1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (*i*) open Util open Names open Term open Constr open Vars open Declarations open Declareops open Environ open Reduction open Reductionops open Inductive open Termops open Inductiveops open Recordops open Namegen open Globnames open Miniml open Table open Mlutil open Context.Rel.Declaration (*i*) exception I of inductive_kind (* A set of all fixpoint functions currently being extracted *) let current_fixpoints = ref ([] : Constant.t list) let none = Evd.empty (* NB: In OCaml, [type_of] and [get_of] might raise [SingletonInductiveBecomeProp]. This exception will be caught in late wrappers around the exported functions of this file, in order to display the location of the issue. *) let type_of env c = let polyprop = (lang() == Haskell) in EConstr.Unsafe.to_constr (Retyping.get_type_of ~polyprop env none (strip_outer_cast none (EConstr.of_constr c))) let sort_of env c = let polyprop = (lang() == Haskell) in Retyping.get_sort_family_of ~polyprop env none (strip_outer_cast none (EConstr.of_constr c)) (*S Generation of flags and signatures. *) (* The type [flag] gives us information about any Coq term: \begin{itemize} \item [TypeScheme] denotes a type scheme, that is something that will become a type after enough applications. More formally, a type scheme has type $(x_1:X_1)\ldots(x_n:X_n)s$ with [s = Set], [Prop] or [Type] \item [Default] denotes the other cases. It may be inexact after instantiation. For example [(X:Type)X] is [Default] and may give [Set] after instantiation, which is rather [TypeScheme] \item [Logic] denotes a term of sort [Prop], or a type scheme on sort [Prop] \item [Info] is the opposite. The same example [(X:Type)X] shows that an [Info] term might in fact be [Logic] later on. \end{itemize} *) type info = Logic | Info type scheme = TypeScheme | Default type flag = info * scheme let whd_all env t = EConstr.Unsafe.to_constr (whd_all env none (EConstr.of_constr t)) let whd_betaiotazeta t = EConstr.Unsafe.to_constr (whd_betaiotazeta none (EConstr.of_constr t)) (*s [flag_of_type] transforms a type [t] into a [flag]. Really important function. *) let rec flag_of_type env t : flag = let t = whd_all env t in match Constr.kind t with | Prod (x,t,c) -> flag_of_type (push_rel (LocalAssum (x,t)) env) c | Sort s when Sorts.is_prop s -> (Logic,TypeScheme) | Sort _ -> (Info,TypeScheme) | _ -> if (sort_of env t) == InProp then (Logic,Default) else (Info,Default) (*s Two particular cases of [flag_of_type]. *) let is_default env t = match flag_of_type env t with | (Info, Default) -> true | _ -> false exception NotDefault of kill_reason let check_default env t = match flag_of_type env t with | _,TypeScheme -> raise (NotDefault Ktype) | Logic,_ -> raise (NotDefault Kprop) | _ -> () let is_info_scheme env t = match flag_of_type env t with | (Info, TypeScheme) -> true | _ -> false let push_rel_assum (n, t) env = Environ.push_rel (LocalAssum (n, t)) env (*s [type_sign] gernerates a signature aimed at treating a type application. *) let rec type_sign env c = match Constr.kind (whd_all env c) with | Prod (n,t,d) -> (if is_info_scheme env t then Keep else Kill Kprop) :: (type_sign (push_rel_assum (n,t) env) d) | _ -> [] let rec type_scheme_nb_args env c = match Constr.kind (whd_all env c) with | Prod (n,t,d) -> let n = type_scheme_nb_args (push_rel_assum (n,t) env) d in if is_info_scheme env t then n+1 else n | _ -> 0 let _ = Hook.set type_scheme_nb_args_hook type_scheme_nb_args (*s [type_sign_vl] does the same, plus a type var list. *) (* When generating type variables, we avoid any ' in their names (otherwise this may cause a lexer conflict in ocaml with 'a'). We also get rid of unicode characters. Anyway, since type variables are local, the created name is just a matter of taste... See also Bug #3227 *) let make_typvar n vl = let id = id_of_name n in let id' = let s = Id.to_string id in if not (String.contains s '\'') && Unicode.is_basic_ascii s then id else id_of_name Anonymous in let vl = Id.Set.of_list vl in next_ident_away id' vl let rec type_sign_vl env c = match Constr.kind (whd_all env c) with | Prod (n,t,d) -> let s,vl = type_sign_vl (push_rel_assum (n,t) env) d in if not (is_info_scheme env t) then Kill Kprop::s, vl else Keep::s, (make_typvar n vl) :: vl | _ -> [],[] let rec nb_default_params env c = match Constr.kind (whd_all env c) with | Prod (n,t,d) -> let n = nb_default_params (push_rel_assum (n,t) env) d in if is_default env t then n+1 else n | _ -> 0 (* Enriching a signature with implicit information *) let sign_with_implicits r s nb_params = let implicits = implicits_of_global r in let rec add_impl i = function | [] -> [] | Keep::s when Int.Set.mem i implicits -> Kill (Kimplicit (r,i)) :: add_impl (i+1) s | sign::s -> sign :: add_impl (i+1) s in add_impl (1+nb_params) s (*S Management of type variable contexts. *) (* A De Bruijn variable context (db) is a context for translating Coq [Rel] into ML type [Tvar]. *) (*s From a type signature toward a type variable context (db). *) let db_from_sign s = let rec make i acc = function | [] -> acc | Keep :: l -> make (i+1) (i::acc) l | Kill _ :: l -> make i (0::acc) l in make 1 [] s (*s Create a type variable context from indications taken from an inductive type (see just below). *) let rec db_from_ind dbmap i = if Int.equal i 0 then [] else (try Int.Map.find i dbmap with Not_found -> 0)::(db_from_ind dbmap (i-1)) (*s [parse_ind_args] builds a map: [i->j] iff the i-th Coq argument of a constructor corresponds to the j-th type var of the ML inductive. *) (* \begin{itemize} \item [si] : signature of the inductive \item [i] : counter of Coq args for [(I args)] \item [j] : counter of ML type vars \item [relmax] : total args number of the constructor \end{itemize} *) let parse_ind_args si args relmax = let rec parse i j = function | [] -> Int.Map.empty | Kill _ :: s -> parse (i+1) j s | Keep :: s -> (match Constr.kind args.(i-1) with | Rel k -> Int.Map.add (relmax+1-k) j (parse (i+1) (j+1) s) | _ -> parse (i+1) (j+1) s) in parse 1 1 si (*S Extraction of a type. *) (* [extract_type env db c args] is used to produce an ML type from the coq term [(c args)], which is supposed to be a Coq type. *) (* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *) (* [j] stands for the next ML type var. [j=0] means we do not generate ML type var anymore (in subterms for example). *) let rec extract_type env db j c args = match Constr.kind (whd_betaiotazeta c) with | App (d, args') -> (* We just accumulate the arguments. *) extract_type env db j d (Array.to_list args' @ args) | Lambda (_,_,d) -> (match args with | [] -> assert false (* A lambda cannot be a type. *) | a :: args -> extract_type env db j (subst1 a d) args) | Prod (n,t,d) -> assert (List.is_empty args); let env' = push_rel_assum (n,t) env in (match flag_of_type env t with | (Info, Default) -> (* Standard case: two [extract_type] ... *) let mld = extract_type env' (0::db) j d [] in (match expand env mld with | Tdummy d -> Tdummy d | _ -> Tarr (extract_type env db 0 t [], mld)) | (Info, TypeScheme) when j > 0 -> (* A new type var. *) let mld = extract_type env' (j::db) (j+1) d [] in (match expand env mld with | Tdummy d -> Tdummy d | _ -> Tarr (Tdummy Ktype, mld)) | _,lvl -> let mld = extract_type env' (0::db) j d [] in (match expand env mld with | Tdummy d -> Tdummy d | _ -> let reason = if lvl == TypeScheme then Ktype else Kprop in Tarr (Tdummy reason, mld))) | Sort _ -> Tdummy Ktype (* The two logical cases. *) | _ when sort_of env (applistc c args) == InProp -> Tdummy Kprop | Rel n -> (match lookup_rel n env with | LocalDef (_,t,_) -> extract_type env db j (lift n t) args | _ -> (* Asks [db] a translation for [n]. *) if n > List.length db then Tunknown else let n' = List.nth db (n-1) in if Int.equal n' 0 then Tunknown else Tvar n') | Const (kn,u as c) -> let r = ConstRef kn in let cb = lookup_constant kn env in let typ = Typeops.type_of_constant_in env c in (match flag_of_type env typ with | (Logic,_) -> assert false (* Cf. logical cases above *) | (Info, TypeScheme) -> let mlt = extract_type_app env db (r, type_sign env typ) args in (match cb.const_body with | Undef _ | OpaqueDef _ -> mlt | Def _ when is_custom r -> mlt | Def lbody -> let newc = applistc (Mod_subst.force_constr lbody) args in let mlt' = extract_type env db j newc [] in (* ML type abbreviations interact badly with Coq *) (* reduction, so [mlt] and [mlt'] might be different: *) (* The more precise is [mlt'], extracted after reduction *) (* The shortest is [mlt], which use abbreviations *) (* If possible, we take [mlt], otherwise [mlt']. *) if eq_ml_type (expand env mlt) (expand env mlt') then mlt else mlt') | (Info, Default) -> (* Not an ML type, for example [(c:forall X, X->X) Type nat] *) (match cb.const_body with | Undef _ | OpaqueDef _ -> Tunknown (* Brutal approx ... *) | Def lbody -> (* We try to reduce. *) let newc = applistc (Mod_subst.force_constr lbody) args in extract_type env db j newc [])) | Ind ((kn,i),u) -> let s = (extract_ind env kn).ind_packets.(i).ip_sign in extract_type_app env db (IndRef (kn,i),s) args | Proj (p,t) -> (* Let's try to reduce, if it hasn't already been done. *) if Projection.unfolded p then Tunknown else extract_type env db j (mkProj (Projection.unfold p, t)) args | Case _ | Fix _ | CoFix _ -> Tunknown | Var _ | Meta _ | Evar _ | Cast _ | LetIn _ | Construct _ -> assert false (*s Auxiliary function dealing with type application. Precondition: [r] is a type scheme represented by the signature [s], and is completely applied: [List.length args = List.length s]. *) and extract_type_app env db (r,s) args = let ml_args = List.fold_right (fun (b,c) a -> if b == Keep then let p = List.length (fst (splay_prod env none (EConstr.of_constr (type_of env c)))) in let db = iterate (fun l -> 0 :: l) p db in (extract_type_scheme env db c p) :: a else a) (List.combine s args) [] in Tglob (r, ml_args) (*S Extraction of a type scheme. *) (* [extract_type_scheme env db c p] works on a Coq term [c] which is an informative type scheme. It means that [c] is not a Coq type, but will be when applied to sufficiently many arguments ([p] in fact). This function decomposes p lambdas, with eta-expansion if needed. *) (* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *) and extract_type_scheme env db c p = if Int.equal p 0 then extract_type env db 0 c [] else let c = whd_betaiotazeta c in match Constr.kind c with | Lambda (n,t,d) -> extract_type_scheme (push_rel_assum (n,t) env) db d (p-1) | _ -> let rels = fst (splay_prod env none (EConstr.of_constr (type_of env c))) in let rels = List.map (on_snd EConstr.Unsafe.to_constr) rels in let env = push_rels_assum rels env in let eta_args = List.rev_map mkRel (List.interval 1 p) in extract_type env db 0 (lift p c) eta_args (*S Extraction of an inductive type. *) (* First, a version with cache *) and extract_ind env kn = (* kn is supposed to be in long form *) let mib = Environ.lookup_mind kn env in match lookup_ind kn mib with | Some ml_ind -> ml_ind | None -> try extract_really_ind env kn mib with SingletonInductiveBecomesProp id -> (* TODO : which inductive is concerned in the block ? *) error_singleton_become_prop id (Some (IndRef (kn,0))) (* Then the real function *) and extract_really_ind env kn mib = (* First, if this inductive is aliased via a Module, we process the original inductive if possible. When at toplevel of the monolithic case, we cannot do much (cf Vector and bug #2570) *) let equiv = if lang () != Ocaml || (not (modular ()) && at_toplevel (MutInd.modpath kn)) || KerName.equal (MutInd.canonical kn) (MutInd.user kn) then NoEquiv else begin ignore (extract_ind env (MutInd.make1 (MutInd.canonical kn))); Equiv (MutInd.canonical kn) end in (* Everything concerning parameters. *) (* We do that first, since they are common to all the [mib]. *) let mip0 = mib.mind_packets.(0) in let npar = mib.mind_nparams in let epar = push_rel_context mib.mind_params_ctxt env in (* First pass: we store inductive signatures together with *) (* their type var list. *) let packets = Array.mapi (fun i mip -> let (_,u),_ = Universes.fresh_inductive_instance env (kn,i) in let ar = Inductive.type_of_inductive env ((mib,mip),u) in let info = (fst (flag_of_type env ar) = Info) in let s,v = if info then type_sign_vl env ar else [],[] in let t = Array.make (Array.length mip.mind_nf_lc) [] in { ip_typename = mip.mind_typename; ip_consnames = mip.mind_consnames; ip_logical = not info; ip_sign = s; ip_vars = v; ip_types = t }, u) mib.mind_packets in add_ind kn mib {ind_kind = Standard; ind_nparams = npar; ind_packets = Array.map fst packets; ind_equiv = equiv }; (* Second pass: we extract constructors *) for i = 0 to mib.mind_ntypes - 1 do let p,u = packets.(i) in if not p.ip_logical then let types = arities_of_constructors env ((kn,i),u) in for j = 0 to Array.length types - 1 do let t = snd (decompose_prod_n npar types.(j)) in let prods,head = dest_prod epar t in let nprods = List.length prods in let args = match Constr.kind head with | App (f,args) -> args (* [Constr.kind f = Ind ip] *) | _ -> [||] in let dbmap = parse_ind_args p.ip_sign args (nprods + npar) in let db = db_from_ind dbmap npar in p.ip_types.(j) <- extract_type_cons epar db dbmap t (npar+1) done done; (* Third pass: we determine special cases. *) let ind_info = try let ip = (kn, 0) in let r = IndRef ip in if is_custom r then raise (I Standard); if mib.mind_finite == Decl_kinds.CoFinite then raise (I Coinductive); if not (Int.equal mib.mind_ntypes 1) then raise (I Standard); let p,u = packets.(0) in if p.ip_logical then raise (I Standard); if not (Int.equal (Array.length p.ip_types) 1) then raise (I Standard); let typ = p.ip_types.(0) in let l = List.filter (fun t -> not (isTdummy (expand env t))) typ in if not (keep_singleton ()) && Int.equal (List.length l) 1 && not (type_mem_kn kn (List.hd l)) then raise (I Singleton); if List.is_empty l then raise (I Standard); if Option.is_empty mib.mind_record then raise (I Standard); (* Now we're sure it's a record. *) (* First, we find its field names. *) let rec names_prod t = match Constr.kind t with | Prod(n,_,t) -> n::(names_prod t) | LetIn(_,_,_,t) -> names_prod t | Cast(t,_,_) -> names_prod t | _ -> [] in let field_names = List.skipn mib.mind_nparams (names_prod mip0.mind_user_lc.(0)) in assert (Int.equal (List.length field_names) (List.length typ)); let projs = ref Cset.empty in let mp = MutInd.modpath kn in let rec select_fields l typs = match l,typs with | [],[] -> [] | _::l, typ::typs when isTdummy (expand env typ) -> select_fields l typs | Anonymous::l, typ::typs -> None :: (select_fields l typs) | Name id::l, typ::typs -> let knp = Constant.make2 mp (Label.of_id id) in (* Is it safe to use [id] for projections [foo.id] ? *) if List.for_all ((==) Keep) (type2signature env typ) then projs := Cset.add knp !projs; Some (ConstRef knp) :: (select_fields l typs) | _ -> assert false in let field_glob = select_fields field_names typ in (* Is this record officially declared with its projections ? *) (* If so, we use this information. *) begin try let n = nb_default_params env (Inductive.type_of_inductive env ((mib,mip0),u)) in let check_proj kn = if Cset.mem kn !projs then add_projection n kn ip in List.iter (Option.iter check_proj) (lookup_projections ip) with Not_found -> () end; Record field_glob with (I info) -> info in let i = {ind_kind = ind_info; ind_nparams = npar; ind_packets = Array.map fst packets; ind_equiv = equiv } in add_ind kn mib i; add_inductive_kind kn i.ind_kind; i (*s [extract_type_cons] extracts the type of an inductive constructor toward the corresponding list of ML types. - [db] is a context for translating Coq [Rel] into ML type [Tvar] - [dbmap] is a translation map (produced by a call to [parse_in_args]) - [i] is the rank of the current product (initially [params_nb+1]) *) and extract_type_cons env db dbmap c i = match Constr.kind (whd_all env c) with | Prod (n,t,d) -> let env' = push_rel_assum (n,t) env in let db' = (try Int.Map.find i dbmap with Not_found -> 0) :: db in let l = extract_type_cons env' db' dbmap d (i+1) in (extract_type env db 0 t []) :: l | _ -> [] (*s Recording the ML type abbreviation of a Coq type scheme constant. *) and mlt_env env r = match r with | IndRef _ | ConstructRef _ | VarRef _ -> None | ConstRef kn -> let cb = Environ.lookup_constant kn env in match cb.const_body with | Undef _ | OpaqueDef _ -> None | Def l_body -> match lookup_typedef kn cb with | Some _ as o -> o | None -> let typ = cb.const_type (* FIXME not sure if we should instantiate univs here *) in match flag_of_type env typ with | Info,TypeScheme -> let body = Mod_subst.force_constr l_body in let s = type_sign env typ in let db = db_from_sign s in let t = extract_type_scheme env db body (List.length s) in add_typedef kn cb t; Some t | _ -> None and expand env = type_expand (mlt_env env) and type2signature env = type_to_signature (mlt_env env) let type2sign env = type_to_sign (mlt_env env) let type_expunge env = type_expunge (mlt_env env) let type_expunge_from_sign env = type_expunge_from_sign (mlt_env env) (*s Extraction of the type of a constant. *) let record_constant_type env kn opt_typ = let cb = lookup_constant kn env in match lookup_cst_type kn cb with | Some schema -> schema | None -> let typ = match opt_typ with | None -> cb.const_type | Some typ -> typ in let mlt = extract_type env [] 1 typ [] in let schema = (type_maxvar mlt, mlt) in let () = add_cst_type kn cb schema in schema (*S Extraction of a term. *) (* Precondition: [(c args)] is not a type scheme, and is informative. *) (* [mle] is a ML environment [Mlenv.t]. *) (* [mlt] is the ML type we want our extraction of [(c args)] to have. *) let rec extract_term env mle mlt c args = match Constr.kind c with | App (f,a) -> extract_term env mle mlt f (Array.to_list a @ args) | Lambda (n, t, d) -> let id = id_of_name n in (match args with | a :: l -> (* We make as many [LetIn] as possible. *) let d' = mkLetIn (Name id,a,t,applistc d (List.map (lift 1) l)) in extract_term env mle mlt d' [] | [] -> let env' = push_rel_assum (Name id, t) env in let id, a = try check_default env t; Id id, new_meta() with NotDefault d -> Dummy, Tdummy d in let b = new_meta () in (* If [mlt] cannot be unified with an arrow type, then magic! *) let magic = needs_magic (mlt, Tarr (a, b)) in let d' = extract_term env' (Mlenv.push_type mle a) b d [] in put_magic_if magic (MLlam (id, d'))) | LetIn (n, c1, t1, c2) -> let id = id_of_name n in let env' = push_rel (LocalDef (Name id, c1, t1)) env in (* We directly push the args inside the [LetIn]. TODO: the opt_let_app flag is supposed to prevent that *) let args' = List.map (lift 1) args in (try check_default env t1; let a = new_meta () in let c1' = extract_term env mle a c1 [] in (* The type of [c1'] is generalized and stored in [mle]. *) let mle' = if generalizable c1' then Mlenv.push_gen mle a else Mlenv.push_type mle a in MLletin (Id id, c1', extract_term env' mle' mlt c2 args') with NotDefault d -> let mle' = Mlenv.push_std_type mle (Tdummy d) in ast_pop (extract_term env' mle' mlt c2 args')) | Const (kn,_) -> extract_cst_app env mle mlt kn args | Construct (cp,_) -> extract_cons_app env mle mlt cp args | Proj (p, c) -> let term = Retyping.expand_projection env (Evd.from_env env) p (EConstr.of_constr c) [] in let term = EConstr.Unsafe.to_constr term in extract_term env mle mlt term args | Rel n -> (* As soon as the expected [mlt] for the head is known, *) (* we unify it with an fresh copy of the stored type of [Rel n]. *) let extract_rel mlt = put_magic (mlt, Mlenv.get mle n) (MLrel n) in extract_app env mle mlt extract_rel args | Case ({ci_ind=ip},_,c0,br) -> extract_app env mle mlt (extract_case env mle (ip,c0,br)) args | Fix ((_,i),recd) -> extract_app env mle mlt (extract_fix env mle i recd) args | CoFix (i,recd) -> extract_app env mle mlt (extract_fix env mle i recd) args | Cast (c,_,_) -> extract_term env mle mlt c args | Ind _ | Prod _ | Sort _ | Meta _ | Evar _ | Var _ -> assert false (*s [extract_maybe_term] is [extract_term] for usual terms, else [MLdummy] *) and extract_maybe_term env mle mlt c = try check_default env (type_of env c); extract_term env mle mlt c [] with NotDefault d -> put_magic (mlt, Tdummy d) (MLdummy d) (*s Generic way to deal with an application. *) (* We first type all arguments starting with unknown meta types. This gives us the expected type of the head. Then we use the [mk_head] to produce the ML head from this type. *) and extract_app env mle mlt mk_head args = let metas = List.map new_meta args in let type_head = type_recomp (metas, mlt) in let mlargs = List.map2 (extract_maybe_term env mle) metas args in mlapp (mk_head type_head) mlargs (*s Auxiliary function used to extract arguments of constant or constructor. *) and make_mlargs env e s args typs = let rec f = function | [], [], _ -> [] | a::la, t::lt, [] -> extract_maybe_term env e t a :: (f (la,lt,[])) | a::la, t::lt, Keep::s -> extract_maybe_term env e t a :: (f (la,lt,s)) | _::la, _::lt, _::s -> f (la,lt,s) | _ -> assert false in f (args,typs,s) (*s Extraction of a constant applied to arguments. *) and extract_cst_app env mle mlt kn args = (* First, the [ml_schema] of the constant, in expanded version. *) let nb,t = record_constant_type env kn None in let schema = nb, expand env t in (* Can we instantiate types variables for this constant ? *) (* In Ocaml, inside the definition of this constant, the answer is no. *) let instantiated = if lang () == Ocaml && List.mem_f Constant.equal kn !current_fixpoints then var2var' (snd schema) else instantiation schema in (* Then the expected type of this constant. *) let a = new_meta () in (* We compare stored and expected types in two steps. *) (* First, can [kn] be applied to all args ? *) let metas = List.map new_meta args in let magic1 = needs_magic (type_recomp (metas, a), instantiated) in (* Second, is the resulting type compatible with the expected type [mlt] ? *) let magic2 = needs_magic (a, mlt) in (* The internal head receives a magic if [magic1] *) let head = put_magic_if magic1 (MLglob (ConstRef kn)) in (* Now, the extraction of the arguments. *) let s_full = type2signature env (snd schema) in let s_full = sign_with_implicits (ConstRef kn) s_full 0 in let s = sign_no_final_keeps s_full in let ls = List.length s in let la = List.length args in (* The ml arguments, already expunged from known logical ones *) let mla = make_mlargs env mle s args metas in let mla = if magic1 || lang () != Ocaml then mla else try (* for better optimisations later, we discard dependent args of projections and replace them by fake args that will be removed during final pretty-print. *) let l,l' = List.chop (projection_arity (ConstRef kn)) mla in if not (List.is_empty l') then (List.map (fun _ -> MLexn "Proj Args") l) @ l' else mla with e when CErrors.noncritical e -> mla in (* For strict languages, purely logical signatures lead to a dummy lam (except when [Kill Ktype] everywhere). So a [MLdummy] is left accordingly. *) let optdummy = match sign_kind s_full with | UnsafeLogicalSig when lang () != Haskell -> [MLdummy Kprop] | _ -> [] in (* Different situations depending of the number of arguments: *) if la >= ls then (* Enough args, cleanup already done in [mla], we only add the additional dummy if needed. *) put_magic_if (magic2 && not magic1) (mlapp head (optdummy @ mla)) else (* Partially applied function with some logical arg missing. We complete via eta and expunge logical args. *) let ls' = ls-la in let s' = List.skipn la s in let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in let e = anonym_or_dummy_lams (mlapp head mla) s' in put_magic_if magic2 (remove_n_lams (List.length optdummy) e) (*s Extraction of an inductive constructor applied to arguments. *) (* \begin{itemize} \item In ML, constructor arguments are uncurryfied. \item We managed to suppress logical parts inside inductive definitions, but they must appears outside (for partial applications for instance) \item We also suppressed all Coq parameters to the inductives, since they are fixed, and thus are not used for the computation. \end{itemize} *) and extract_cons_app env mle mlt (((kn,i) as ip,j) as cp) args = (* First, we build the type of the constructor, stored in small pieces. *) let mi = extract_ind env kn in let params_nb = mi.ind_nparams in let oi = mi.ind_packets.(i) in let nb_tvars = List.length oi.ip_vars and types = List.map (expand env) oi.ip_types.(j-1) in let list_tvar = List.map (fun i -> Tvar i) (List.interval 1 nb_tvars) in let type_cons = type_recomp (types, Tglob (IndRef ip, list_tvar)) in let type_cons = instantiation (nb_tvars, type_cons) in (* Then, the usual variables [s], [ls], [la], ... *) let s = List.map (type2sign env) types in let s = sign_with_implicits (ConstructRef cp) s params_nb in let ls = List.length s in let la = List.length args in assert (la <= ls + params_nb); let la' = max 0 (la - params_nb) in let args' = List.lastn la' args in (* Now, we build the expected type of the constructor *) let metas = List.map new_meta args' in (* If stored and expected types differ, then magic! *) let a = new_meta () in let magic1 = needs_magic (type_cons, type_recomp (metas, a)) in let magic2 = needs_magic (a, mlt) in let head mla = if mi.ind_kind == Singleton then put_magic_if magic1 (List.hd mla) (* assert (List.length mla = 1) *) else let typeargs = match snd (type_decomp type_cons) with | Tglob (_,l) -> List.map type_simpl l | _ -> assert false in let typ = Tglob(IndRef ip, typeargs) in put_magic_if magic1 (MLcons (typ, ConstructRef cp, mla)) in (* Different situations depending of the number of arguments: *) if la < params_nb then let head' = head (eta_args_sign ls s) in put_magic_if magic2 (dummy_lams (anonym_or_dummy_lams head' s) (params_nb - la)) else let mla = make_mlargs env mle s args' metas in if Int.equal la (ls + params_nb) then put_magic_if (magic2 && not magic1) (head mla) else (* [ params_nb <= la <= ls + params_nb ] *) let ls' = params_nb + ls - la in let s' = List.lastn ls' s in let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in put_magic_if magic2 (anonym_or_dummy_lams (head mla) s') (*S Extraction of a case. *) and extract_case env mle ((kn,i) as ip,c,br) mlt = (* [br]: bodies of each branch (in functional form) *) (* [ni]: number of arguments without parameters in each branch *) let ni = constructors_nrealargs_env env ip in let br_size = Array.length br in assert (Int.equal (Array.length ni) br_size); if Int.equal br_size 0 then begin add_recursors env kn; (* May have passed unseen if logical ... *) MLexn "absurd case" end else (* [c] has an inductive type, and is not a type scheme type. *) let t = type_of env c in (* The only non-informative case: [c] is of sort [Prop] *) if (sort_of env t) == InProp then begin add_recursors env kn; (* May have passed unseen if logical ... *) (* Logical singleton case: *) (* [match c with C i j k -> t] becomes [t'] *) assert (Int.equal br_size 1); let s = iterate (fun l -> Kill Kprop :: l) ni.(0) [] in let mlt = iterate (fun t -> Tarr (Tdummy Kprop, t)) ni.(0) mlt in let e = extract_maybe_term env mle mlt br.(0) in snd (case_expunge s e) end else let mi = extract_ind env kn in let oi = mi.ind_packets.(i) in let metas = Array.init (List.length oi.ip_vars) new_meta in (* The extraction of the head. *) let type_head = Tglob (IndRef ip, Array.to_list metas) in let a = extract_term env mle type_head c [] in (* The extraction of each branch. *) let extract_branch i = let r = ConstructRef (ip,i+1) in (* The types of the arguments of the corresponding constructor. *) let f t = type_subst_vect metas (expand env t) in let l = List.map f oi.ip_types.(i) in (* the corresponding signature *) let s = List.map (type2sign env) oi.ip_types.(i) in let s = sign_with_implicits r s mi.ind_nparams in (* Extraction of the branch (in functional form). *) let e = extract_maybe_term env mle (type_recomp (l,mlt)) br.(i) in (* We suppress dummy arguments according to signature. *) let ids,e = case_expunge s e in (List.rev ids, Pusual r, e) in if mi.ind_kind == Singleton then begin (* Informative singleton case: *) (* [match c with C i -> t] becomes [let i = c' in t'] *) assert (Int.equal br_size 1); let (ids,_,e') = extract_branch 0 in assert (Int.equal (List.length ids) 1); MLletin (tmp_id (List.hd ids),a,e') end else (* Standard case: we apply [extract_branch]. *) let typs = List.map type_simpl (Array.to_list metas) in let typ = Tglob (IndRef ip,typs) in MLcase (typ, a, Array.init br_size extract_branch) (*s Extraction of a (co)-fixpoint. *) and extract_fix env mle i (fi,ti,ci as recd) mlt = let env = push_rec_types recd env in let metas = Array.map new_meta fi in metas.(i) <- mlt; let mle = Array.fold_left Mlenv.push_type mle metas in let ei = Array.map2 (extract_maybe_term env mle) metas ci in MLfix (i, Array.map id_of_name fi, ei) (*S ML declarations. *) (* [decomp_lams_eta env c t] finds the number [n] of products in the type [t], and decompose the term [c] in [n] lambdas, with eta-expansion if needed. *) let decomp_lams_eta_n n m env c t = let rels = fst (splay_prod_n env none n (EConstr.of_constr t)) in let rels = List.map (fun (LocalAssum (id,c) | LocalDef (id,_,c)) -> (id,EConstr.Unsafe.to_constr c)) rels in let rels',c = decompose_lam c in let d = n - m in (* we'd better keep rels' as long as possible. *) let rels = (List.firstn d rels) @ rels' in let eta_args = List.rev_map mkRel (List.interval 1 d) in rels, applistc (lift d c) eta_args (* Let's try to identify some situation where extracted code will allow generalisation of type variables *) let rec gentypvar_ok c = match Constr.kind c with | Lambda _ | Const _ -> true | App (c,v) -> (* if all arguments are variables, these variables will disappear after extraction (see [empty_s] below) *) Array.for_all isRel v && gentypvar_ok c | Cast (c,_,_) -> gentypvar_ok c | _ -> false (*s From a constant to a ML declaration. *) let extract_std_constant env kn body typ = reset_meta_count (); (* The short type [t] (i.e. possibly with abbreviations). *) let t = snd (record_constant_type env kn (Some typ)) in (* The real type [t']: without head products, expanded, *) (* and with [Tvar] translated to [Tvar'] (not instantiable). *) let l,t' = type_decomp (expand env (var2var' t)) in let s = List.map (type2sign env) l in (* Check for user-declared implicit information *) let s = sign_with_implicits (ConstRef kn) s 0 in (* Decomposing the top level lambdas of [body]. If there isn't enough, it's ok, as long as remaining args aren't to be pruned (and initial lambdas aren't to be all removed if the target language is strict). In other situations, eta-expansions create artificially enough lams (but that may break user's clever let-ins and partial applications). *) let rels, c = let n = List.length s and m = nb_lam Evd.empty (EConstr.of_constr body) (** FIXME *) in if n <= m then decompose_lam_n n body else let s,s' = List.chop m s in if List.for_all ((==) Keep) s' && (lang () == Haskell || sign_kind s != UnsafeLogicalSig) then decompose_lam_n m body else decomp_lams_eta_n n m env body typ in (* Should we do one eta-expansion to avoid non-generalizable '_a ? *) let rels, c = let n = List.length rels in let s,s' = List.chop n s in let k = sign_kind s in let empty_s = (k == EmptySig || k == SafeLogicalSig) in if lang () == Ocaml && empty_s && not (gentypvar_ok c) && not (List.is_empty s') && not (Int.equal (type_maxvar t) 0) then decomp_lams_eta_n (n+1) n env body typ else rels,c in let n = List.length rels in let s = List.firstn n s in let l,l' = List.chop n l in let t' = type_recomp (l',t') in (* The initial ML environment. *) let mle = List.fold_left Mlenv.push_std_type Mlenv.empty l in (* The lambdas names. *) let ids = List.map (fun (n,_) -> Id (id_of_name n)) rels in (* The according Coq environment. *) let env = push_rels_assum rels env in (* The real extraction: *) let e = extract_term env mle t' c [] in (* Expunging term and type from dummy lambdas. *) let trm = term_expunge s (ids,e) in trm, type_expunge_from_sign env s t (* Extracts the type of an axiom, honors the Extraction Implicit declaration. *) let extract_axiom env kn typ = reset_meta_count (); (* The short type [t] (i.e. possibly with abbreviations). *) let t = snd (record_constant_type env kn (Some typ)) in (* The real type [t']: without head products, expanded, *) (* and with [Tvar] translated to [Tvar'] (not instantiable). *) let l,_ = type_decomp (expand env (var2var' t)) in let s = List.map (type2sign env) l in (* Check for user-declared implicit information *) let s = sign_with_implicits (ConstRef kn) s 0 in type_expunge_from_sign env s t let extract_fixpoint env vkn (fi,ti,ci) = let n = Array.length vkn in let types = Array.make n (Tdummy Kprop) and terms = Array.make n (MLdummy Kprop) in let kns = Array.to_list vkn in current_fixpoints := kns; (* for replacing recursive calls [Rel ..] by the corresponding [Const]: *) let sub = List.rev_map mkConst kns in for i = 0 to n-1 do if sort_of env ti.(i) != InProp then try let e,t = extract_std_constant env vkn.(i) (substl sub ci.(i)) ti.(i) in terms.(i) <- e; types.(i) <- t; with SingletonInductiveBecomesProp id -> error_singleton_become_prop id (Some (ConstRef vkn.(i))) done; current_fixpoints := []; Dfix (Array.map (fun kn -> ConstRef kn) vkn, terms, types) let extract_constant env kn cb = let r = ConstRef kn in let typ = cb.const_type in let warn_info () = if not (is_custom r) then add_info_axiom r in let warn_log () = if not (constant_has_body cb) then add_log_axiom r in let mk_typ_ax () = let n = type_scheme_nb_args env typ in let ids = iterate (fun l -> anonymous_name::l) n [] in Dtype (r, ids, Taxiom) in let mk_typ c = let s,vl = type_sign_vl env typ in let db = db_from_sign s in let t = extract_type_scheme env db c (List.length s) in Dtype (r, vl, t) in let mk_ax () = let t = extract_axiom env kn typ in Dterm (r, MLaxiom, t) in let mk_def c = let e,t = extract_std_constant env kn c typ in Dterm (r,e,t) in try match flag_of_type env typ with | (Logic,TypeScheme) -> warn_log (); Dtype (r, [], Tdummy Ktype) | (Logic,Default) -> warn_log (); Dterm (r, MLdummy Kprop, Tdummy Kprop) | (Info,TypeScheme) -> (match cb.const_body with | Undef _ -> warn_info (); mk_typ_ax () | Def c -> (match cb.const_proj with | None -> mk_typ (Mod_subst.force_constr c) | Some pb -> mk_typ pb.proj_body) | OpaqueDef c -> add_opaque r; if access_opaque () then mk_typ (Opaqueproof.force_proof (Environ.opaque_tables env) c) else mk_typ_ax ()) | (Info,Default) -> (match cb.const_body with | Undef _ -> warn_info (); mk_ax () | Def c -> (match cb.const_proj with | None -> mk_def (Mod_subst.force_constr c) | Some pb -> mk_def pb.proj_body) | OpaqueDef c -> add_opaque r; if access_opaque () then mk_def (Opaqueproof.force_proof (Environ.opaque_tables env) c) else mk_ax ()) with SingletonInductiveBecomesProp id -> error_singleton_become_prop id (Some (ConstRef kn)) let extract_constant_spec env kn cb = let r = ConstRef kn in let typ = cb.const_type in try match flag_of_type env typ with | (Logic, TypeScheme) -> Stype (r, [], Some (Tdummy Ktype)) | (Logic, Default) -> Sval (r, Tdummy Kprop) | (Info, TypeScheme) -> let s,vl = type_sign_vl env typ in (match cb.const_body with | Undef _ | OpaqueDef _ -> Stype (r, vl, None) | Def body -> let db = db_from_sign s in let body = Mod_subst.force_constr body in let t = extract_type_scheme env db body (List.length s) in Stype (r, vl, Some t)) | (Info, Default) -> let t = snd (record_constant_type env kn (Some typ)) in Sval (r, type_expunge env t) with SingletonInductiveBecomesProp id -> error_singleton_become_prop id (Some (ConstRef kn)) let extract_with_type env c = try let typ = type_of env c in match flag_of_type env typ with | (Info, TypeScheme) -> let s,vl = type_sign_vl env typ in let db = db_from_sign s in let t = extract_type_scheme env db c (List.length s) in Some (vl, t) | _ -> None with SingletonInductiveBecomesProp id -> error_singleton_become_prop id None let extract_constr env c = reset_meta_count (); try let typ = type_of env c in match flag_of_type env typ with | (_,TypeScheme) -> MLdummy Ktype, Tdummy Ktype | (Logic,_) -> MLdummy Kprop, Tdummy Kprop | (Info,Default) -> let mlt = extract_type env [] 1 typ [] in extract_term env Mlenv.empty mlt c [], mlt with SingletonInductiveBecomesProp id -> error_singleton_become_prop id None let extract_inductive env kn = let ind = extract_ind env kn in add_recursors env kn; let f i j l = let implicits = implicits_of_global (ConstructRef ((kn,i),j+1)) in let rec filter i = function | [] -> [] | t::l -> let l' = filter (succ i) l in if isTdummy (expand env t) || Int.Set.mem i implicits then l' else t::l' in filter (1+ind.ind_nparams) l in let packets = Array.mapi (fun i p -> { p with ip_types = Array.mapi (f i) p.ip_types }) ind.ind_packets in { ind with ind_packets = packets } (*s Is a [ml_decl] logical ? *) let logical_decl = function | Dterm (_,MLdummy _,Tdummy _) -> true | Dtype (_,[],Tdummy _) -> true | Dfix (_,av,tv) -> (Array.for_all isMLdummy av) && (Array.for_all isTdummy tv) | Dind (_,i) -> Array.for_all (fun ip -> ip.ip_logical) i.ind_packets | _ -> false (*s Is a [ml_spec] logical ? *) let logical_spec = function | Stype (_, [], Some (Tdummy _)) -> true | Sval (_,Tdummy _) -> true | Sind (_,i) -> Array.for_all (fun ip -> ip.ip_logical) i.ind_packets | _ -> false