      else (add (mul (Zpos (XO XH)) q0) (Zpos XH)),(sub r' b)
    | XO a' ->
      let q0,r = pos_div_eucl a' b in
      let r' = mul (Zpos (XO XH)) r in
      if ltb r' b
      then (mul (Zpos (XO XH)) q0),r'
      else (add (mul (Zpos (XO XH)) q0) (Zpos XH)),(sub r' b)
    | XH -> if leb (Zpos (XO XH)) b then Z0,(Zpos XH) else (Zpos XH),Z0

  (** val div_eucl : z -> z -> z * z **)

  let div_eucl a b =
    match a with
    | Z0 -> Z0,Z0
    | Zpos a' ->
      (match b with
       | Z0 -> Z0,Z0
       | Zpos _ -> pos_div_eucl a' b
       | Zneg b' ->
         let q0,r = pos_div_eucl a' (Zpos b') in
         (match r with
          | Z0 -> (opp q0),Z0
          | _ -> (opp (add q0 (Zpos XH))),(add b r)))
    | Zneg a' ->
      (match b with
       | Z0 -> Z0,Z0
       | Zpos _ ->
         let q0,r = pos_div_eucl a' b in
         (match r with
          | Z0 -> (opp q0),Z0
          | _ -> (opp (add q0 (Zpos XH))),(sub b r))
       | Zneg b' -> let q0,r = pos_div_eucl a' (Zpos b') in q0,(opp r))

  (** val div : z -> z -> z **)

  let div a b =
    let q0,_ = div_eucl a b in q0

  (** val gcd : z -> z -> z **)

  let gcd a b =
    match a with
    | Z0 -> abs b
    | Zpos a0 ->
      (match b with
       | Z0 -> abs a
       | Zpos b0 -> Zpos (Coq_Pos.gcd a0 b0)
       | Zneg b0 -> Zpos (Coq_Pos.gcd a0 b0))
    | Zneg a0 ->
      (match b with
       | Z0 -> abs a
       | Zpos b0 -> Zpos (Coq_Pos.gcd a0 b0)
       | Zneg b0 -> Zpos (Coq_Pos.gcd a0 b0))
 end

(** val zeq_bool : z -> z -> bool **)

let zeq_bool x y =
  match Z.compare x y with
  | Eq -> true
  | _ -> false

type 'c pol =
| Pc of 'c
| Pinj of positive * 'c pol
| PX of 'c pol * positive * 'c pol

(** val p0 : 'a1 -> 'a1 pol **)

let p0 cO =
  Pc cO

(** val p1 : 'a1 -> 'a1 pol **)

let p1 cI =
  Pc cI

(** val peq : ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> bool **)

let rec peq ceqb p p' =
  match p with
  | Pc c -> (match p' with
             | Pc c' -> ceqb c c'
             | _ -> false)
  | Pinj (j, q0) ->
    (match p' with
     | Pinj (j', q') ->
       (match Coq_Pos.compare j j' with
        | Eq -> peq ceqb q0 q'
        | _ -> false)
     | _ -> false)
  | PX (p2, i, q0) ->
    (match p' with
     | PX (p'0, i', q') ->
       (match Coq_Pos.compare i i' with
        | Eq -> if peq ceqb p2 p'0 then peq ceqb q0 q' else false
        | _ -> false)
     | _ -> false)

(** val mkPinj : positive -> 'a1 pol -> 'a1 pol **)

let mkPinj j p = match p with
| Pc _ -> p
| Pinj (j', q0) -> Pinj ((Coq_Pos.add j j'), q0)
| PX (_, _, _) -> Pinj (j, p)

(** val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol **)

let mkPinj_pred j p =
  match j with
  | XI j0 -> Pinj ((XO j0), p)
  | XO j0 -> Pinj ((Coq_Pos.pred_double j0), p)
  | XH -> p

(** val mkPX :
    'a1 -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)

let mkPX cO ceqb p i q0 =
  match p with
  | Pc c -> if ceqb c cO then mkPinj XH q0 else PX (p, i, q0)
  | Pinj (_, _) -> PX (p, i, q0)
  | PX (p', i', q') ->
    if peq ceqb q' (p0 cO)
    then PX (p', (Coq_Pos.add i' i), q0)
    else PX (p, i, q0)

(** val mkXi : 'a1 -> 'a1 -> positive -> 'a1 pol **)

let mkXi cO cI i =
  PX ((p1 cI), i, (p0 cO))

(** val mkX : 'a1 -> 'a1 -> 'a1 pol **)

let mkX cO cI =
  mkXi cO cI XH

(** val popp : ('a1 -> 'a1) -> 'a1 pol -> 'a1 pol **)

let rec popp copp = function
| Pc c -> Pc (copp c)
| Pinj (j, q0) -> Pinj (j, (popp copp q0))
| PX (p2, i, q0) -> PX ((popp copp p2), i, (popp copp q0))

(** val paddC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **)

let rec paddC cadd p c =
  match p with
  | Pc c1 -> Pc (cadd c1 c)
  | Pinj (j, q0) -> Pinj (j, (paddC cadd q0 c))
  | PX (p2, i, q0) -> PX (p2, i, (paddC cadd q0 c))

(** val psubC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **)

let rec psubC csub p c =
  match p with
  | Pc c1 -> Pc (csub c1 c)
  | Pinj (j, q0) -> Pinj (j, (psubC csub q0 c))
  | PX (p2, i, q0) -> PX (p2, i, (psubC csub q0 c))

(** val paddI :
    ('a1 -> 'a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol ->
    positive -> 'a1 pol -> 'a1 pol **)

let rec paddI cadd pop q0 j = function
| Pc c -> mkPinj j (paddC cadd q0 c)
| Pinj (j', q') ->
  (match Z.pos_sub j' j with
   | Z0 -> mkPinj j (pop q' q0)
   | Zpos k -> mkPinj j (pop (Pinj (k, q')) q0)
   | Zneg k -> mkPinj j' (paddI cadd pop q0 k q'))
| PX (p2, i, q') ->
  (match j with
   | XI j0 -> PX (p2, i, (paddI cadd pop q0 (XO j0) q'))
   | XO j0 -> PX (p2, i, (paddI cadd pop q0 (Coq_Pos.pred_double j0) q'))
   | XH -> PX (p2, i, (pop q' q0)))

(** val psubI :
    ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) ->
    'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)

let rec psubI cadd copp pop q0 j = function
| Pc c -> mkPinj j (paddC cadd (popp copp q0) c)
| Pinj (j', q') ->
  (match Z.pos_sub j' j with
   | Z0 -> mkPinj j (pop q' q0)
   | Zpos k -> mkPinj j (pop (Pinj (k, q')) q0)
   | Zneg k -> mkPinj j' (psubI cadd copp pop q0 k q'))
| PX (p2, i, q') ->
  (match j with
   | XI j0 -> PX (p2, i, (psubI cadd copp pop q0 (XO j0) q'))
   | XO j0 -> PX (p2, i, (psubI cadd copp pop q0 (Coq_Pos.pred_double j0) q'))
   | XH -> PX (p2, i, (pop q' q0)))

(** val paddX :
    'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol
    -> positive -> 'a1 pol -> 'a1 pol **)

let rec paddX cO ceqb pop p' i' p = match p with
| Pc _ -> PX (p', i', p)
| Pinj (j, q') ->
  (match j with
   | XI j0 -> PX (p', i', (Pinj ((XO j0), q')))
   | XO j0 -> PX (p', i', (Pinj ((Coq_Pos.pred_double j0), q')))
   | XH -> PX (p', i', q'))
| PX (p2, i, q') ->
  (match Z.pos_sub i i' with
   | Z0 -> mkPX cO ceqb (pop p2 p') i q'
   | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
   | Zneg k -> mkPX cO ceqb (paddX cO ceqb pop p' k p2) i q')

(** val psubX :
    'a1 -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1
    pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)

let rec psubX cO copp ceqb pop p' i' p = match p with
| Pc _ -> PX ((popp copp p'), i', p)
| Pinj (j, q') ->
  (match j with
   | XI j0 -> PX ((popp copp p'), i', (Pinj ((XO j0), q')))
   | XO j0 -> PX ((popp copp p'), i', (Pinj ((Coq_Pos.pred_double j0), q')))
   | XH -> PX ((popp copp p'), i', q'))
| PX (p2, i, q') ->
  (match Z.pos_sub i i' with
   | Z0 -> mkPX cO ceqb (pop p2 p') i q'
   | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
   | Zneg k -> mkPX cO ceqb (psubX cO copp ceqb pop p' k p2) i q')

(** val padd :
    'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol
    -> 'a1 pol **)

let rec padd cO cadd ceqb p = function
| Pc c' -> paddC cadd p c'
| Pinj (j', q') -> paddI cadd (padd cO cadd ceqb) q' j' p
| PX (p'0, i', q') ->
  (match p with
   | Pc c -> PX (p'0, i', (paddC cadd q' c))
   | Pinj (j, q0) ->
     (match j with
      | XI j0 -> PX (p'0, i', (padd cO cadd ceqb (Pinj ((XO j0), q0)) q'))
      | XO j0 ->
        PX (p'0, i',
          (padd cO cadd ceqb (Pinj ((Coq_Pos.pred_double j0), q0)) q'))
      | XH -> PX (p'0, i', (padd cO cadd ceqb q0 q')))
   | PX (p2, i, q0) ->
     (match Z.pos_sub i i' with
      | Z0 ->
        mkPX cO ceqb (padd cO cadd ceqb p2 p'0) i (padd cO cadd ceqb q0 q')
      | Zpos k ->
        mkPX cO ceqb (padd cO cadd ceqb (PX (p2, k, (p0 cO))) p'0) i'
          (padd cO cadd ceqb q0 q')
      | Zneg k ->
        mkPX cO ceqb (paddX cO ceqb (padd cO cadd ceqb) p'0 k p2) i
          (padd cO cadd ceqb q0 q')))

(** val psub :
    'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
    -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)

let rec psub cO cadd csub copp ceqb p = function
| Pc c' -> psubC csub p c'
| Pinj (j', q') -> psubI cadd copp (psub cO cadd csub copp ceqb) q' j' p
| PX (p'0, i', q') ->
  (match p with
   | Pc c -> PX ((popp copp p'0), i', (paddC cadd (popp copp q') c))
   | Pinj (j, q0) ->
     (match j with
      | XI j0 ->
        PX ((popp copp p'0), i',
          (psub cO cadd csub copp ceqb (Pinj ((XO j0), q0)) q'))
      | XO j0 ->
        PX ((popp copp p'0), i',
          (psub cO cadd csub copp ceqb (Pinj ((Coq_Pos.pred_double j0), q0))
            q'))
      | XH -> PX ((popp copp p'0), i', (psub cO cadd csub copp ceqb q0 q')))
   | PX (p2, i, q0) ->
     (match Z.pos_sub i i' with
      | Z0 ->
        mkPX cO ceqb (psub cO cadd csub copp ceqb p2 p'0) i
          (psub cO cadd csub copp ceqb q0 q')
      | Zpos k ->
        mkPX cO ceqb (psub cO cadd csub copp ceqb (PX (p2, k, (p0 cO))) p'0)
          i' (psub cO cadd csub copp ceqb q0 q')
      | Zneg k ->
        mkPX cO ceqb
          (psubX cO copp ceqb (psub cO cadd csub copp ceqb) p'0 k p2) i
          (psub cO cadd csub copp ceqb q0 q')))

(** val pmulC_aux :
    'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 ->
    'a1 pol **)

let rec pmulC_aux cO cmul ceqb p c =
  match p with
  | Pc c' -> Pc (cmul c' c)
  | Pinj (j, q0) -> mkPinj j (pmulC_aux cO cmul ceqb q0 c)
  | PX (p2, i, q0) ->
    mkPX cO ceqb (pmulC_aux cO cmul ceqb p2 c) i (pmulC_aux cO cmul ceqb q0 c)

(** val pmulC :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol ->
    'a1 -> 'a1 pol **)

let pmulC cO cI cmul ceqb p c =
  if ceqb c cO
  then p0 cO
  else if ceqb c cI then p else pmulC_aux cO cmul ceqb p c

(** val pmulI :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol ->
    'a1 pol -> 'a1 pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)

let rec pmulI cO cI cmul ceqb pmul0 q0 j = function
| Pc c -> mkPinj j (pmulC cO cI cmul ceqb q0 c)
| Pinj (j', q') ->
  (match Z.pos_sub j' j with
   | Z0 -> mkPinj j (pmul0 q' q0)
   | Zpos k -> mkPinj j (pmul0 (Pinj (k, q')) q0)
   | Zneg k -> mkPinj j' (pmulI cO cI cmul ceqb pmul0 q0 k q'))
| PX (p', i', q') ->
  (match j with
   | XI j' ->
     mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
       (pmulI cO cI cmul ceqb pmul0 q0 (XO j') q')
   | XO j' ->
     mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
       (pmulI cO cI cmul ceqb pmul0 q0 (Coq_Pos.pred_double j') q')
   | XH ->
     mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 XH p') i' (pmul0 q' q0))

(** val pmul :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)

let rec pmul cO cI cadd cmul ceqb p p'' = match p'' with
| Pc c -> pmulC cO cI cmul ceqb p c
| Pinj (j', q') -> pmulI cO cI cmul ceqb (pmul cO cI cadd cmul ceqb) q' j' p
| PX (p', i', q') ->
  (match p with
   | Pc c -> pmulC cO cI cmul ceqb p'' c
   | Pinj (j, q0) ->
     let qQ' =
       match j with
       | XI j0 -> pmul cO cI cadd cmul ceqb (Pinj ((XO j0), q0)) q'
       | XO j0 ->
         pmul cO cI cadd cmul ceqb (Pinj ((Coq_Pos.pred_double j0), q0)) q'
       | XH -> pmul cO cI cadd cmul ceqb q0 q'
     in
     mkPX cO ceqb (pmul cO cI cadd cmul ceqb p p') i' qQ'
   | PX (p2, i, q0) ->
     let qQ' = pmul cO cI cadd cmul ceqb q0 q' in
     let pQ' = pmulI cO cI cmul ceqb (pmul cO cI cadd cmul ceqb) q' XH p2 in
     let qP' = pmul cO cI cadd cmul ceqb (mkPinj XH q0) p' in
     let pP' = pmul cO cI cadd cmul ceqb p2 p' in
     padd cO cadd ceqb
       (mkPX cO ceqb (padd cO cadd ceqb (mkPX cO ceqb pP' i (p0 cO)) qP') i'
         (p0 cO)) (mkPX cO ceqb pQ' i qQ'))

(** val psquare :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> 'a1 pol -> 'a1 pol **)

let rec psquare cO cI cadd cmul ceqb = function
| Pc c -> Pc (cmul c c)
| Pinj (j, q0) -> Pinj (j, (psquare cO cI cadd cmul ceqb q0))
| PX (p2, i, q0) ->
  let twoPQ =
    pmul cO cI cadd cmul ceqb p2
      (mkPinj XH (pmulC cO cI cmul ceqb q0 (cadd cI cI)))
  in
  let q2 = psquare cO cI cadd cmul ceqb q0 in
  let p3 = psquare cO cI cadd cmul ceqb p2 in
  mkPX cO ceqb (padd cO cadd ceqb (mkPX cO ceqb p3 i (p0 cO)) twoPQ) i q2

type 'c pExpr =
| PEc of 'c
| PEX of positive
| PEadd of 'c pExpr * 'c pExpr
| PEsub of 'c pExpr * 'c pExpr
| PEmul of 'c pExpr * 'c pExpr
| PEopp of 'c pExpr
| PEpow of 'c pExpr * n

(** val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol **)

let mk_X cO cI j =
  mkPinj_pred j (mkX cO cI)

(** val ppow_pos :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> 'a1 pol -> positive -> 'a1
    pol **)

let rec ppow_pos cO cI cadd cmul ceqb subst_l res p = function
| XI p3 ->
  subst_l
    (pmul cO cI cadd cmul ceqb
      (ppow_pos cO cI cadd cmul ceqb subst_l
        (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3) p)
| XO p3 ->
  ppow_pos cO cI cadd cmul ceqb subst_l
    (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3
| XH -> subst_l (pmul cO cI cadd cmul ceqb res p)

(** val ppow_N :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> n -> 'a1 pol **)

let ppow_N cO cI cadd cmul ceqb subst_l p = function
| N0 -> p1 cI
| Npos p2 -> ppow_pos cO cI cadd cmul ceqb subst_l (p1 cI) p p2

(** val norm_aux :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **)

let rec norm_aux cO cI cadd cmul csub copp ceqb = function
| PEc c -> Pc c
| PEX j -> mk_X cO cI j
| PEadd (pe1, pe2) ->
  (match pe1 with
   | PEopp pe3 ->
     psub cO cadd csub copp ceqb
       (norm_aux cO cI cadd cmul csub copp ceqb pe2)
       (norm_aux cO cI cadd cmul csub copp ceqb pe3)
   | _ ->
     (match pe2 with
      | PEopp pe3 ->
        psub cO cadd csub copp ceqb
          (norm_aux cO cI cadd cmul csub copp ceqb pe1)
          (norm_aux cO cI cadd cmul csub copp ceqb pe3)
      | _ ->
        padd cO cadd ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
          (norm_aux cO cI cadd cmul csub copp ceqb pe2)))
| PEsub (pe1, pe2) ->
  psub cO cadd csub copp ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
    (norm_aux cO cI cadd cmul csub copp ceqb pe2)
| PEmul (pe1, pe2) ->
  pmul cO cI cadd cmul ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
    (norm_aux cO cI cadd cmul csub copp ceqb pe2)
| PEopp pe1 -> popp copp (norm_aux cO cI cadd cmul csub copp ceqb pe1)
| PEpow (pe1, n0) ->
  ppow_N cO cI cadd cmul ceqb (fun p -> p)
    (norm_aux cO cI cadd cmul csub copp ceqb pe1) n0

type 'a bFormula =
| TT
| FF
| X
| A of 'a
| Cj of 'a bFormula * 'a bFormula
| D of 'a bFormula * 'a bFormula
| N of 'a bFormula
| I of 'a bFormula * 'a bFormula

(** val map_bformula : ('a1 -> 'a2) -> 'a1 bFormula -> 'a2 bFormula **)

let rec map_bformula fct = function
| TT -> TT
| FF -> FF
| X -> X
| A a -> A (fct a)
| Cj (f1, f2) -> Cj ((map_bformula fct f1), (map_bformula fct f2))
| D (f1, f2) -> D ((map_bformula fct f1), (map_bformula fct f2))
| N f0 -> N (map_bformula fct f0)
| I (f1, f2) -> I ((map_bformula fct f1), (map_bformula fct f2))

type 'x clause = 'x list

type 'x cnf = 'x clause list

(** val tt : 'a1 cnf **)

let tt =
  []

(** val ff : 'a1 cnf **)

let ff =
  []::[]

(** val add_term :
    ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 -> 'a1 clause -> 'a1
    clause option **)

let rec add_term unsat deduce t0 = function
| [] ->
  (match deduce t0 t0 with
   | Some u -> if unsat u then None else Some (t0::[])
   | None -> Some (t0::[]))
| t'::cl0 ->
  (match deduce t0 t' with
   | Some u ->
     if unsat u
     then None
     else (match add_term unsat deduce t0 cl0 with
           | Some cl' -> Some (t'::cl')
           | None -> None)
   | None ->
     (match add_term unsat deduce t0 cl0 with
      | Some cl' -> Some (t'::cl')
      | None -> None))

(** val or_clause :
    ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 clause
    -> 'a1 clause option **)

let rec or_clause unsat deduce cl1 cl2 =
  match cl1 with
  | [] -> Some cl2
  | t0::cl ->
    (match add_term unsat deduce t0 cl2 with
     | Some cl' -> or_clause unsat deduce cl cl'
     | None -> None)

(** val or_clause_cnf :
    ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 cnf ->
    'a1 cnf **)

let or_clause_cnf unsat deduce t0 f =
  fold_right (fun e acc ->
    match or_clause unsat deduce t0 e with
    | Some cl -> cl::acc
    | None -> acc) [] f

(** val or_cnf :
    ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 cnf -> 'a1 cnf -> 'a1
    cnf **)

let rec or_cnf unsat deduce f f' =
  match f with
  | [] -> tt
  | e::rst ->
    app (or_cnf unsat deduce rst f') (or_clause_cnf unsat deduce e f')

(** val and_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf **)

let and_cnf =
  app

(** val xcnf :
    ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1
    -> 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf **)

let rec xcnf unsat deduce normalise0 negate0 pol0 = function
| TT -> if pol0 then tt else ff
| FF -> if pol0 then ff else tt
| X -> ff
| A x -> if pol0 then normalise0 x else negate0 x
| Cj (e1, e2) ->
  if pol0
  then and_cnf (xcnf unsat deduce normalise0 negate0 pol0 e1)
         (xcnf unsat deduce normalise0 negate0 pol0 e2)
  else or_cnf unsat deduce (xcnf unsat deduce normalise0 negate0 pol0 e1)
         (xcnf unsat deduce normalise0 negate0 pol0 e2)
| D (e1, e2) ->
  if pol0
  then or_cnf unsat deduce (xcnf unsat deduce normalise0 negate0 pol0 e1)
         (xcnf unsat deduce normalise0 negate0 pol0 e2)
  else and_cnf (xcnf unsat deduce normalise0 negate0 pol0 e1)
         (xcnf unsat deduce normalise0 negate0 pol0 e2)
| N e -> xcnf unsat deduce normalise0 negate0 (negb pol0) e
| I (e1, e2) ->
  if pol0
  then or_cnf unsat deduce
         (xcnf unsat deduce normalise0 negate0 (negb pol0) e1)
         (xcnf unsat deduce normalise0 negate0 pol0 e2)
  else and_cnf (xcnf unsat deduce normalise0 negate0 (negb pol0) e1)
         (xcnf unsat deduce normalise0 negate0 pol0 e2)

(** val cnf_checker :
    ('a1 list -> 'a2 -> bool) -> 'a1 cnf -> 'a2 list -> bool **)

let rec cnf_checker checker f l =
  match f with
  | [] -> true
  | e::f0 ->
    (match l with
     | [] -> false
     | c::l0 -> if checker e c then cnf_checker checker f0 l0 else false)

(** val tauto_checker :
    ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1
    -> 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1 bFormula -> 'a3 list ->
    bool **)

let tauto_checker unsat deduce normalise0 negate0 checker f w =
  cnf_checker checker (xcnf unsat deduce normalise0 negate0 true f) w

(** val cneqb : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool **)

let cneqb ceqb x y =
  negb (ceqb x y)

(** val cltb :
    ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool **)

let cltb ceqb cleb x y =
  (&&) (cleb x y) (cneqb ceqb x y)

type 'c polC = 'c pol

type op1 =
| Equal
| NonEqual
| Strict
| NonStrict

type 'c nFormula = 'c polC * op1

(** val opMult : op1 -> op1 -> op1 option **)

let opMult o o' =
  match o with
  | Equal -> Some Equal
  | NonEqual ->
    (match o' with
     | Equal -> Some Equal
     | NonEqual -> Some NonEqual
     | _ -> None)
  | Strict -> (match o' with
               | NonEqual -> None
               | _ -> Some o')
  | NonStrict ->
    (match o' with
     | Equal -> Some Equal
     | NonEqual -> None
     | _ -> Some NonStrict)

(** val opAdd : op1 -> op1 -> op1 option **)

let opAdd o o' =
  match o with
  | Equal -> Some o'
  | NonEqual -> (match o' with
                 | Equal -> Some NonEqual
                 | _ -> None)
  | Strict -> (match o' with
               | NonEqual -> None
               | _ -> Some Strict)
  | NonStrict ->
    (match o' with
     | Equal -> Some NonStrict
     | NonEqual -> None
     | x -> Some x)

type 'c psatz =
| PsatzIn of nat
| PsatzSquare of 'c polC
| PsatzMulC of 'c polC * 'c psatz
| PsatzMulE of 'c psatz * 'c psatz
| PsatzAdd of 'c psatz * 'c psatz
| PsatzC of 'c
| PsatzZ

(** val map_option : ('a1 -> 'a2 option) -> 'a1 option -> 'a2 option **)

let map_option f = function
| Some x -> f x
| None -> None

(** val map_option2 :
    ('a1 -> 'a2 -> 'a3 option) -> 'a1 option -> 'a2 option -> 'a3 option **)

let map_option2 f o o' =
  match o with
  | Some x -> (match o' with
               | Some x' -> f x x'
               | None -> None)
  | None -> None

(** val pexpr_times_nformula :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> 'a1 polC -> 'a1 nFormula -> 'a1 nFormula option **)

let pexpr_times_nformula cO cI cplus ctimes ceqb e = function
| ef,o ->
  (match o with
   | Equal -> Some ((pmul cO cI cplus ctimes ceqb e ef),Equal)
   | _ -> None)

(** val nformula_times_nformula :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> 'a1 nFormula -> 'a1 nFormula -> 'a1 nFormula option **)

let nformula_times_nformula cO cI cplus ctimes ceqb f1 f2 =
  let e1,o1 = f1 in
  let e2,o2 = f2 in
  map_option (fun x -> Some ((pmul cO cI cplus ctimes ceqb e1 e2),x))
    (opMult o1 o2)

(** val nformula_plus_nformula :
    'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> 'a1
    nFormula -> 'a1 nFormula option **)

let nformula_plus_nformula cO cplus ceqb f1 f2 =
  let e1,o1 = f1 in
  let e2,o2 = f2 in
  map_option (fun x -> Some ((padd cO cplus ceqb e1 e2),x)) (opAdd o1 o2)

(** val eval_Psatz :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> 'a1
    nFormula option **)

let rec eval_Psatz cO cI cplus ctimes ceqb cleb l = function
| PsatzIn n0 -> Some (nth n0 l ((Pc cO),Equal))
| PsatzSquare e0 -> Some ((psquare cO cI cplus ctimes ceqb e0),NonStrict)
| PsatzMulC (re, e0) ->
  map_option (pexpr_times_nformula cO cI cplus ctimes ceqb re)
    (eval_Psatz cO cI cplus ctimes ceqb cleb l e0)
| PsatzMulE (f1, f2) ->
  map_option2 (nformula_times_nformula cO cI cplus ctimes ceqb)
    (eval_Psatz cO cI cplus ctimes ceqb cleb l f1)
    (eval_Psatz cO cI cplus ctimes ceqb cleb l f2)
| PsatzAdd (f1, f2) ->
  map_option2 (nformula_plus_nformula cO cplus ceqb)
    (eval_Psatz cO cI cplus ctimes ceqb cleb l f1)
    (eval_Psatz cO cI cplus ctimes ceqb cleb l f2)
| PsatzC c -> if cltb ceqb cleb cO c then Some ((Pc c),Strict) else None
| PsatzZ -> Some ((Pc cO),Equal)

(** val check_inconsistent :
    'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula ->
    bool **)

let check_inconsistent cO ceqb cleb = function
| e,op ->
  (match e with
   | Pc c ->
     (match op with
      | Equal -> cneqb ceqb c cO
      | NonEqual -> ceqb c cO
      | Strict -> cleb c cO
      | NonStrict -> cltb ceqb cleb c cO)
   | _ -> false)

(** val check_normalised_formulas :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> bool **)

let check_normalised_formulas cO cI cplus ctimes ceqb cleb l cm =
  match eval_Psatz cO cI cplus ctimes ceqb cleb l cm with
  | Some f -> check_inconsistent cO ceqb cleb f
  | None -> false

type op2 =
| OpEq
| OpNEq
| OpLe
| OpGe
| OpLt
| OpGt

type 't formula = { flhs : 't pExpr; fop : op2; frhs : 't pExpr }

(** val norm :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **)

let norm =
  norm_aux

(** val psub0 :
    'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
    -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)

let psub0 =
  psub

(** val padd0 :
    'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol
    -> 'a1 pol **)

let padd0 =
  padd

(** val xnormalise :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
    nFormula list **)

let xnormalise cO cI cplus ctimes cminus copp ceqb t0 =
  let { flhs = lhs; fop = o; frhs = rhs } = t0 in
  let lhs0 = norm cO cI cplus ctimes cminus copp ceqb lhs in
  let rhs0 = norm cO cI cplus ctimes cminus copp ceqb rhs in
  (match o with
   | OpEq ->
     ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::(((psub0 cO cplus
                                                               cminus copp
                                                               ceqb rhs0 lhs0),Strict)::[])
   | OpNEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Equal)::[]
   | OpLe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::[]
   | OpGe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),Strict)::[]
   | OpLt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),NonStrict)::[]
   | OpGt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),NonStrict)::[])

(** val cnf_normalise :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
    nFormula cnf **)

let cnf_normalise cO cI cplus ctimes cminus copp ceqb t0 =
  map (fun x -> x::[]) (xnormalise cO cI cplus ctimes cminus copp ceqb t0)

(** val xnegate :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
    nFormula list **)

let xnegate cO cI cplus ctimes cminus copp ceqb t0 =
  let { flhs = lhs; fop = o; frhs = rhs } = t0 in
  let lhs0 = norm cO cI cplus ctimes cminus copp ceqb lhs in
  let rhs0 = norm cO cI cplus ctimes cminus copp ceqb rhs in
  (match o with
   | OpEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Equal)::[]
   | OpNEq ->
     ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::(((psub0 cO cplus
                                                               cminus copp
                                                               ceqb rhs0 lhs0),Strict)::[])
   | OpLe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),NonStrict)::[]
   | OpGe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),NonStrict)::[]
   | OpLt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),Strict)::[]
   | OpGt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::[])

(** val cnf_negate :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
    nFormula cnf **)

let cnf_negate cO cI cplus ctimes cminus copp ceqb t0 =
  map (fun x -> x::[]) (xnegate cO cI cplus ctimes cminus copp ceqb t0)

(** val xdenorm : positive -> 'a1 pol -> 'a1 pExpr **)

let rec xdenorm jmp = function
| Pc c -> PEc c
| Pinj (j, p2) -> xdenorm (Coq_Pos.add j jmp) p2
| PX (p2, j, q0) ->
  PEadd ((PEmul ((xdenorm jmp p2), (PEpow ((PEX jmp), (Npos j))))),
    (xdenorm (Coq_Pos.succ jmp) q0))

(** val denorm : 'a1 pol -> 'a1 pExpr **)

let denorm p =
  xdenorm XH p

(** val map_PExpr : ('a2 -> 'a1) -> 'a2 pExpr -> 'a1 pExpr **)

let rec map_PExpr c_of_S = function
| PEc c -> PEc (c_of_S c)
| PEX p -> PEX p
| PEadd (e1, e2) -> PEadd ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2))
| PEsub (e1, e2) -> PEsub ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2))
| PEmul (e1, e2) -> PEmul ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2))
| PEopp e0 -> PEopp (map_PExpr c_of_S e0)
| PEpow (e0, n0) -> PEpow ((map_PExpr c_of_S e0), n0)

(** val map_Formula : ('a2 -> 'a1) -> 'a2 formula -> 'a1 formula **)

let map_Formula c_of_S f =
  let { flhs = l; fop = o; frhs = r } = f in
  { flhs = (map_PExpr c_of_S l); fop = o; frhs = (map_PExpr c_of_S r) }

(** val simpl_cone :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 psatz ->
    'a1 psatz **)

let simpl_cone cO cI ctimes ceqb e = match e with
| PsatzSquare t0 ->
  (match t0 with
   | Pc c -> if ceqb cO c then PsatzZ else PsatzC (ctimes c c)
   | _ -> PsatzSquare t0)
| PsatzMulE (t1, t2) ->
  (match t1 with
   | PsatzMulE (x, x0) ->
     (match x with
      | PsatzC p2 ->
        (match t2 with
         | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
         | PsatzZ -> PsatzZ
         | _ -> e)
      | _ ->
        (match x0 with
         | PsatzC p2 ->
           (match t2 with
            | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x)
            | PsatzZ -> PsatzZ
            | _ -> e)
         | _ ->
           (match t2 with
            | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2)
            | PsatzZ -> PsatzZ
            | _ -> e)))
   | PsatzC c ->
     (match t2 with
      | PsatzMulE (x, x0) ->
        (match x with
         | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
         | _ ->
           (match x0 with
            | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x)
            | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2)))
      | PsatzAdd (y, z0) ->
        PsatzAdd ((PsatzMulE ((PsatzC c), y)), (PsatzMulE ((PsatzC c), z0)))
      | PsatzC c0 -> PsatzC (ctimes c c0)
      | PsatzZ -> PsatzZ
      | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2))
   | PsatzZ -> PsatzZ
   | _ ->
     (match t2 with
      | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2)
      | PsatzZ -> PsatzZ
      | _ -> e))
| PsatzAdd (t1, t2) ->
  (match t1 with
   | PsatzZ -> t2
   | _ -> (match t2 with
           | PsatzZ -> t1
           | _ -> PsatzAdd (t1, t2)))
| _ -> e

type q = { qnum : z; qden : positive }

(** val qnum : q -> z **)

let qnum x = x.qnum

(** val qden : q -> positive **)

let qden x = x.qden

(** val qeq_bool : q -> q -> bool **)

let qeq_bool x y =
  zeq_bool (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden))

(** val qle_bool : q -> q -> bool **)

let qle_bool x y =
  Z.leb (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden))

(** val qplus : q -> q -> q **)

let qplus x y =
  { qnum = (Z.add (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden)));
    qden = (Coq_Pos.mul x.qden y.qden) }

(** val qmult : q -> q -> q **)

let qmult x y =
  { qnum = (Z.mul x.qnum y.qnum); qden = (Coq_Pos.mul x.qden y.qden) }

(** val qopp : q -> q **)

let qopp x =
  { qnum = (Z.opp x.qnum); qden = x.qden }

(** val qminus : q -> q -> q **)

let qminus x y =
  qplus x (qopp y)

(** val qinv : q -> q **)

let qinv x =
  match x.qnum with
  | Z0 -> { qnum = Z0; qden = XH }
  | Zpos p -> { qnum = (Zpos x.qden); qden = p }
  | Zneg p -> { qnum = (Zneg x.qden); qden = p }

(** val qpower_positive : q -> positive -> q **)

let qpower_positive =
  pow_pos qmult

(** val qpower : q -> z -> q **)

let qpower q0 = function
| Z0 -> { qnum = (Zpos XH); qden = XH }
| Zpos p -> qpower_positive q0 p
| Zneg p -> qinv (qpower_positive q0 p)

type 'a t =
| Empty
| Leaf of 'a
| Node of 'a t * 'a * 'a t

(** val find : 'a1 -> 'a1 t -> positive -> 'a1 **)

let rec find default vm p =
  match vm with
  | Empty -> default
  | Leaf i -> i
  | Node (l, e, r) ->
    (match p with
     | XI p2 -> find default r p2
     | XO p2 -> find default l p2
     | XH -> e)

(** val singleton : 'a1 -> positive -> 'a1 -> 'a1 t **)

let rec singleton default x v =
  match x with
  | XI p -> Node (Empty, default, (singleton default p v))
  | XO p -> Node ((singleton default p v), default, Empty)
  | XH -> Leaf v

(** val vm_add : 'a1 -> positive -> 'a1 -> 'a1 t -> 'a1 t **)

let rec vm_add default x v = function
| Empty -> singleton default x v
| Leaf vl ->
  (match x with
   | XI p -> Node (Empty, vl, (singleton default p v))
   | XO p -> Node ((singleton default p v), vl, Empty)
   | XH -> Leaf v)
| Node (l, o, r) ->
  (match x with
   | XI p -> Node (l, o, (vm_add default p v r))
   | XO p -> Node ((vm_add default p v l), o, r)
   | XH -> Node (l, v, r))

type zWitness = z psatz

(** val zWeakChecker : z nFormula list -> z psatz -> bool **)

let zWeakChecker =
  check_normalised_formulas Z0 (Zpos XH) Z.add Z.mul zeq_bool Z.leb

(** val psub1 : z pol -> z pol -> z pol **)

let psub1 =
  psub0 Z0 Z.add Z.sub Z.opp zeq_bool

(** val padd1 : z pol -> z pol -> z pol **)

let padd1 =
  padd0 Z0 Z.add zeq_bool

(** val norm0 : z pExpr -> z pol **)

let norm0 =
  norm Z0 (Zpos XH) Z.add Z.mul Z.sub Z.opp zeq_bool

(** val xnormalise0 : z formula -> z nFormula list **)

let xnormalise0 t0 =
  let { flhs = lhs; fop = o; frhs = rhs } = t0 in
  let lhs0 = norm0 lhs in
  let rhs0 = norm0 rhs in
  (match o with
   | OpEq ->
     ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::(((psub1 rhs0
                                                               (padd1 lhs0
                                                                 (Pc (Zpos
                                                                 XH)))),NonStrict)::[])
   | OpNEq -> ((psub1 lhs0 rhs0),Equal)::[]
   | OpLe -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::[]
   | OpGe -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))),NonStrict)::[]
   | OpLt -> ((psub1 lhs0 rhs0),NonStrict)::[]
   | OpGt -> ((psub1 rhs0 lhs0),NonStrict)::[])

(** val normalise : z formula -> z nFormula cnf **)

let normalise t0 =
  map (fun x -> x::[]) (xnormalise0 t0)

(** val xnegate0 : z formula -> z nFormula list **)

let xnegate0 t0 =
  let { flhs = lhs; fop = o; frhs = rhs } = t0 in
  let lhs0 = norm0 lhs in
  let rhs0 = norm0 rhs in
  (match o with
   | OpEq -> ((psub1 lhs0 rhs0),Equal)::[]
   | OpNEq ->
     ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::(((psub1 rhs0
                                                               (padd1 lhs0
                                                                 (Pc (Zpos
                                                                 XH)))),NonStrict)::[])
   | OpLe -> ((psub1 rhs0 lhs0),NonStrict)::[]
   | OpGe -> ((psub1 lhs0 rhs0),NonStrict)::[]
   | OpLt -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))),NonStrict)::[]
   | OpGt -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::[])

(** val negate : z formula -> z nFormula cnf **)

let negate t0 =
  map (fun x -> x::[]) (xnegate0 t0)

(** val zunsat : z nFormula -> bool **)

let zunsat =
  check_inconsistent Z0 zeq_bool Z.leb

(** val zdeduce : z nFormula -> z nFormula -> z nFormula option **)

let zdeduce =
  nformula_plus_nformula Z0 Z.add zeq_bool

(** val ceiling : z -> z -> z **)

let ceiling a b =
  let q0,r = Z.div_eucl a b in
  (match r with
   | Z0 -> q0
   | _ -> Z.add q0 (Zpos XH))

type zArithProof =
| DoneProof
| RatProof of zWitness * zArithProof
| CutProof of zWitness * zArithProof
| EnumProof of zWitness * zWitness * zArithProof list

(** val zgcdM : z -> z -> z **)

let zgcdM x y =
  Z.max (Z.gcd x y) (Zpos XH)

(** val zgcd_pol : z polC -> z * z **)

let rec zgcd_pol = function
| Pc c -> Z0,c
| Pinj (_, p2) -> zgcd_pol p2
| PX (p2, _, q0) ->
  let g1,c1 = zgcd_pol p2 in
  let g2,c2 = zgcd_pol q0 in (zgcdM (zgcdM g1 c1) g2),c2

(** val zdiv_pol : z polC -> z -> z polC **)

let rec zdiv_pol p x =
  match p with
  | Pc c -> Pc (Z.div c x)
  | Pinj (j, p2) -> Pinj (j, (zdiv_pol p2 x))
  | PX (p2, j, q0) -> PX ((zdiv_pol p2 x), j, (zdiv_pol q0 x))

(** val makeCuttingPlane : z polC -> z polC * z **)

let makeCuttingPlane p =
  let g,c = zgcd_pol p in
  if Z.gtb g Z0
  then (zdiv_pol (psubC Z.sub p c) g),(Z.opp (ceiling (Z.opp c) g))
  else p,Z0

(** val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option **)

let genCuttingPlane = function
| e,op ->
  (match op with
   | Equal ->
     let g,c = zgcd_pol e in
     if (&&) (Z.gtb g Z0)
          ((&&) (negb (zeq_bool c Z0)) (negb (zeq_bool (Z.gcd g c) g)))
     then None
     else Some ((makeCuttingPlane e),Equal)
   | NonEqual -> Some ((e,Z0),op)
   | Strict -> Some ((makeCuttingPlane (psubC Z.sub e (Zpos XH))),NonStrict)
   | NonStrict -> Some ((makeCuttingPlane e),NonStrict))

(** val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula **)

let nformula_of_cutting_plane = function
| e_z,o -> let e,z0 = e_z in (padd1 e (Pc z0)),o

(** val is_pol_Z0 : z polC -> bool **)

let is_pol_Z0 = function
| Pc z0 -> (match z0 with
            | Z0 -> true
            | _ -> false)
| _ -> false

(** val eval_Psatz0 : z nFormula list -> zWitness -> z nFormula option **)

let eval_Psatz0 =
  eval_Psatz Z0 (Zpos XH) Z.add Z.mul zeq_bool Z.leb

(** val valid_cut_sign : op1 -> bool **)

let valid_cut_sign = function
| Equal -> true
| NonStrict -> true
| _ -> false

(** val zChecker : z nFormula list -> zArithProof -> bool **)

let rec zChecker l = function
| DoneProof -> false
| RatProof (w, pf0) ->
  (match eval_Psatz0 l w with
   | Some f -> if zunsat f then true else zChecker (f::l) pf0
   | None -> false)
| CutProof (w, pf0) ->
  (match eval_Psatz0 l w with
   | Some f ->
     (match genCuttingPlane f with
      | Some cp -> zChecker ((nformula_of_cutting_plane cp)::l) pf0
      | None -> true)
   | None -> false)
| EnumProof (w1, w2, pf0) ->
  (match eval_Psatz0 l w1 with
   | Some f1 ->
     (match eval_Psatz0 l w2 with
      | Some f2 ->
        (match genCuttingPlane f1 with
         | Some p ->
           let p2,op3 = p in
           let e1,z1 = p2 in
           (match genCuttingPlane f2 with
            | Some p3 ->
              let p4,op4 = p3 in
              let e2,z2 = p4 in
              if (&&) ((&&) (valid_cut_sign op3) (valid_cut_sign op4))
                   (is_pol_Z0 (padd1 e1 e2))
              then let rec label pfs lb ub =
                     match pfs with
                     | [] -> Z.gtb lb ub
                     | pf1::rsr ->
                       (&&) (zChecker (((psub1 e1 (Pc lb)),Equal)::l) pf1)
                         (label rsr (Z.add lb (Zpos XH)) ub)
                   in label pf0 (Z.opp z1) z2
              else false
            | None -> true)
         | None -> true)
      | None -> false)
   | None -> false)

(** val zTautoChecker : z formula bFormula -> zArithProof list -> bool **)

let zTautoChecker f w =
  tauto_checker zunsat zdeduce normalise negate zChecker f w

type qWitness = q psatz

(** val qWeakChecker : q nFormula list -> q psatz -> bool **)

let qWeakChecker =
  check_normalised_formulas { qnum = Z0; qden = XH } { qnum = (Zpos XH);
    qden = XH } qplus qmult qeq_bool qle_bool

(** val qnormalise : q formula -> q nFormula cnf **)

let qnormalise =
  cnf_normalise { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH }
    qplus qmult qminus qopp qeq_bool

(** val qnegate : q formula -> q nFormula cnf **)

let qnegate =
  cnf_negate { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } qplus
    qmult qminus qopp qeq_bool

(** val qunsat : q nFormula -> bool **)

let qunsat =
  check_inconsistent { qnum = Z0; qden = XH } qeq_bool qle_bool

(** val qdeduce : q nFormula -> q nFormula -> q nFormula option **)

let qdeduce =
  nformula_plus_nformula { qnum = Z0; qden = XH } qplus qeq_bool

(** val qTautoChecker : q formula bFormula -> qWitness list -> bool **)

let qTautoChecker f w =
  tauto_checker qunsat qdeduce qnormalise qnegate qWeakChecker f w

type rcst =
| C0
| C1
| CQ of q
| CZ of z
| CPlus of rcst * rcst
| CMinus of rcst * rcst
| CMult of rcst * rcst
| CInv of rcst
| COpp of rcst

(** val q_of_Rcst : rcst -> q **)

let rec q_of_Rcst = function
| C0 -> { qnum = Z0; qden = XH }
| C1 -> { qnum = (Zpos XH); qden = XH }
| CQ q0 -> q0
| CZ z0 -> { qnum = z0; qden = XH }
| CPlus (r1, r2) -> qplus (q_of_Rcst r1) (q_of_Rcst r2)
| CMinus (r1, r2) -> qminus (q_of_Rcst r1) (q_of_Rcst r2)
| CMult (r1, r2) -> qmult (q_of_Rcst r1) (q_of_Rcst r2)
| CInv r0 -> qinv (q_of_Rcst r0)
| COpp r0 -> qopp (q_of_Rcst r0)

type rWitness = q psatz

(** val rWeakChecker : q nFormula list -> q psatz -> bool **)

let rWeakChecker =
  check_normalised_formulas { qnum = Z0; qden = XH } { qnum = (Zpos XH);
    qden = XH } qplus qmult qeq_bool qle_bool

(** val rnormalise : q formula -> q nFormula cnf **)

let rnormalise =
  cnf_normalise { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH }
    qplus qmult qminus qopp qeq_bool

(** val rnegate : q formula -> q nFormula cnf **)

let rnegate =
  cnf_negate { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } qplus
    qmult qminus qopp qeq_bool

(** val runsat : q nFormula -> bool **)

let runsat =
  check_inconsistent { qnum = Z0; qden = XH } qeq_bool qle_bool

(** val rdeduce : q nFormula -> q nFormula -> q nFormula option **)

let rdeduce =
  nformula_plus_nformula { qnum = Z0; qden = XH } qplus qeq_bool

(** val rTautoChecker : rcst formula bFormula -> rWitness list -> bool **)

let rTautoChecker f w =
  tauto_checker runsat rdeduce rnormalise rnegate rWeakChecker
    (map_bformula (map_Formula q_of_Rcst) f) w