1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

open CErrors
open Util
open Names
open Univ
open Term
open Constr
open Vars
open Declarations
open Declareops
open Inductive
open Environ
open Reduction
open Typeops
open Entries
open Pp
open Context.Rel.Declaration

(* Terminology:
paramdecls (ou paramsctxt?)
args = params + realargs (called vargs when an array, largs when a list)
params = recparams + nonrecparams
nonrecargs = nonrecparams + realargs
env_ar = initial env + declaration of inductive types
env_ar_par = env_ar + declaration of parameters
nmr = ongoing computation of recursive parameters
*)

(* Tell if indices (aka real arguments) contribute to size of inductive type *)
(* If yes, this is compatible with the univalent model *)

let indices_matter = ref false

let enforce_indices_matter () = indices_matter := true
let is_indices_matter () = !indices_matter

(* [weaker_noccur_between env n nvars t] (defined above), checks that
   no de Bruijn indices between [n] and [n+nvars] occur in [t]. If
   some such occurrences are found, then reduction is performed
   (lazily for efficiency purposes) in order to determine whether
   these occurrences are occurrences in the normal form. If the
   occurrences are eliminated a witness reduct [Some t'] of [t] is
   returned otherwise [None] is returned. *)
let weaker_noccur_between env x nvars t =
  if noccur_between x nvars t then Some t
  else
   let t' = whd_all env t in
   if noccur_between x nvars t' then Some t'
   else None

let is_constructor_head t =
  isRel(fst(decompose_app t))

(************************************************************************)
(* Various well-formedness check for inductive declarations            *)

(* Errors related to inductive constructions *)
type inductive_error =
  | NonPos of env * constr * constr
  | NotEnoughArgs of env * constr * constr
  | NotConstructor of env * Id.t * constr * constr * int * int
  | NonPar of env * constr * int * constr * constr
  | SameNamesTypes of Id.t
  | SameNamesConstructors of Id.t
  | SameNamesOverlap of Id.t list
  | NotAnArity of env * constr
  | BadEntry
  | LargeNonPropInductiveNotInType

exception InductiveError of inductive_error

(* [check_constructors_names id s cl] checks that all the constructors names
   appearing in [l] are not present in the set [s], and returns the new set
   of names. The name [id] is the name of the current inductive type, used
   when reporting the error. *)

let check_constructors_names =
  let rec check idset = function
    | [] -> idset
    | c::cl ->
        if Id.Set.mem c idset then
          raise (InductiveError (SameNamesConstructors c))
        else
          check (Id.Set.add c idset) cl
  in
  check

(* [mind_check_names mie] checks the names of an inductive types declaration,
   and raises the corresponding exceptions when two types or two constructors
   have the same name. *)

let mind_check_names mie =
  let rec check indset cstset = function
    | [] -> ()
    | ind::inds ->
        let id = ind.mind_entry_typename in
        let cl = ind.mind_entry_consnames in
        if Id.Set.mem id indset then
          raise (InductiveError (SameNamesTypes id))
        else
          let cstset' = check_constructors_names cstset cl in
          check (Id.Set.add id indset) cstset' inds
  in
  check Id.Set.empty Id.Set.empty mie.mind_entry_inds
(* The above verification is not necessary from the kernel point of
  vue since inductive and constructors are not referred to by their
  name, but only by the name of the inductive packet and an index. *)

(************************************************************************)
(************************************************************************)

(* Typing the arities and constructor types *)

(* An inductive definition is a "unit" if it has only one constructor
   and that all arguments expected by this constructor are
   logical, this is the case for equality, conjunction of logical properties
*)
let is_unit constrsinfos =
  match constrsinfos with  (* One info = One constructor *)
   | [level] -> is_type0m_univ level
   | [] -> (* type without constructors *) true
   | _ -> false

let infos_and_sort env t =
  let rec aux env t max =
    let t = whd_all env t in
      match kind t with
      | Prod (name,c1,c2) ->
        let varj = infer_type env c1 in
        let env1 = Environ.push_rel (LocalAssum (name,varj.utj_val)) env in
        let max = Universe.sup max (Sorts.univ_of_sort varj.utj_type) in
          aux env1 c2 max
    | _ when is_constructor_head t -> max
    | _ -> (* don't fail if not positive, it is tested later *) max
  in aux env t Universe.type0m

(* Computing the levels of polymorphic inductive types

   For each inductive type of a block that is of level u_i, we have
   the constraints that u_i >= v_i where v_i is the type level of the
   types of the constructors of this inductive type. Each v_i depends
   of some of the u_i and of an extra (maybe non variable) universe,
   say w_i that summarize all the other constraints. Typically, for
   three inductive types, we could have

   u1,u2,u3,w1 <= u1
   u1       w2 <= u2
      u2,u3,w3 <= u3

   From this system of inequations, we shall deduce

   w1,w2,w3 <= u1
   w1,w2 <= u2
   w1,w2,w3 <= u3
*)

(* This (re)computes informations relevant to extraction and the sort of an
   arity or type constructor; we do not to recompute universes constraints *)

let infer_constructor_packet env_ar_par params lc =
  (* type-check the constructors *)
  let jlc = List.map (infer_type env_ar_par) lc in
  let jlc = Array.of_list jlc in
  (* generalize the constructor over the parameters *)
  let lc'' = Array.map (fun j -> Term.it_mkProd_or_LetIn j.utj_val params) jlc in
  (* compute the max of the sorts of the products of the constructors types *)
  let levels = List.map (infos_and_sort env_ar_par) lc in
  let isunit = is_unit levels in
  let min = if Array.length jlc > 1 then Universe.type0 else Universe.type0m in
  let level = List.fold_left (fun max l -> Universe.sup max l) min levels in
  (lc'', (isunit, level))

(* If indices matter *)
let cumulate_arity_large_levels env sign =
  fst (List.fold_right
    (fun d (lev,env) ->
     match d with
     | LocalAssum (_,t) ->
        let tj = infer_type env t in
        let u = Sorts.univ_of_sort tj.utj_type in
          (Universe.sup u lev, push_rel d env)
     | LocalDef _ ->
        lev, push_rel d env)
    sign (Universe.type0m,env))

let is_impredicative env u =
  is_type0m_univ u || (is_type0_univ u && is_impredicative_set env)

(* Returns the list [x_1, ..., x_n] of levels contributing to template
   polymorphism. The elements x_k is None if the k-th parameter (starting
   from the most recent and ignoring let-definitions) is not contributing 
   or is Some u_k if its level is u_k and is contributing. *)
let param_ccls paramsctxt =
  let fold acc = function
    | (LocalAssum (_, p)) ->
      (let c = Term.strip_prod_assum p in
      match kind c with
        | Sort (Type u) -> Univ.Universe.level u
        | _ -> None) :: acc
    | LocalDef _ -> acc
  in
  List.fold_left fold [] paramsctxt

(* Check arities and constructors *)
let check_subtyping_arity_constructor env (subst : constr -> constr) (arcn : types) numparams is_arity =
  let numchecked = ref 0 in
  let basic_check ev tp =
    if !numchecked < numparams then () else conv_leq ev tp (subst tp);
    numchecked := !numchecked + 1
  in
  let check_typ typ typ_env =
    match typ with
    | LocalAssum (_, typ') ->
      begin
       try
          basic_check typ_env typ'; Environ.push_rel typ typ_env
        with NotConvertible -> 
          anomaly ~label:"bad inductive subtyping relation" (Pp.str "Invalid subtyping relation")
      end
    | _ -> anomaly (Pp.str "")
  in
  let typs, codom = dest_prod env arcn in
  let last_env = Context.Rel.fold_outside check_typ typs ~init:env in
  if not is_arity then basic_check last_env codom else ()

(* Check that the subtyping information inferred for inductive types in the block is correct. *)
(* This check produces a value of the unit type if successful or raises an anomaly if check fails. *)
let check_subtyping cumi paramsctxt env_ar inds = 
    let numparams = Context.Rel.nhyps paramsctxt in
    let sbsubst = CumulativityInfo.subtyping_susbst cumi in
    let dosubst = subst_univs_level_constr sbsubst in
    let uctx = CumulativityInfo.univ_context cumi in
    let instance_other = Univ.subst_univs_level_instance sbsubst (Univ.UContext.instance uctx) in
    let constraints_other = Univ.subst_univs_level_constraints sbsubst (Univ.UContext.constraints uctx) in
    let uctx_other = Univ.UContext.make (instance_other, constraints_other) in
    let env = Environ.push_context uctx env_ar in
    let env = Environ.push_context uctx_other env in
    let env = push_context (CumulativityInfo.subtyp_context cumi) env in
    (* process individual inductive types: *)
    Array.iter (fun (id,cn,lc,(sign,arity)) ->
      match arity with
        | RegularArity (_, full_arity, _) ->
           check_subtyping_arity_constructor env dosubst full_arity numparams true;
           Array.iter (fun cnt -> check_subtyping_arity_constructor env dosubst cnt numparams false) lc
        | TemplateArity _ -> ()
    ) inds

(* Type-check an inductive definition. Does not check positivity
   conditions. *)
(* TODO check that we don't overgeneralize construcors/inductive arities with
   universes that are absent from them. Is it possible? 
*)
let typecheck_inductive env mie =
  let () = match mie.mind_entry_inds with
  | [] -> anomaly (Pp.str "empty inductive types declaration.")
  | _ -> ()
  in
  (* Check unicity of names *)
  mind_check_names mie;
  (* Params are typed-checked here *)
  let env' =
    match mie.mind_entry_universes with
    | Monomorphic_ind_entry ctx -> push_context_set ctx env
    | Polymorphic_ind_entry ctx -> push_context ctx env
    | Cumulative_ind_entry cumi -> push_context (Univ.CumulativityInfo.univ_context cumi) env
  in
  let (env_params,paramsctxt) = infer_local_decls env' mie.mind_entry_params in
  (* We first type arity of each inductive definition *)
  (* This allows building the environment of arities and to share *)
  (* the set of constraints *)
  let env_arities, rev_arity_list =
    List.fold_left
      (fun (env_ar,l) ind ->
         (* Arities (without params) are typed-checked here *)
         let expltype = ind.mind_entry_template in
         let arity =
           if isArity ind.mind_entry_arity then
             let (ctx,s) = dest_arity env_params ind.mind_entry_arity in
               match s with
               | Type u when Univ.universe_level u = None ->
                 (** We have an algebraic universe as the conclusion of the arity,
                     typecheck the dummy Π ctx, Prop and do a special case for the conclusion.
                 *)
                 let proparity = infer_type env_params (mkArity (ctx, Sorts.prop)) in
                 let (cctx, _) = destArity proparity.utj_val in
                   (* Any universe is well-formed, we don't need to check [s] here *)
                   mkArity (cctx, s)
               | _ -> 
                 let arity = infer_type env_params ind.mind_entry_arity in
                   arity.utj_val
           else let arity = infer_type env_params ind.mind_entry_arity in
                  arity.utj_val
         in
         let (sign, deflev) = dest_arity env_params arity in
         let inflev = 
           (* The level of the inductive includes levels of indices if 
              in indices_matter mode *)
             if !indices_matter 
             then Some (cumulate_arity_large_levels env_params sign)
             else None
         in
         (* We do not need to generate the universe of full_arity; if
            later, after the validation of the inductive definition,
            full_arity is used as argument or subject to cast, an
            upper universe will be generated *)
         let full_arity = it_mkProd_or_LetIn arity paramsctxt in
         let id = ind.mind_entry_typename in
         let env_ar' =
           push_rel (LocalAssum (Name id, full_arity)) env_ar in
             (* (add_constraints cst2 env_ar) in *)
           (env_ar', (id,full_arity,sign @ paramsctxt,expltype,deflev,inflev)::l))
      (env',[])
      mie.mind_entry_inds in

  let arity_list = List.rev rev_arity_list in

  (* builds the typing context "Gamma, I1:A1, ... In:An, params" *)
  let env_ar_par = push_rel_context paramsctxt env_arities in

  (* Now, we type the constructors (without params) *)
  let inds =
    List.fold_right2
      (fun ind arity_data inds ->
         let (lc',cstrs_univ) =
           infer_constructor_packet env_ar_par paramsctxt ind.mind_entry_lc in
         let consnames = ind.mind_entry_consnames in
         let ind' = (arity_data,consnames,lc',cstrs_univ) in
           ind'::inds)
      mie.mind_entry_inds
      arity_list
    ([]) in

  let inds = Array.of_list inds in

  (* Compute/check the sorts of the inductive types *)

  let inds =
    Array.map (fun ((id,full_arity,sign,expltype,def_level,inf_level),cn,lc,(is_unit,clev))  ->
      let infu = 
        (** Inferred level, with parameters and constructors. *)
        match inf_level with
        | Some alev -> Universe.sup clev alev
        | None -> clev
      in
      let full_polymorphic () = 
        let defu = Sorts.univ_of_sort def_level in
        let is_natural =
          type_in_type env || (UGraph.check_leq (universes env') infu defu)
        in
        let _ =
          (** Impredicative sort, always allow *)
          if is_impredicative env defu then ()
          else (** Predicative case: the inferred level must be lower or equal to the
                   declared level. *)
            if not is_natural then
              anomaly ~label:"check_inductive" 
                (Pp.str"Incorrect universe " ++
                   Universe.pr defu ++ Pp.str " declared for inductive type, inferred level is "
                 ++ Universe.pr infu ++ Pp.str ".")
        in
          RegularArity (not is_natural,full_arity,defu)
      in
      let template_polymorphic () =
        let sign, s =
          try dest_arity env full_arity
          with NotArity -> raise (InductiveError (NotAnArity (env, full_arity)))
        in
          match s with
          | Type u when expltype (* Explicitly polymorphic *) ->
            (* The polymorphic level is a function of the level of the *)
            (* conclusions of the parameters *)
            (* We enforce [u >= lev] in case [lev] has a strict upper *)
            (* constraints over [u] *)
            let b = type_in_type env || UGraph.check_leq (universes env') infu u in
              if not b then
                anomaly ~label:"check_inductive" 
                  (Pp.str"Incorrect universe " ++
                     Universe.pr u ++ Pp.str " declared for inductive type, inferred level is "
                   ++ Universe.pr clev ++ Pp.str ".")
              else
                TemplateArity (param_ccls paramsctxt, infu)
          | _ (* Not an explicit occurrence of Type *) ->
            full_polymorphic ()
      in
      let arity =
        match mie.mind_entry_universes with
        | Monomorphic_ind_entry _ -> template_polymorphic ()
        | Polymorphic_ind_entry _ | Cumulative_ind_entry _ -> full_polymorphic ()
      in
        (id,cn,lc,(sign,arity)))
    inds
  in
  (* Check that the subtyping information inferred for inductive types in the block is correct. *)
  (* This check produces a value of the unit type if successful or raises an anomaly if check fails. *)
  let () = 
    match mie.mind_entry_universes with
    | Monomorphic_ind_entry _ -> ()
    | Polymorphic_ind_entry _ -> ()
    | Cumulative_ind_entry cumi -> check_subtyping cumi paramsctxt env_arities inds
  in (env_arities, env_ar_par, paramsctxt, inds)

(************************************************************************)
(************************************************************************)
(* Positivity *)

type ill_formed_ind =
  | LocalNonPos of int
  | LocalNotEnoughArgs of int
  | LocalNotConstructor of Context.Rel.t * int
  | LocalNonPar of int * int * int

exception IllFormedInd of ill_formed_ind

(* [mind_extract_params mie] extracts the params from an inductive types
   declaration, and checks that they are all present (and all the same)
   for all the given types. *)

let mind_extract_params = decompose_prod_n_assum

let explain_ind_err id ntyp env nparamsctxt c err =
  let (lparams,c') = mind_extract_params nparamsctxt c in
  match err with
    | LocalNonPos kt ->
        raise (InductiveError (NonPos (env,c',mkRel (kt+nparamsctxt))))
    | LocalNotEnoughArgs kt ->
        raise (InductiveError
                 (NotEnoughArgs (env,c',mkRel (kt+nparamsctxt))))
    | LocalNotConstructor (paramsctxt,nargs)->
        let nparams = Context.Rel.nhyps paramsctxt in
        raise (InductiveError
                 (NotConstructor (env,id,c',mkRel (ntyp+nparamsctxt),
                                  nparams,nargs)))
    | LocalNonPar (n,i,l) ->
        raise (InductiveError
                 (NonPar (env,c',n,mkRel i,mkRel (l+nparamsctxt))))

let failwith_non_pos n ntypes c =
  for k = n to n + ntypes - 1 do
    if not (noccurn k c) then raise (IllFormedInd (LocalNonPos (k-n+1)))
  done

let failwith_non_pos_vect n ntypes v =
  Array.iter (failwith_non_pos n ntypes) v;
  anomaly ~label:"failwith_non_pos_vect" (Pp.str "some k in [n;n+ntypes-1] should occur.")

let failwith_non_pos_list n ntypes l =
  List.iter (failwith_non_pos n ntypes) l;
  anomaly ~label:"failwith_non_pos_list" (Pp.str "some k in [n;n+ntypes-1] should occur.")

(* Check the inductive type is called with the expected parameters *)
(* [n] is the index of the last inductive type in [env] *)
let check_correct_par (env,n,ntypes,_) paramdecls ind_index args =
  let nparams = Context.Rel.nhyps paramdecls in
  let args = Array.of_list args in
  if Array.length args < nparams then
    raise (IllFormedInd (LocalNotEnoughArgs ind_index));
  let (params,realargs) = Array.chop nparams args in
  let nparamdecls = List.length paramdecls in
  let rec check param_index paramdecl_index = function
    | [] -> ()
    | LocalDef _ :: paramdecls ->
      check param_index (paramdecl_index+1) paramdecls
    | _::paramdecls ->
        match kind (whd_all env params.(param_index)) with
          | Rel w when Int.equal w paramdecl_index ->
            check (param_index-1) (paramdecl_index+1) paramdecls
          | _ ->
            let paramdecl_index_in_env = paramdecl_index-n+nparamdecls+1 in
            let err =
              LocalNonPar (param_index+1, paramdecl_index_in_env, ind_index) in
            raise (IllFormedInd err)
  in check (nparams-1) (n-nparamdecls) paramdecls;
  if not (Array.for_all (noccur_between n ntypes) realargs) then
    failwith_non_pos_vect n ntypes realargs

(* Computes the maximum number of recursive parameters:
   the first parameters which are constant in recursive arguments
   [n] is the current depth, [nmr] is the maximum number of possible
   recursive parameters *)

let compute_rec_par (env,n,_,_) paramsctxt nmr largs =
if Int.equal nmr 0 then 0 else
(* start from 0, params will be in reverse order *)
  let (lpar,_) = List.chop nmr largs in
  let rec find k index =
      function
          ([],_) -> nmr
        | (_,[]) -> assert false (* |paramsctxt|>=nmr *)
        | (lp, LocalDef _ :: paramsctxt) -> find k (index-1) (lp,paramsctxt)
        | (p::lp,_::paramsctxt) ->
       ( match kind (whd_all env p) with
          | Rel w when Int.equal w index -> find (k+1) (index-1) (lp,paramsctxt)
          | _ -> k)
  in find 0 (n-1) (lpar,List.rev paramsctxt)

(* [env] is the typing environment
   [n] is the dB of the last inductive type
   [ntypes] is the number of inductive types in the definition
     (i.e. range of inductives is [n; n+ntypes-1])
   [lra] is the list of recursive tree of each variable
 *)
let ienv_push_var (env, n, ntypes, lra) (x,a,ra) =
  (push_rel (LocalAssum (x,a)) env, n+1, ntypes, (Norec,ra)::lra)

let ienv_push_inductive (env, n, ntypes, ra_env) ((mi,u),lrecparams) =
  let auxntyp = 1 in
  let specif = (lookup_mind_specif env mi, u) in
  let ty = type_of_inductive env specif in
  let env' =
    let decl = LocalAssum (Anonymous, hnf_prod_applist env ty lrecparams) in
    push_rel decl env in
  let ra_env' =
    (Imbr mi,(Rtree.mk_rec_calls 1).(0)) ::
    List.map (fun (r,t) -> (r,Rtree.lift 1 t)) ra_env in
  (* New index of the inductive types *)
  let newidx = n + auxntyp in
  (env', newidx, ntypes, ra_env')

let rec ienv_decompose_prod (env,_,_,_ as ienv) n c =
  if Int.equal n 0 then (ienv,c) else
    let c' = whd_all env c in
    match kind c' with
        Prod(na,a,b) ->
          let ienv' = ienv_push_var ienv (na,a,mk_norec) in
          ienv_decompose_prod ienv' (n-1) b
      | _ -> assert false

let array_min nmr a = if Int.equal nmr 0 then 0 else
  Array.fold_left (fun k (nmri,_) -> min k nmri) nmr a

(** [check_positivity_one ienv paramsctxt (mind,i) nnonrecargs lcnames indlc]
    checks the positivity of the [i]-th member of the mutually
    inductive definition [mind]. It returns an [Rtree.t] which
    represents the position of the recursive calls of inductive in [i]
    for use by the guard condition (terms at these positions are
    considered sub-terms) as well as the number of of non-uniform
    arguments (used to generate induction schemes, so a priori less
    relevant to the kernel).

    If [chkpos] is [false] then positivity is assumed, and
    [check_positivity_one] computes the subterms occurrences in a
    best-effort fashion. *)
let check_positivity_one ~chkpos recursive (env,_,ntypes,_ as ienv) paramsctxt (_,i as ind) nnonrecargs lcnames indlc =
  let nparamsctxt = Context.Rel.length paramsctxt in
  let nmr = Context.Rel.nhyps paramsctxt in
  (** Positivity of one argument [c] of a constructor (i.e. the
      constructor [cn] has a type of the shape [… -> c … -> P], where,
      more generally, the arrows may be dependent). *)
  let rec check_pos (env, n, ntypes, ra_env as ienv) nmr c =
    let x,largs = decompose_app (whd_all env c) in
      match kind x with
        | Prod (na,b,d) ->
            let () = assert (List.is_empty largs) in
            (** If one of the inductives of the mutually inductive
                block occurs in the left-hand side of a product, then
                such an occurrence is a non-strictly-positive
                recursive call. Occurrences in the right-hand side of
                the product must be strictly positive.*)
            (match weaker_noccur_between env n ntypes b with
              | None when chkpos ->
                  failwith_non_pos_list n ntypes [b]
              | None ->
                  check_pos (ienv_push_var ienv (na, b, mk_norec)) nmr d
              | Some b ->
                  check_pos (ienv_push_var ienv (na, b, mk_norec)) nmr d)
        | Rel k ->
            (try let (ra,rarg) = List.nth ra_env (k-1) in
            let largs = List.map (whd_all env) largs in
            let nmr1 =
              (match ra with
                  Mrec _ -> compute_rec_par ienv paramsctxt nmr largs
                |  _ -> nmr)
            in
              (** The case where one of the inductives of the mutually
                  inductive block occurs as an argument of another is not
                  known to be safe. So Coq rejects it. *)
              if chkpos &&
                 not (List.for_all (noccur_between n ntypes) largs)
              then failwith_non_pos_list n ntypes largs
              else (nmr1,rarg)
              with Failure _ | Invalid_argument _ -> (nmr,mk_norec))
        | Ind ind_kn ->
            (** If one of the inductives of the mutually inductive
                block being defined appears in a parameter, then we
                have a nested inductive type. The positivity is then
                discharged to the [check_positive_nested] function. *)
            if List.for_all (noccur_between n ntypes) largs then (nmr,mk_norec)
            else check_positive_nested ienv nmr (ind_kn, largs)
        | err ->
            (** If an inductive of the mutually inductive block
                appears in any other way, then the positivy check gives
                up. *)
            if not chkpos ||
              (noccur_between n ntypes x &&
               List.for_all (noccur_between n ntypes) largs)
            then (nmr,mk_norec)
            else failwith_non_pos_list n ntypes (x::largs)

  (** [check_positive_nested] handles the case of nested inductive
      calls, that is, when an inductive types from the mutually
      inductive block is called as an argument of an inductive types
      (for the moment, this inductive type must be a previously
      defined types, not one of the types of the mutually inductive
      block being defined). *)
  (* accesses to the environment are not factorised, but is it worth? *)
  and check_positive_nested (env,n,ntypes,ra_env as ienv) nmr ((mi,u), largs) =
    let (mib,mip) = lookup_mind_specif env mi in
    let auxnrecpar = mib.mind_nparams_rec in
    let auxnnonrecpar = mib.mind_nparams - auxnrecpar in
    let (auxrecparams,auxnonrecargs) =
      try List.chop auxnrecpar largs
      with Failure _ -> raise (IllFormedInd (LocalNonPos n)) in

      (** Inductives of the inductive block being defined are only
          allowed to appear nested in the parameters of another inductive
          type. Not in the proper indices. *)
      if chkpos && not (List.for_all (noccur_between n ntypes) auxnonrecargs) then
        failwith_non_pos_list n ntypes auxnonrecargs;
      (* Nested mutual inductive types are not supported *)
      let auxntyp = mib.mind_ntypes in
        if not (Int.equal auxntyp 1) then raise (IllFormedInd (LocalNonPos n));
        (* The nested inductive type with parameters removed *)
        let auxlcvect = abstract_mind_lc auxntyp auxnrecpar mip.mind_nf_lc in
          (* Extends the environment with a variable corresponding to
             the inductive def *)
        let (env',_,_,_ as ienv') = ienv_push_inductive ienv ((mi,u),auxrecparams) in
          (* Parameters expressed in env' *)
        let auxrecparams' = List.map (lift auxntyp) auxrecparams in
        let irecargs_nmr =
          (** Checks that the "nesting" inductive type is covariant in
              the relevant parameters. In other words, that the
              (nested) parameters which are instantiated with
              inductives of the mutually inductive block occur
              positively in the types of the nested constructors. *)
          Array.map
            (function c ->
              let c' = hnf_prod_applist env' c auxrecparams' in
              (* skip non-recursive parameters *)
              let (ienv',c') = ienv_decompose_prod ienv' auxnnonrecpar c' in
                check_constructors ienv' false nmr c')
            auxlcvect
        in
        let irecargs = Array.map snd irecargs_nmr
        and nmr' = array_min nmr irecargs_nmr
        in
          (nmr',(Rtree.mk_rec [|mk_paths (Imbr mi) irecargs|]).(0))

  (** [check_constructors ienv check_head nmr c] checks the positivity
      condition in the type [c] of a constructor (i.e. that recursive
      calls to the inductives of the mutually inductive definition
      appear strictly positively in each of the arguments of the
      constructor, see also [check_pos]). If [check_head] is [true],
      then the type of the fully applied constructor (the "head" of
      the type [c]) is checked to be the right (properly applied)
      inductive type. *)
  and check_constructors ienv check_head nmr c =
    let rec check_constr_rec (env,n,ntypes,ra_env as ienv) nmr lrec c =
      let x,largs = decompose_app (whd_all env c) in
        match kind x with

          | Prod (na,b,d) ->
              let () = assert (List.is_empty largs) in
              if not recursive && not (noccur_between n ntypes b) then
                raise (InductiveError BadEntry);
              let nmr',recarg = check_pos ienv nmr b in
              let ienv' = ienv_push_var ienv (na,b,mk_norec) in
                check_constr_rec ienv' nmr' (recarg::lrec) d
          | hd ->
            let () =
              if check_head then
                begin match hd with
                | Rel j when Int.equal j (n + ntypes - i - 1) ->
                  check_correct_par ienv paramsctxt (ntypes - i) largs
                | _ -> raise (IllFormedInd (LocalNotConstructor(paramsctxt,nnonrecargs)))
                end
              else
                if chkpos &&
                   not (List.for_all (noccur_between n ntypes) largs)
                then failwith_non_pos_list n ntypes largs
            in
            (nmr, List.rev lrec)
    in check_constr_rec ienv nmr [] c
  in
  let irecargs_nmr =
    Array.map2
      (fun id c ->
        let _,rawc = mind_extract_params nparamsctxt c in
          try
            check_constructors ienv true nmr rawc
          with IllFormedInd err ->
            explain_ind_err id (ntypes-i) env nparamsctxt c err)
      (Array.of_list lcnames) indlc
  in
  let irecargs = Array.map snd irecargs_nmr
  and nmr' = array_min nmr irecargs_nmr
  in (nmr', mk_paths (Mrec ind) irecargs)

(** [check_positivity ~chkpos kn env_ar paramsctxt inds] checks that the mutually
    inductive block [inds] is strictly positive.

    If [chkpos] is [false] then positivity is assumed, and
    [check_positivity_one] computes the subterms occurrences in a
    best-effort fashion. *)
let check_positivity ~chkpos kn env_ar_par paramsctxt finite inds =
  let ntypes = Array.length inds in
  let recursive = finite != Decl_kinds.BiFinite in
  let rc = Array.mapi (fun j t -> (Mrec (kn,j),t)) (Rtree.mk_rec_calls ntypes) in
  let ra_env_ar = Array.rev_to_list rc in
  let nparamsctxt = Context.Rel.length paramsctxt in
  let nmr = Context.Rel.nhyps paramsctxt in
  let check_one i (_,lcnames,lc,(sign,_)) =
    let ra_env_ar_par =
      List.init nparamsctxt (fun _ -> (Norec,mk_norec)) @ ra_env_ar in
    let ienv = (env_ar_par, 1+nparamsctxt, ntypes, ra_env_ar_par) in
    let nnonrecargs = Context.Rel.nhyps sign - nmr in
    check_positivity_one ~chkpos recursive ienv paramsctxt (kn,i) nnonrecargs lcnames lc
  in
  let irecargs_nmr = Array.mapi check_one inds in
  let irecargs = Array.map snd irecargs_nmr
  and nmr' = array_min nmr irecargs_nmr
  in (nmr',Rtree.mk_rec irecargs)


(************************************************************************)
(************************************************************************)
(* Build the inductive packet *)

(* Allowed eliminations *)

let all_sorts = [InProp;InSet;InType]
let small_sorts = [InProp;InSet]
let logical_sorts = [InProp]

let allowed_sorts is_smashed s =
  if not is_smashed 
  then (** Naturally in the defined sort.
           If [s] is Prop, it must be small and unitary.
           Unsmashed, predicative Type and Set: all elimination allowed
           as well. *)
      all_sorts
  else 
    match Sorts.family s with
    (* Type: all elimination allowed: above and below *)
    | InType -> all_sorts
    (* Smashed Set is necessarily impredicative: forbids large elimination *)
    | InSet -> small_sorts
    (* Smashed to Prop, no informative eliminations allowed *)
    | InProp -> logical_sorts
    
(* Previous comment: *)
(* Unitary/empty Prop: elimination to all sorts are realizable *)
(* unless the type is large. If it is large, forbids large elimination *)
(* which otherwise allows simulating the inconsistent system Type:Type. *)
(* -> this is now handled by is_smashed: *)
(* - all_sorts in case of small, unitary Prop (not smashed) *)
(* - logical_sorts in case of large, unitary Prop (smashed) *)

let arity_conclusion = function
  | RegularArity (_, c, _) -> c
  | TemplateArity (_, s) -> mkType s

let fold_inductive_blocks f =
  Array.fold_left (fun acc (_,_,lc,(arsign,ar)) ->
    f (Array.fold_left f acc lc) (it_mkProd_or_LetIn (arity_conclusion ar) arsign))

let used_section_variables env inds =
  let ids = fold_inductive_blocks
    (fun l c -> Id.Set.union (Environ.global_vars_set env c) l)
      Id.Set.empty inds in
  keep_hyps env ids

let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i))
let rel_list n m = Array.to_list (rel_vect n m)

exception UndefinableExpansion

(** From a rel context describing the constructor arguments,
    build an expansion function.
    The term built is expecting to be substituted first by 
    a substitution of the form [params, x : ind params] *)
let compute_projections ((kn, _ as ind), u as indu) n x nparamargs params
    mind_consnrealdecls mind_consnrealargs paramslet ctx =
  let mp, dp, l = MutInd.repr3 kn in
  (** We build a substitution smashing the lets in the record parameters so
      that typechecking projections requires just a substitution and not
      matching with a parameter context. *)
  let indty, paramsletsubst =
    (* [ty] = [Ind inst] is typed in context [params] *)
    let inst = Context.Rel.to_extended_vect mkRel 0 paramslet in
    let ty = mkApp (mkIndU indu, inst) in
    (* [Ind inst] is typed in context [params-wo-let] *)
    let inst' = rel_list 0 nparamargs in
    (* {params-wo-let |- subst:params] *)
    let subst = subst_of_rel_context_instance paramslet inst' in
    (* {params-wo-let, x:Ind inst' |- subst':(params,x:Ind inst)] *)
    let subst = (* For the record parameter: *)
      mkRel 1 :: List.map (lift 1) subst in
      ty, subst
  in
  let ci = 
    let print_info =
      { ind_tags = []; cstr_tags = [|Context.Rel.to_tags ctx|]; style = LetStyle } in
      { ci_ind     = ind;
        ci_npar    = nparamargs;
        ci_cstr_ndecls = mind_consnrealdecls;
        ci_cstr_nargs = mind_consnrealargs;
        ci_pp_info = print_info }
  in
  let len = List.length ctx in
  let x = Name x in
  let compat_body ccl i = 
    (* [ccl] is defined in context [params;x:indty] *)
    (* [ccl'] is defined in context [params;x:indty;x:indty] *)
    let ccl' = liftn 1 2 ccl in
    let p = mkLambda (x, lift 1 indty, ccl') in
    let branch = it_mkLambda_or_LetIn (mkRel (len - i)) ctx in
    let body = mkCase (ci, p, mkRel 1, [|lift 1 branch|]) in
      it_mkLambda_or_LetIn (mkLambda (x,indty,body)) params
  in
  let projections decl (i, j, kns, pbs, subst, letsubst) =
    match decl with
    | LocalDef (na,c,t) ->
        (* From [params, field1,..,fieldj |- c(params,field1,..,fieldj)]
           to [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] *)
        let c = liftn 1 j c in
        (* From [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)]
           to [params, x:I |- c(params,proj1 x,..,projj x)] *)
        let c1 = substl subst c in
        (* From [params, x:I |- subst:field1,..,fieldj]
           to [params, x:I |- subst:field1,..,fieldj+1] where [subst]
           is represented with instance of field1 last *)
        let subst = c1 :: subst in
        (* From [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)]
           to [params-wo-let, x:I |- c(params,proj1 x,..,projj x)] *)
        let c2 = substl letsubst c in
        (* From [params-wo-let, x:I |- subst:(params, x:I, field1,..,fieldj)]
           to [params-wo-let, x:I |- subst:(params, x:I, field1,..,fieldj+1)] *)
        let letsubst = c2 :: letsubst in
        (i, j+1, kns, pbs, subst, letsubst)
    | LocalAssum (na,t) ->
      match na with
      | Name id ->
        let kn = Constant.make1 (KerName.make mp dp (Label.of_id id)) in
        (* from [params, field1,..,fieldj |- t(params,field1,..,fieldj)]
           to [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj] *)
        let t = liftn 1 j t in
        (* from [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj)]
           to [params-wo-let, x:I |- t(params,proj1 x,..,projj x)] *)
        let projty = substl letsubst t in
        (* from [params, x:I, field1,..,fieldj |- t(field1,..,fieldj)]
           to [params, x:I |- t(proj1 x,..,projj x)] *)
        let ty = substl subst t in
        let term = mkProj (Projection.make kn true, mkRel 1) in
        let fterm = mkProj (Projection.make kn false, mkRel 1) in
        let compat = compat_body ty (j - 1) in
        let etab = it_mkLambda_or_LetIn (mkLambda (x, indty, term)) params in
        let etat = it_mkProd_or_LetIn (mkProd (x, indty, ty)) params in
        let body = { proj_ind = fst ind; proj_npars = nparamargs;
                     proj_arg = i; proj_type = projty; proj_eta = etab, etat; 
                     proj_body = compat } in
          (i + 1, j + 1, kn :: kns, body :: pbs,
           fterm :: subst, fterm :: letsubst)
      | Anonymous -> raise UndefinableExpansion
  in
  let (_, _, kns, pbs, subst, letsubst) =
    List.fold_right projections ctx (0, 1, [], [], [], paramsletsubst)
  in
    Array.of_list (List.rev kns),
    Array.of_list (List.rev pbs)

let abstract_inductive_universes iu =
  match iu with
  | Monomorphic_ind_entry ctx -> (Univ.empty_level_subst, Monomorphic_ind ctx)
  | Polymorphic_ind_entry ctx -> 
    let (inst, auctx) = Univ.abstract_universes ctx in (inst, Polymorphic_ind auctx)
  | Cumulative_ind_entry cumi -> 
    let (inst, acumi) = Univ.abstract_cumulativity_info cumi in (inst, Cumulative_ind acumi)

let build_inductive env prv iu env_ar paramsctxt kn isrecord isfinite inds nmr recargs =
  let ntypes = Array.length inds in
  (* Compute the set of used section variables *)
  let hyps = used_section_variables env inds in
  let nparamargs = Context.Rel.nhyps paramsctxt in
  let nparamsctxt = Context.Rel.length paramsctxt in
  let substunivs, aiu = abstract_inductive_universes iu in
  let paramsctxt = Vars.subst_univs_level_context substunivs paramsctxt in
  let env_ar =
    let ctxunivs = Environ.rel_context env_ar in 
    let ctxunivs' = Vars.subst_univs_level_context substunivs ctxunivs in
      Environ.push_rel_context ctxunivs' env
  in
  (* Check one inductive *)
  let build_one_packet (id,cnames,lc,(ar_sign,ar_kind)) recarg =
    (* Type of constructors in normal form *)
    let lc = Array.map (Vars.subst_univs_level_constr substunivs) lc in
    let splayed_lc = Array.map (dest_prod_assum env_ar) lc in
    let nf_lc = Array.map (fun (d,b) -> it_mkProd_or_LetIn b d) splayed_lc in
    let consnrealdecls =
      Array.map (fun (d,_) -> Context.Rel.length d - nparamsctxt)
        splayed_lc in
    let consnrealargs =
      Array.map (fun (d,_) -> Context.Rel.nhyps d - nparamargs)
        splayed_lc in
    (* Elimination sorts *)
    let arkind,kelim = 
      match ar_kind with
      | TemplateArity (paramlevs, lev) -> 
        let ar = {template_param_levels = paramlevs; template_level = lev} in
          TemplateArity ar, all_sorts
      | RegularArity (info,ar,defs) ->
        let s = Sorts.sort_of_univ defs in
        let kelim = allowed_sorts info s in
        let ar = RegularArity 
          { mind_user_arity = Vars.subst_univs_level_constr substunivs ar; 
            mind_sort = Sorts.sort_of_univ (Univ.subst_univs_level_universe substunivs defs); } in
          ar, kelim in
    (* Assigning VM tags to constructors *)
    let nconst, nblock = ref 0, ref 0 in
    let transf num =
      let arity = List.length (dest_subterms recarg).(num) in
        if Int.equal arity 0 then
          let p  = (!nconst, 0) in
            incr nconst; p
        else
          let p = (!nblock + 1, arity) in
            incr nblock; p
              (* les tag des constructeur constant commence a 0,
                 les tag des constructeur non constant a 1 (0 => accumulator) *)
    in
    let rtbl = Array.init (List.length cnames) transf in
      (* Build the inductive packet *)
      { mind_typename = id;
        mind_arity = arkind;
        mind_arity_ctxt = Vars.subst_univs_level_context substunivs ar_sign;
        mind_nrealargs = Context.Rel.nhyps ar_sign - nparamargs;
        mind_nrealdecls = Context.Rel.length ar_sign - nparamsctxt;
        mind_kelim = kelim;
        mind_consnames = Array.of_list cnames;
        mind_consnrealdecls = consnrealdecls;
        mind_consnrealargs = consnrealargs;
        mind_user_lc = lc;
        mind_nf_lc = nf_lc;
        mind_recargs = recarg;
        mind_nb_constant = !nconst;
        mind_nb_args = !nblock;
        mind_reloc_tbl = rtbl;
      } in
  let packets = Array.map2 build_one_packet inds recargs in
  let pkt = packets.(0) in
  let isrecord = 
    match isrecord with
    | Some (Some rid) when pkt.mind_kelim == all_sorts
                           && Array.length pkt.mind_consnames == 1
                           && pkt.mind_consnrealargs.(0) > 0 ->
      (** The elimination criterion ensures that all projections can be defined. *)
      let u =
        match aiu with
        | Monomorphic_ind _ -> Univ.Instance.empty
        | Polymorphic_ind auctx -> Univ.make_abstract_instance auctx
        | Cumulative_ind acumi -> Univ.make_abstract_instance (Univ.ACumulativityInfo.univ_context acumi)
      in
      let indsp = ((kn, 0), u) in
      let rctx, indty = decompose_prod_assum (subst1 (mkIndU indsp) pkt.mind_nf_lc.(0)) in
        (try 
           let fields, paramslet = List.chop pkt.mind_consnrealdecls.(0) rctx in
           let kns, projs = 
             compute_projections indsp pkt.mind_typename rid nparamargs paramsctxt
               pkt.mind_consnrealdecls pkt.mind_consnrealargs paramslet fields
           in Some (Some (rid, kns, projs))
         with UndefinableExpansion -> Some None)
    | Some _ -> Some None
    | None -> None
  in
    (* Build the mutual inductive *)
    { mind_record = isrecord;
      mind_ntypes = ntypes;
      mind_finite = isfinite;
      mind_hyps = hyps;
      mind_nparams = nparamargs;
      mind_nparams_rec = nmr;
      mind_params_ctxt = paramsctxt;
      mind_packets = packets;
      mind_universes = aiu;
      mind_private = prv;
      mind_typing_flags = Environ.typing_flags env;
    }

(************************************************************************)
(************************************************************************)

let check_inductive env kn mie =
  (* First type-check the inductive definition *)
  let (env_ar, env_ar_par, paramsctxt, inds) = typecheck_inductive env mie in
  (* Then check positivity conditions *)
  let chkpos = (Environ.typing_flags env).check_guarded in
  let (nmr,recargs) = check_positivity ~chkpos kn env_ar_par paramsctxt mie.mind_entry_finite inds in
  (* Build the inductive packets *)
    build_inductive env mie.mind_entry_private mie.mind_entry_universes
      env_ar paramsctxt kn mie.mind_entry_record mie.mind_entry_finite
      inds nmr recargs