1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i*)
open Util
open Names
open Term
open Constr
open Vars
open Declarations
open Declareops
open Environ
open Reduction
open Reductionops
open Inductive
open Termops
open Inductiveops
open Recordops
open Namegen
open Globnames
open Miniml
open Table
open Mlutil
open Context.Rel.Declaration
(*i*)

exception I of inductive_kind

(* A set of all fixpoint functions currently being extracted *)
let current_fixpoints = ref ([] : Constant.t list)

let none = Evd.empty

(* NB: In OCaml, [type_of] and [get_of] might raise
   [SingletonInductiveBecomeProp]. This exception will be caught
   in late wrappers around the exported functions of this file,
   in order to display the location of the issue. *)

let type_of env c =
  let polyprop = (lang() == Haskell) in
  EConstr.Unsafe.to_constr (Retyping.get_type_of ~polyprop env none (strip_outer_cast none (EConstr.of_constr c)))

let sort_of env c =
  let polyprop = (lang() == Haskell) in
  Retyping.get_sort_family_of ~polyprop env none (strip_outer_cast none (EConstr.of_constr c))

(*S Generation of flags and signatures. *)

(* The type [flag] gives us information about any Coq term:
   \begin{itemize}
   \item [TypeScheme] denotes a type scheme, that is
     something that will become a type after enough applications.
     More formally, a type scheme has type $(x_1:X_1)\ldots(x_n:X_n)s$ with
     [s = Set], [Prop] or [Type]
   \item [Default] denotes the other cases. It may be inexact after
     instantiation. For example [(X:Type)X] is [Default] and may give [Set]
     after instantiation, which is rather [TypeScheme]
   \item [Logic] denotes a term of sort [Prop], or a type scheme on sort [Prop]
   \item [Info] is the opposite. The same example [(X:Type)X] shows
     that an [Info] term might in fact be [Logic] later on.
   \end{itemize} *)

type info = Logic | Info

type scheme = TypeScheme | Default

type flag = info * scheme

let whd_all env t =
  EConstr.Unsafe.to_constr (whd_all env none (EConstr.of_constr t))

let whd_betaiotazeta t =
  EConstr.Unsafe.to_constr (whd_betaiotazeta none (EConstr.of_constr t))

(*s [flag_of_type] transforms a type [t] into a [flag].
  Really important function. *)

let rec flag_of_type env t : flag =
  let t = whd_all env t in
  match Constr.kind t with
    | Prod (x,t,c) -> flag_of_type (push_rel (LocalAssum (x,t)) env) c
    | Sort s when Sorts.is_prop s -> (Logic,TypeScheme)
    | Sort _ -> (Info,TypeScheme)
    | _ -> if (sort_of env t) == InProp then (Logic,Default) else (Info,Default)

(*s Two particular cases of [flag_of_type]. *)

let is_default env t = match flag_of_type env t with
| (Info, Default) -> true
| _ -> false

exception NotDefault of kill_reason

let check_default env t =
  match flag_of_type env t with
    | _,TypeScheme -> raise (NotDefault Ktype)
    | Logic,_ -> raise (NotDefault Kprop)
    | _ -> ()

let is_info_scheme env t = match flag_of_type env t with
| (Info, TypeScheme) -> true
| _ -> false

let push_rel_assum (n, t) env =
  Environ.push_rel (LocalAssum (n, t)) env

(*s [type_sign] gernerates a signature aimed at treating a type application. *)

let rec type_sign env c =
  match Constr.kind (whd_all env c) with
    | Prod (n,t,d) ->
        (if is_info_scheme env t then Keep else Kill Kprop)
        :: (type_sign (push_rel_assum (n,t) env) d)
    | _ -> []

let rec type_scheme_nb_args env c =
  match Constr.kind (whd_all env c) with
    | Prod (n,t,d) ->
        let n = type_scheme_nb_args (push_rel_assum (n,t) env) d in
        if is_info_scheme env t then n+1 else n
    | _ -> 0

let _ = Hook.set type_scheme_nb_args_hook type_scheme_nb_args

(*s [type_sign_vl] does the same, plus a type var list. *)

(* When generating type variables, we avoid any ' in their names
   (otherwise this may cause a lexer conflict in ocaml with 'a').
   We also get rid of unicode characters. Anyway, since type variables
   are local, the created name is just a matter of taste...
   See also Bug #3227 *)

let make_typvar n vl =
  let id = id_of_name n in
  let id' =
    let s = Id.to_string id in
    if not (String.contains s '\'') && Unicode.is_basic_ascii s then id
    else id_of_name Anonymous
  in
  let vl = Id.Set.of_list vl in
  next_ident_away id' vl

let rec type_sign_vl env c =
  match Constr.kind (whd_all env c) with
    | Prod (n,t,d) ->
        let s,vl = type_sign_vl (push_rel_assum (n,t) env) d in
        if not (is_info_scheme env t) then Kill Kprop::s, vl
        else Keep::s, (make_typvar n vl) :: vl
    | _ -> [],[]

let rec nb_default_params env c =
  match Constr.kind (whd_all env c) with
    | Prod (n,t,d) ->
        let n = nb_default_params (push_rel_assum (n,t) env) d in
        if is_default env t then n+1 else n
    | _ -> 0

(* Enriching a signature with implicit information *)

let sign_with_implicits r s nb_params =
  let implicits = implicits_of_global r in
  let rec add_impl i = function
    | [] -> []
    | Keep::s when Int.Set.mem i implicits ->
       Kill (Kimplicit (r,i)) :: add_impl (i+1) s
    | sign::s -> sign :: add_impl (i+1) s
  in
  add_impl (1+nb_params) s

(*S Management of type variable contexts. *)

(* A De Bruijn variable context (db) is a context for translating Coq [Rel]
   into ML type [Tvar]. *)

(*s From a type signature toward a type variable context (db). *)

let db_from_sign s =
  let rec make i acc = function
    | [] -> acc
    | Keep :: l -> make (i+1) (i::acc) l
    | Kill _ :: l -> make i (0::acc) l
  in make 1 [] s

(*s Create a type variable context from indications taken from
  an inductive type (see just below). *)

let rec db_from_ind dbmap i =
  if Int.equal i 0 then []
  else (try Int.Map.find i dbmap with Not_found -> 0)::(db_from_ind dbmap (i-1))

(*s [parse_ind_args] builds a map: [i->j] iff the i-th Coq argument
  of a constructor corresponds to the j-th type var of the ML inductive. *)

(* \begin{itemize}
   \item [si] : signature of the inductive
   \item [i] :  counter of Coq args for [(I args)]
   \item [j] : counter of ML type vars
   \item [relmax] : total args number of the constructor
   \end{itemize} *)

let parse_ind_args si args relmax =
  let rec parse i j = function
    | [] -> Int.Map.empty
    | Kill _ :: s -> parse (i+1) j s
    | Keep :: s ->
      (match Constr.kind args.(i-1) with
         | Rel k -> Int.Map.add (relmax+1-k) j (parse (i+1) (j+1) s)
         | _ -> parse (i+1) (j+1) s)
  in parse 1 1 si

(*S Extraction of a type. *)

(* [extract_type env db c args] is used to produce an ML type from the
   coq term [(c args)], which is supposed to be a Coq type. *)

(* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *)

(* [j] stands for the next ML type var. [j=0] means we do not
   generate ML type var anymore (in subterms for example). *)


let rec extract_type env db j c args =
  match Constr.kind (whd_betaiotazeta c) with
    | App (d, args') ->
        (* We just accumulate the arguments. *)
        extract_type env db j d (Array.to_list args' @ args)
    | Lambda (_,_,d) ->
        (match args with
           | [] -> assert false (* A lambda cannot be a type. *)
           | a :: args -> extract_type env db j (subst1 a d) args)
    | Prod (n,t,d) ->
        assert (List.is_empty args);
        let env' = push_rel_assum (n,t) env in
        (match flag_of_type env t with
           | (Info, Default) ->
               (* Standard case: two [extract_type] ... *)
               let mld = extract_type env' (0::db) j d [] in
               (match expand env mld with
                  | Tdummy d -> Tdummy d
                  | _ -> Tarr (extract_type env db 0 t [], mld))
           | (Info, TypeScheme) when j > 0 ->
               (* A new type var. *)
               let mld = extract_type env' (j::db) (j+1) d [] in
               (match expand env mld with
                  | Tdummy d -> Tdummy d
                  | _ -> Tarr (Tdummy Ktype, mld))
           | _,lvl ->
               let mld = extract_type env' (0::db) j d [] in
               (match expand env mld with
                  | Tdummy d -> Tdummy d
                  | _ ->
                      let reason = if lvl == TypeScheme then Ktype else Kprop in
                      Tarr (Tdummy reason, mld)))
    | Sort _ -> Tdummy Ktype (* The two logical cases. *)
    | _ when sort_of env (applistc c args) == InProp -> Tdummy Kprop
    | Rel n ->
        (match lookup_rel n env with
           | LocalDef (_,t,_) -> extract_type env db j (lift n t) args
           | _ ->
               (* Asks [db] a translation for [n]. *)
               if n > List.length db then Tunknown
               else let n' = List.nth db (n-1) in
               if Int.equal n' 0 then Tunknown else Tvar n')
    | Const (kn,u as c) ->
        let r = ConstRef kn in
        let cb = lookup_constant kn env in
        let typ = Typeops.type_of_constant_in env c in
        (match flag_of_type env typ with
           | (Logic,_) -> assert false (* Cf. logical cases above *)
           | (Info, TypeScheme) ->
               let mlt = extract_type_app env db (r, type_sign env typ) args in
               (match cb.const_body with
                  | Undef _ | OpaqueDef _ -> mlt
                  | Def _ when is_custom r -> mlt
                  | Def lbody ->
                      let newc = applistc (Mod_subst.force_constr lbody) args in
                      let mlt' = extract_type env db j newc [] in
                      (* ML type abbreviations interact badly with Coq *)
                      (* reduction, so [mlt] and [mlt'] might be different: *)
                      (* The more precise is [mlt'], extracted after reduction *)
                      (* The shortest is [mlt], which use abbreviations *)
                      (* If possible, we take [mlt], otherwise [mlt']. *)
                      if eq_ml_type (expand env mlt) (expand env mlt') then mlt else mlt')
           | (Info, Default) ->
               (* Not an ML type, for example [(c:forall X, X->X) Type nat] *)
               (match cb.const_body with
                  | Undef _  | OpaqueDef _ -> Tunknown (* Brutal approx ... *)
                  | Def lbody ->
                      (* We try to reduce. *)
                      let newc = applistc (Mod_subst.force_constr lbody) args in
                      extract_type env db j newc []))
    | Ind ((kn,i),u) ->
        let s = (extract_ind env kn).ind_packets.(i).ip_sign in
        extract_type_app env db (IndRef (kn,i),s) args
    | Proj (p,t) ->
       (* Let's try to reduce, if it hasn't already been done. *)
       if Projection.unfolded p then Tunknown
       else extract_type env db j (mkProj (Projection.unfold p, t)) args
    | Case _ | Fix _ | CoFix _ -> Tunknown
    | Var _ | Meta _ | Evar _ | Cast _ | LetIn _ | Construct _ -> assert false

(*s Auxiliary function dealing with type application.
  Precondition: [r] is a type scheme represented by the signature [s],
  and is completely applied: [List.length args = List.length s]. *)

and extract_type_app env db (r,s) args =
  let ml_args =
    List.fold_right
      (fun (b,c) a -> if b == Keep then
         let p = List.length (fst (splay_prod env none (EConstr.of_constr (type_of env c)))) in
         let db = iterate (fun l -> 0 :: l) p db in
         (extract_type_scheme env db c p) :: a
       else a)
      (List.combine s args) []
  in Tglob (r,  ml_args)

(*S Extraction of a type scheme. *)

(* [extract_type_scheme env db c p] works on a Coq term [c] which is
  an informative type scheme. It means that [c] is not a Coq type, but will
  be when applied to sufficiently many arguments ([p] in fact).
  This function decomposes p lambdas, with eta-expansion if needed. *)

(* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *)

and extract_type_scheme env db c p =
  if Int.equal p 0 then extract_type env db 0 c []
  else
    let c = whd_betaiotazeta c in
    match Constr.kind c with
      | Lambda (n,t,d) ->
          extract_type_scheme (push_rel_assum (n,t) env) db d (p-1)
      | _ ->
          let rels = fst (splay_prod env none (EConstr.of_constr (type_of env c))) in
          let rels = List.map (on_snd EConstr.Unsafe.to_constr) rels in
          let env = push_rels_assum rels env in
          let eta_args = List.rev_map mkRel (List.interval 1 p) in
          extract_type env db 0 (lift p c) eta_args


(*S Extraction of an inductive type. *)

(* First, a version with cache *)

and extract_ind env kn = (* kn is supposed to be in long form *)
  let mib = Environ.lookup_mind kn env in
  match lookup_ind kn mib with
  | Some ml_ind -> ml_ind
  | None ->
     try
       extract_really_ind env kn mib
     with SingletonInductiveBecomesProp id ->
       (* TODO : which inductive is concerned in the block ? *)
       error_singleton_become_prop id (Some (IndRef (kn,0)))

(* Then the real function *)

and extract_really_ind env kn mib =
    (* First, if this inductive is aliased via a Module,
       we process the original inductive if possible.
       When at toplevel of the monolithic case, we cannot do much
       (cf Vector and bug #2570) *)
    let equiv =
      if lang () != Ocaml ||
         (not (modular ()) && at_toplevel (MutInd.modpath kn)) ||
         KerName.equal (MutInd.canonical kn) (MutInd.user kn)
      then
        NoEquiv
      else
        begin
          ignore (extract_ind env (MutInd.make1 (MutInd.canonical kn)));
          Equiv (MutInd.canonical kn)
        end
    in
    (* Everything concerning parameters. *)
    (* We do that first, since they are common to all the [mib]. *)
    let mip0 = mib.mind_packets.(0) in
    let npar = mib.mind_nparams in
    let epar = push_rel_context mib.mind_params_ctxt env in
    (* First pass: we store inductive signatures together with *)
    (* their type var list. *)
    let packets =
      Array.mapi
        (fun i mip ->
           let (_,u),_ = Universes.fresh_inductive_instance env (kn,i) in
           let ar = Inductive.type_of_inductive env ((mib,mip),u) in
           let info = (fst (flag_of_type env ar) = Info) in
           let s,v = if info then type_sign_vl env ar else [],[] in
           let t = Array.make (Array.length mip.mind_nf_lc) [] in
           { ip_typename = mip.mind_typename;
             ip_consnames = mip.mind_consnames;
             ip_logical = not info;
             ip_sign = s;
             ip_vars = v;
             ip_types = t }, u)
        mib.mind_packets
    in

    add_ind kn mib
      {ind_kind = Standard;
       ind_nparams = npar;
       ind_packets = Array.map fst packets;
       ind_equiv = equiv
      };
    (* Second pass: we extract constructors *)
    for i = 0 to mib.mind_ntypes - 1 do
      let p,u = packets.(i) in
      if not p.ip_logical then
        let types = arities_of_constructors env ((kn,i),u) in
        for j = 0 to Array.length types - 1 do
          let t = snd (decompose_prod_n npar types.(j)) in
          let prods,head = dest_prod epar t in
          let nprods = List.length prods in
          let args = match Constr.kind head with
            | App (f,args) -> args (* [Constr.kind f = Ind ip] *)
            | _ -> [||]
          in
          let dbmap = parse_ind_args p.ip_sign args (nprods + npar) in
          let db = db_from_ind dbmap npar in
          p.ip_types.(j) <- extract_type_cons epar db dbmap t (npar+1)
        done
    done;
    (* Third pass: we determine special cases. *)
    let ind_info =
      try
        let ip = (kn, 0) in
        let r = IndRef ip in
        if is_custom r then raise (I Standard);
        if mib.mind_finite == Decl_kinds.CoFinite then raise (I Coinductive);
        if not (Int.equal mib.mind_ntypes 1) then raise (I Standard);
        let p,u = packets.(0) in
        if p.ip_logical then raise (I Standard);
        if not (Int.equal (Array.length p.ip_types) 1) then raise (I Standard);
        let typ = p.ip_types.(0) in
        let l = List.filter (fun t -> not (isTdummy (expand env t))) typ in
        if not (keep_singleton ()) &&
            Int.equal (List.length l) 1 && not (type_mem_kn kn (List.hd l))
        then raise (I Singleton);
        if List.is_empty l then raise (I Standard);
        if Option.is_empty mib.mind_record then raise (I Standard);
        (* Now we're sure it's a record. *)
        (* First, we find its field names. *)
        let rec names_prod t = match Constr.kind t with
          | Prod(n,_,t) -> n::(names_prod t)
          | LetIn(_,_,_,t) -> names_prod t
          | Cast(t,_,_) -> names_prod t
          | _ -> []
        in
        let field_names =
          List.skipn mib.mind_nparams (names_prod mip0.mind_user_lc.(0)) in
        assert (Int.equal (List.length field_names) (List.length typ));
        let projs = ref Cset.empty in
        let mp = MutInd.modpath kn in
        let rec select_fields l typs = match l,typs with
          | [],[] -> []
          | _::l, typ::typs when isTdummy (expand env typ) ->
              select_fields l typs
          | Anonymous::l, typ::typs ->
              None :: (select_fields l typs)
          | Name id::l, typ::typs ->
              let knp = Constant.make2 mp (Label.of_id id) in
              (* Is it safe to use [id] for projections [foo.id] ? *)
              if List.for_all ((==) Keep) (type2signature env typ)
              then projs := Cset.add knp !projs;
              Some (ConstRef knp) :: (select_fields l typs)
          | _ -> assert false
        in
        let field_glob = select_fields field_names typ
        in
        (* Is this record officially declared with its projections ? *)
        (* If so, we use this information. *)
        begin try
          let n = nb_default_params env
            (Inductive.type_of_inductive env ((mib,mip0),u))
          in
          let check_proj kn = if Cset.mem kn !projs then add_projection n kn ip
          in
          List.iter (Option.iter check_proj) (lookup_projections ip)
        with Not_found -> ()
        end;
        Record field_glob
      with (I info) -> info
    in
    let i = {ind_kind = ind_info;
             ind_nparams = npar;
             ind_packets = Array.map fst packets;
             ind_equiv = equiv }
    in
    add_ind kn mib i;
    add_inductive_kind kn i.ind_kind;
    i

(*s [extract_type_cons] extracts the type of an inductive
  constructor toward the corresponding list of ML types.

   - [db] is a context for translating Coq [Rel] into ML type [Tvar]
   - [dbmap] is a translation map (produced by a call to [parse_in_args])
   - [i] is the rank of the current product (initially [params_nb+1])
*)

and extract_type_cons env db dbmap c i =
  match Constr.kind (whd_all env c) with
    | Prod (n,t,d) ->
        let env' = push_rel_assum (n,t) env in
        let db' = (try Int.Map.find i dbmap with Not_found -> 0) :: db in
        let l = extract_type_cons env' db' dbmap d (i+1) in
        (extract_type env db 0 t []) :: l
    | _ -> []

(*s Recording the ML type abbreviation of a Coq type scheme constant. *)

and mlt_env env r = match r with
  | IndRef _ | ConstructRef _ | VarRef _ -> None
  | ConstRef kn ->
     let cb = Environ.lookup_constant kn env in
     match cb.const_body with
     | Undef _ | OpaqueDef _ -> None
     | Def l_body ->
        match lookup_typedef kn cb with
        | Some _ as o -> o
        | None ->
           let typ = cb.const_type
           (* FIXME not sure if we should instantiate univs here *) in
           match flag_of_type env typ with
           | Info,TypeScheme ->
              let body = Mod_subst.force_constr l_body in
              let s = type_sign env typ in
              let db = db_from_sign s in
              let t = extract_type_scheme env db body (List.length s)
              in add_typedef kn cb t; Some t
           | _ -> None

and expand env = type_expand (mlt_env env)
and type2signature env = type_to_signature (mlt_env env)
let type2sign env = type_to_sign (mlt_env env)
let type_expunge env = type_expunge (mlt_env env)
let type_expunge_from_sign env = type_expunge_from_sign (mlt_env env)

(*s Extraction of the type of a constant. *)

let record_constant_type env kn opt_typ =
  let cb = lookup_constant kn env in
  match lookup_cst_type kn cb with
  | Some schema -> schema
  | None ->
     let typ = match opt_typ with
       | None -> cb.const_type
       | Some typ -> typ
     in
     let mlt = extract_type env [] 1 typ [] in
     let schema = (type_maxvar mlt, mlt) in
     let () = add_cst_type kn cb schema in
     schema

(*S Extraction of a term. *)

(* Precondition: [(c args)] is not a type scheme, and is informative. *)

(* [mle] is a ML environment [Mlenv.t]. *)
(* [mlt] is the ML type we want our extraction of [(c args)] to have. *)

let rec extract_term env mle mlt c args =
  match Constr.kind c with
    | App (f,a) ->
        extract_term env mle mlt f (Array.to_list a @ args)
    | Lambda (n, t, d) ->
        let id = id_of_name n in
        (match args with
           | a :: l ->
               (* We make as many [LetIn] as possible. *)
                let d' = mkLetIn (Name id,a,t,applistc d (List.map (lift 1) l))
               in extract_term env mle mlt d' []
           | [] ->
               let env' = push_rel_assum (Name id, t) env in
               let id, a =
                 try check_default env t; Id id, new_meta()
                 with NotDefault d -> Dummy, Tdummy d
               in
               let b = new_meta () in
               (* If [mlt] cannot be unified with an arrow type, then magic! *)
               let magic = needs_magic (mlt, Tarr (a, b)) in
               let d' = extract_term env' (Mlenv.push_type mle a) b d [] in
               put_magic_if magic (MLlam (id, d')))
    | LetIn (n, c1, t1, c2) ->
        let id = id_of_name n in
        let env' = push_rel (LocalDef (Name id, c1, t1)) env in
        (* We directly push the args inside the [LetIn].
           TODO: the opt_let_app flag is supposed to prevent that *)
        let args' = List.map (lift 1) args in
        (try
          check_default env t1;
          let a = new_meta () in
          let c1' = extract_term env mle a c1 [] in
          (* The type of [c1'] is generalized and stored in [mle]. *)
          let mle' =
            if generalizable c1'
            then Mlenv.push_gen mle a
            else Mlenv.push_type mle a
          in
          MLletin (Id id, c1', extract_term env' mle' mlt c2 args')
        with NotDefault d ->
          let mle' = Mlenv.push_std_type mle (Tdummy d) in
          ast_pop (extract_term env' mle' mlt c2 args'))
    | Const (kn,_) ->
        extract_cst_app env mle mlt kn args
    | Construct (cp,_) ->
        extract_cons_app env mle mlt cp args
    | Proj (p, c) ->
        let term = Retyping.expand_projection env (Evd.from_env env) p (EConstr.of_constr c) [] in
        let term = EConstr.Unsafe.to_constr term in
          extract_term env mle mlt term args
    | Rel n ->
        (* As soon as the expected [mlt] for the head is known, *)
        (* we unify it with an fresh copy of the stored type of [Rel n]. *)
        let extract_rel mlt = put_magic (mlt, Mlenv.get mle n) (MLrel n)
        in extract_app env mle mlt extract_rel args
    | Case ({ci_ind=ip},_,c0,br) ->
         extract_app env mle mlt (extract_case env mle (ip,c0,br)) args
    | Fix ((_,i),recd) ->
         extract_app env mle mlt (extract_fix env mle i recd) args
    | CoFix (i,recd) ->
         extract_app env mle mlt (extract_fix env mle i recd) args
    | Cast (c,_,_) -> extract_term env mle mlt c args
    | Ind _ | Prod _ | Sort _ | Meta _ | Evar _ | Var _ -> assert false

(*s [extract_maybe_term] is [extract_term] for usual terms, else [MLdummy] *)

and extract_maybe_term env mle mlt c =
  try check_default env (type_of env c);
    extract_term env mle mlt c []
  with NotDefault d ->
    put_magic (mlt, Tdummy d) (MLdummy d)

(*s Generic way to deal with an application. *)

(* We first type all arguments starting with unknown meta types.
   This gives us the expected type of the head. Then we use the
   [mk_head] to produce the ML head from this type. *)

and extract_app env mle mlt mk_head args =
  let metas = List.map new_meta args in
  let type_head = type_recomp (metas, mlt) in
  let mlargs = List.map2 (extract_maybe_term env mle) metas args in
  mlapp (mk_head type_head) mlargs

(*s Auxiliary function used to extract arguments of constant or constructor. *)

and make_mlargs env e s args typs =
  let rec f = function
    | [], [], _ -> []
    | a::la, t::lt, [] -> extract_maybe_term env e t a :: (f (la,lt,[]))
    | a::la, t::lt, Keep::s -> extract_maybe_term env e t a :: (f (la,lt,s))
    | _::la, _::lt, _::s -> f (la,lt,s)
    | _ -> assert false
  in f (args,typs,s)

(*s Extraction of a constant applied to arguments. *)

and extract_cst_app env mle mlt kn args =
  (* First, the [ml_schema] of the constant, in expanded version. *)
  let nb,t = record_constant_type env kn None in
  let schema = nb, expand env t in
  (* Can we instantiate types variables for this constant ? *)
  (* In Ocaml, inside the definition of this constant, the answer is no. *)
  let instantiated =
    if lang () == Ocaml && List.mem_f Constant.equal kn !current_fixpoints
    then var2var' (snd schema)
    else instantiation schema
  in
  (* Then the expected type of this constant. *)
  let a = new_meta () in
  (* We compare stored and expected types in two steps. *)
  (* First, can [kn] be applied to all args ? *)
  let metas = List.map new_meta args in
  let magic1 = needs_magic (type_recomp (metas, a), instantiated) in
  (* Second, is the resulting type compatible with the expected type [mlt] ? *)
  let magic2 = needs_magic (a, mlt) in
  (* The internal head receives a magic if [magic1] *)
  let head = put_magic_if magic1 (MLglob (ConstRef kn)) in
  (* Now, the extraction of the arguments. *)
  let s_full = type2signature env (snd schema) in
  let s_full = sign_with_implicits (ConstRef kn) s_full 0 in
  let s = sign_no_final_keeps s_full in
  let ls = List.length s in
  let la = List.length args in
  (* The ml arguments, already expunged from known logical ones *)
  let mla = make_mlargs env mle s args metas in
  let mla =
    if magic1 || lang () != Ocaml then mla
    else
      try
        (* for better optimisations later, we discard dependent args
           of projections and replace them by fake args that will be
           removed during final pretty-print. *)
        let l,l' = List.chop (projection_arity (ConstRef kn)) mla in
        if not (List.is_empty l') then (List.map (fun _ -> MLexn "Proj Args") l) @ l'
        else mla
      with e when CErrors.noncritical e -> mla
  in
  (* For strict languages, purely logical signatures lead to a dummy lam
     (except when [Kill Ktype] everywhere). So a [MLdummy] is left
     accordingly. *)
  let optdummy = match sign_kind s_full with
    | UnsafeLogicalSig when lang () != Haskell -> [MLdummy Kprop]
    | _ -> []
  in
  (* Different situations depending of the number of arguments: *)
  if la >= ls
  then
    (* Enough args, cleanup already done in [mla], we only add the
       additional dummy if needed. *)
    put_magic_if (magic2 && not magic1) (mlapp head (optdummy @ mla))
  else
    (* Partially applied function with some logical arg missing.
       We complete via eta and expunge logical args. *)
    let ls' = ls-la in
    let s' = List.skipn la s in
    let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in
    let e = anonym_or_dummy_lams (mlapp head mla) s' in
    put_magic_if magic2 (remove_n_lams (List.length optdummy) e)

(*s Extraction of an inductive constructor applied to arguments. *)

(* \begin{itemize}
   \item In ML, constructor arguments are uncurryfied.
   \item We managed to suppress logical parts inside inductive definitions,
   but they must appears outside (for partial applications for instance)
   \item We also suppressed all Coq parameters to the inductives, since
   they are fixed, and thus are not used for the computation.
   \end{itemize} *)

and extract_cons_app env mle mlt (((kn,i) as ip,j) as cp) args =
  (* First, we build the type of the constructor, stored in small pieces. *)
  let mi = extract_ind env kn in
  let params_nb = mi.ind_nparams in
  let oi = mi.ind_packets.(i) in
  let nb_tvars = List.length oi.ip_vars
  and types = List.map (expand env) oi.ip_types.(j-1) in
  let list_tvar = List.map (fun i -> Tvar i) (List.interval 1 nb_tvars) in
  let type_cons = type_recomp (types, Tglob (IndRef ip, list_tvar)) in
  let type_cons = instantiation (nb_tvars, type_cons) in
  (* Then, the usual variables [s], [ls], [la], ... *)
  let s = List.map (type2sign env) types in
  let s = sign_with_implicits (ConstructRef cp) s params_nb in
  let ls = List.length s in
  let la = List.length args in
  assert (la <= ls + params_nb);
  let la' = max 0 (la - params_nb) in
  let args' = List.lastn la' args in
  (* Now, we build the expected type of the constructor *)
  let metas = List.map new_meta args' in
  (* If stored and expected types differ, then magic! *)
  let a = new_meta () in
  let magic1 = needs_magic (type_cons, type_recomp (metas, a)) in
  let magic2 = needs_magic (a, mlt) in
  let head mla =
    if mi.ind_kind == Singleton then
      put_magic_if magic1 (List.hd mla) (* assert (List.length mla = 1) *)
    else
      let typeargs = match snd (type_decomp type_cons) with
        | Tglob (_,l) -> List.map type_simpl l
        | _ -> assert false
      in
      let typ = Tglob(IndRef ip, typeargs) in
      put_magic_if magic1 (MLcons (typ, ConstructRef cp, mla))
  in
  (* Different situations depending of the number of arguments: *)
  if la < params_nb then
    let head' = head (eta_args_sign ls s) in
    put_magic_if magic2
      (dummy_lams (anonym_or_dummy_lams head' s) (params_nb - la))
  else
    let mla = make_mlargs env mle s args' metas in
    if Int.equal la (ls + params_nb)
    then put_magic_if (magic2 && not magic1) (head mla)
    else (* [ params_nb <= la <= ls + params_nb ] *)
      let ls' = params_nb + ls - la in
      let s' = List.lastn ls' s in
      let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in
      put_magic_if magic2 (anonym_or_dummy_lams (head mla) s')

(*S Extraction of a case. *)

and extract_case env mle ((kn,i) as ip,c,br) mlt =
  (* [br]: bodies of each branch (in functional form) *)
  (* [ni]: number of arguments without parameters in each branch *)
  let ni = constructors_nrealargs_env env ip in
  let br_size = Array.length br in
  assert (Int.equal (Array.length ni) br_size);
  if Int.equal br_size 0 then begin
    add_recursors env kn; (* May have passed unseen if logical ... *)
    MLexn "absurd case"
  end else
    (* [c] has an inductive type, and is not a type scheme type. *)
    let t = type_of env c in
    (* The only non-informative case: [c] is of sort [Prop] *)
    if (sort_of env t) == InProp then
      begin
        add_recursors env kn; (* May have passed unseen if logical ... *)
        (* Logical singleton case: *)
        (* [match c with C i j k -> t] becomes [t'] *)
        assert (Int.equal br_size 1);
        let s = iterate (fun l -> Kill Kprop :: l) ni.(0) [] in
        let mlt = iterate (fun t -> Tarr (Tdummy Kprop, t)) ni.(0) mlt in
        let e = extract_maybe_term env mle mlt br.(0) in
        snd (case_expunge s e)
      end
    else
      let mi = extract_ind env kn in
      let oi = mi.ind_packets.(i) in
      let metas = Array.init (List.length oi.ip_vars) new_meta in
      (* The extraction of the head. *)
      let type_head = Tglob (IndRef ip, Array.to_list metas) in
      let a = extract_term env mle type_head c [] in
      (* The extraction of each branch. *)
      let extract_branch i =
        let r = ConstructRef (ip,i+1) in
        (* The types of the arguments of the corresponding constructor. *)
        let f t = type_subst_vect metas (expand env t) in
        let l = List.map f oi.ip_types.(i) in
        (* the corresponding signature *)
        let s = List.map (type2sign env) oi.ip_types.(i) in
        let s = sign_with_implicits r s mi.ind_nparams in
        (* Extraction of the branch (in functional form). *)
        let e = extract_maybe_term env mle (type_recomp (l,mlt)) br.(i) in
        (* We suppress dummy arguments according to signature. *)
        let ids,e = case_expunge s e in
        (List.rev ids, Pusual r, e)
      in
      if mi.ind_kind == Singleton then
        begin
          (* Informative singleton case: *)
          (* [match c with C i -> t] becomes [let i = c' in t'] *)
          assert (Int.equal br_size 1);
          let (ids,_,e') = extract_branch 0 in
          assert (Int.equal (List.length ids) 1);
          MLletin (tmp_id (List.hd ids),a,e')
        end
      else
        (* Standard case: we apply [extract_branch]. *)
        let typs = List.map type_simpl (Array.to_list metas) in
        let typ = Tglob (IndRef ip,typs) in
        MLcase (typ, a, Array.init br_size extract_branch)

(*s Extraction of a (co)-fixpoint. *)

and extract_fix env mle i (fi,ti,ci as recd) mlt =
  let env = push_rec_types recd env in
  let metas = Array.map new_meta fi in
  metas.(i) <- mlt;
  let mle = Array.fold_left Mlenv.push_type mle metas in
  let ei = Array.map2 (extract_maybe_term env mle) metas ci in
  MLfix (i, Array.map id_of_name fi, ei)

(*S ML declarations. *)

(* [decomp_lams_eta env c t] finds the number [n] of products in the type [t],
   and decompose the term [c] in [n] lambdas, with eta-expansion if needed. *)

let decomp_lams_eta_n n m env c t =
  let rels = fst (splay_prod_n env none n (EConstr.of_constr t)) in
  let rels = List.map (fun (LocalAssum (id,c) | LocalDef (id,_,c)) -> (id,EConstr.Unsafe.to_constr c)) rels in
  let rels',c = decompose_lam c in
  let d = n - m in
  (* we'd better keep rels' as long as possible. *)
  let rels = (List.firstn d rels) @ rels' in
  let eta_args = List.rev_map mkRel (List.interval 1 d) in
  rels, applistc (lift d c) eta_args

(* Let's try to identify some situation where extracted code
   will allow generalisation of type variables *)

let rec gentypvar_ok c = match Constr.kind c with
  | Lambda _ | Const _ -> true
  | App (c,v) ->
      (* if all arguments are variables, these variables will
         disappear after extraction (see [empty_s] below) *)
      Array.for_all isRel v && gentypvar_ok c
  | Cast (c,_,_) -> gentypvar_ok c
  | _ -> false

(*s From a constant to a ML declaration. *)

let extract_std_constant env kn body typ =
  reset_meta_count ();
  (* The short type [t] (i.e. possibly with abbreviations). *)
  let t = snd (record_constant_type env kn (Some typ)) in
  (* The real type [t']: without head products, expanded, *)
  (* and with [Tvar] translated to [Tvar'] (not instantiable). *)
  let l,t' = type_decomp (expand env (var2var' t)) in
  let s = List.map (type2sign env) l in
  (* Check for user-declared implicit information *)
  let s = sign_with_implicits (ConstRef kn) s 0 in
  (* Decomposing the top level lambdas of [body].
     If there isn't enough, it's ok, as long as remaining args
     aren't to be pruned (and initial lambdas aren't to be all
     removed if the target language is strict). In other situations,
     eta-expansions create artificially enough lams (but that may
     break user's clever let-ins and partial applications). *)
  let rels, c =
    let n = List.length s
    and m = nb_lam Evd.empty (EConstr.of_constr body) (** FIXME *) in
    if n <= m then decompose_lam_n n body
    else
      let s,s' = List.chop m s in
      if List.for_all ((==) Keep) s' &&
        (lang () == Haskell || sign_kind s != UnsafeLogicalSig)
      then decompose_lam_n m body
      else decomp_lams_eta_n n m env body typ
  in
  (* Should we do one eta-expansion to avoid non-generalizable '_a ? *)
  let rels, c =
    let n = List.length rels in
    let s,s' = List.chop n s in
    let k = sign_kind s in
    let empty_s = (k == EmptySig || k == SafeLogicalSig) in
    if lang () == Ocaml && empty_s && not (gentypvar_ok c)
      && not (List.is_empty s') && not (Int.equal (type_maxvar t) 0)
    then decomp_lams_eta_n (n+1) n env body typ
    else rels,c
  in
  let n = List.length rels in
  let s = List.firstn n s in
  let l,l' = List.chop n l in
  let t' = type_recomp (l',t') in
  (* The initial ML environment. *)
  let mle = List.fold_left Mlenv.push_std_type Mlenv.empty l in
  (* The lambdas names. *)
  let ids = List.map (fun (n,_) -> Id (id_of_name n)) rels in
  (* The according Coq environment. *)
  let env = push_rels_assum rels env in
  (* The real extraction: *)
  let e = extract_term env mle t' c [] in
  (* Expunging term and type from dummy lambdas. *)
  let trm = term_expunge s (ids,e) in
  trm, type_expunge_from_sign env s t

(* Extracts the type of an axiom, honors the Extraction Implicit declaration. *)
let extract_axiom env kn typ =
  reset_meta_count ();
  (* The short type [t] (i.e. possibly with abbreviations). *)
  let t = snd (record_constant_type env kn (Some typ)) in
  (* The real type [t']: without head products, expanded, *)
  (* and with [Tvar] translated to [Tvar'] (not instantiable). *)
  let l,_ = type_decomp (expand env (var2var' t)) in
  let s = List.map (type2sign env) l in
  (* Check for user-declared implicit information *)
  let s = sign_with_implicits (ConstRef kn) s 0 in
  type_expunge_from_sign env s t

let extract_fixpoint env vkn (fi,ti,ci) =
  let n = Array.length vkn in
  let types = Array.make n (Tdummy Kprop)
  and terms = Array.make n (MLdummy Kprop) in
  let kns = Array.to_list vkn in
  current_fixpoints := kns;
  (* for replacing recursive calls [Rel ..] by the corresponding [Const]: *)
  let sub = List.rev_map mkConst kns in
  for i = 0 to n-1 do
    if sort_of env ti.(i) != InProp then
      try
        let e,t = extract_std_constant env vkn.(i) (substl sub ci.(i)) ti.(i) in
        terms.(i) <- e;
        types.(i) <- t;
      with SingletonInductiveBecomesProp id ->
        error_singleton_become_prop id (Some (ConstRef vkn.(i)))
  done;
  current_fixpoints := [];
  Dfix (Array.map (fun kn -> ConstRef kn) vkn, terms, types)

let extract_constant env kn cb =
  let r = ConstRef kn in
  let typ = cb.const_type in
  let warn_info () = if not (is_custom r) then add_info_axiom r in
  let warn_log () = if not (constant_has_body cb) then add_log_axiom r
  in
  let mk_typ_ax () =
    let n = type_scheme_nb_args env typ in
    let ids = iterate (fun l -> anonymous_name::l) n [] in
    Dtype (r, ids, Taxiom)
  in
  let mk_typ c =
    let s,vl = type_sign_vl env typ in
    let db = db_from_sign s in
    let t = extract_type_scheme env db c (List.length s)
    in Dtype (r, vl, t)
  in
  let mk_ax () =
    let t = extract_axiom env kn typ in
    Dterm (r, MLaxiom, t)
  in
  let mk_def c =
    let e,t = extract_std_constant env kn c typ in
    Dterm (r,e,t)
  in
  try
    match flag_of_type env typ with
    | (Logic,TypeScheme) -> warn_log (); Dtype (r, [], Tdummy Ktype)
    | (Logic,Default) -> warn_log (); Dterm (r, MLdummy Kprop, Tdummy Kprop)
    | (Info,TypeScheme) ->
        (match cb.const_body with
          | Undef _ -> warn_info (); mk_typ_ax ()
          | Def c ->
             (match cb.const_proj with
              | None -> mk_typ (Mod_subst.force_constr c)
              | Some pb -> mk_typ pb.proj_body)
          | OpaqueDef c ->
            add_opaque r;
            if access_opaque () then
              mk_typ (Opaqueproof.force_proof (Environ.opaque_tables env) c)
            else mk_typ_ax ())
    | (Info,Default) ->
        (match cb.const_body with
          | Undef _ -> warn_info (); mk_ax ()
          | Def c ->
             (match cb.const_proj with
              | None -> mk_def (Mod_subst.force_constr c)
              | Some pb -> mk_def pb.proj_body)
          | OpaqueDef c ->
            add_opaque r;
            if access_opaque () then
              mk_def (Opaqueproof.force_proof (Environ.opaque_tables env) c)
            else mk_ax ())
  with SingletonInductiveBecomesProp id ->
    error_singleton_become_prop id (Some (ConstRef kn))

let extract_constant_spec env kn cb =
  let r = ConstRef kn in
  let typ = cb.const_type in
  try
    match flag_of_type env typ with
    | (Logic, TypeScheme) -> Stype (r, [], Some (Tdummy Ktype))
    | (Logic, Default) -> Sval (r, Tdummy Kprop)
    | (Info, TypeScheme) ->
        let s,vl = type_sign_vl env typ in
        (match cb.const_body with
          | Undef _ | OpaqueDef _ -> Stype (r, vl, None)
          | Def body ->
              let db = db_from_sign s in
              let body = Mod_subst.force_constr body in
              let t = extract_type_scheme env db body (List.length s)
              in Stype (r, vl, Some t))
    | (Info, Default) ->
        let t = snd (record_constant_type env kn (Some typ)) in
        Sval (r, type_expunge env t)
  with SingletonInductiveBecomesProp id ->
    error_singleton_become_prop id (Some (ConstRef kn))

let extract_with_type env c =
  try
    let typ = type_of env c in
    match flag_of_type env typ with
    | (Info, TypeScheme) ->
        let s,vl = type_sign_vl env typ in
        let db = db_from_sign s in
        let t = extract_type_scheme env db c (List.length s) in
        Some (vl, t)
    | _ -> None
  with SingletonInductiveBecomesProp id ->
    error_singleton_become_prop id None

let extract_constr env c =
  reset_meta_count ();
  try
    let typ = type_of env c in
    match flag_of_type env typ with
    | (_,TypeScheme) -> MLdummy Ktype, Tdummy Ktype
    | (Logic,_) -> MLdummy Kprop, Tdummy Kprop
    | (Info,Default) ->
       let mlt = extract_type env [] 1 typ [] in
       extract_term env Mlenv.empty mlt c [], mlt
  with SingletonInductiveBecomesProp id ->
    error_singleton_become_prop id None

let extract_inductive env kn =
  let ind = extract_ind env kn in
  add_recursors env kn;
  let f i j l =
    let implicits = implicits_of_global (ConstructRef ((kn,i),j+1)) in
    let rec filter i = function
      | [] -> []
      | t::l ->
          let l' = filter (succ i) l in
          if isTdummy (expand env t) || Int.Set.mem i implicits then l'
          else t::l'
    in filter (1+ind.ind_nparams) l
  in
  let packets =
    Array.mapi (fun i p -> { p with ip_types = Array.mapi (f i) p.ip_types })
      ind.ind_packets
  in { ind with ind_packets = packets }

(*s Is a [ml_decl] logical ? *)

let logical_decl = function
  | Dterm (_,MLdummy _,Tdummy _) -> true
  | Dtype (_,[],Tdummy _) -> true
  | Dfix (_,av,tv) ->
      (Array.for_all isMLdummy av) &&
      (Array.for_all isTdummy tv)
  | Dind (_,i) -> Array.for_all (fun ip -> ip.ip_logical) i.ind_packets
  | _ -> false

(*s Is a [ml_spec] logical ? *)

let logical_spec = function
  | Stype (_, [], Some (Tdummy _)) -> true
  | Sval (_,Tdummy _) -> true
  | Sind (_,i) -> Array.for_all (fun ip -> ip.ip_logical) i.ind_packets
  | _ -> false