1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

open Sorts
open Util
open Pp
open Names
open Constr
open Environ
open Univ
open Globnames

let pr_with_global_universes l =
  try Id.print (LMap.find l (snd (Global.global_universe_names ())))
  with Not_found -> Level.pr l

(** Local universe names of polymorphic references *)

type universe_binders = Univ.Level.t Names.Id.Map.t

let empty_binders = Id.Map.empty

let universe_binders_table = Summary.ref Refmap.empty ~name:"universe binders"

let universe_binders_of_global ref : universe_binders =
  try
    let l = Refmap.find ref !universe_binders_table in l
  with Not_found -> Names.Id.Map.empty

let cache_ubinder (_,(ref,l)) =
  universe_binders_table := Refmap.add ref l !universe_binders_table

let subst_ubinder (subst,(ref,l as orig)) =
  let ref' = fst (Globnames.subst_global subst ref) in
  if ref == ref' then orig else ref', l

let discharge_ubinder (_,(ref,l)) =
  Some (Lib.discharge_global ref, l)

let ubinder_obj : Globnames.global_reference * universe_binders -> Libobject.obj =
  let open Libobject in
  declare_object { (default_object "universe binder") with
    cache_function = cache_ubinder;
    load_function = (fun _ x -> cache_ubinder x);
    classify_function = (fun x -> Substitute x);
    subst_function = subst_ubinder;
    discharge_function = discharge_ubinder;
    rebuild_function = (fun x -> x); }

let register_universe_binders ref ubinders =
  (* Add the polymorphic (section) universes *)
  let open Names in
  let ubinders = Id.Map.fold (fun id (poly,lvl) ubinders ->
      if poly then Id.Map.add id lvl ubinders
      else ubinders)
      (fst (Global.global_universe_names ())) ubinders
  in
  if not (Id.Map.is_empty ubinders)
  then Lib.add_anonymous_leaf (ubinder_obj (ref,ubinders))

type univ_name_list = Name.t Loc.located list

let universe_binders_with_opt_names ref levels = function
  | None -> universe_binders_of_global ref
  | Some udecl ->
    if Int.equal(List.length levels) (List.length udecl)
    then
      List.fold_left2 (fun acc (_,na) lvl -> match na with
          | Anonymous -> acc
          | Name na -> Names.Id.Map.add na lvl acc)
        empty_binders udecl levels
    else
      CErrors.user_err ~hdr:"universe_binders_with_opt_names"
        Pp.(str "Universe instance should have length " ++ int (List.length levels))

(* To disallow minimization to Set *)

let set_minimization = ref true
let is_set_minimization () = !set_minimization
                            
type universe_constraint_type = ULe | UEq | ULub

type universe_constraint = Universe.t * universe_constraint_type * Universe.t

module Constraints = struct
  module S = Set.Make(
  struct 
    type t = universe_constraint

    let compare_type c c' =
      match c, c' with
      | ULe, ULe -> 0
      | ULe, _ -> -1
      | _, ULe -> 1
      | UEq, UEq -> 0
      | UEq, _ -> -1
      | ULub, ULub -> 0
      | ULub, _ -> 1
      
    let compare (u,c,v) (u',c',v') =
      let i = compare_type c c' in
        if Int.equal i 0 then
          let i' = Universe.compare u u' in
            if Int.equal i' 0 then Universe.compare v v'
            else 
              if c != ULe && Universe.compare u v' = 0 && Universe.compare v u' = 0 then 0
              else i'
        else i
  end)
  
  include S
  
  let add (l,d,r as cst) s = 
    if Universe.equal l r then s
    else add cst s

  let tr_dir = function
    | ULe -> Le
    | UEq -> Eq
    | ULub -> Eq

  let op_str = function ULe -> " <= " | UEq -> " = " | ULub -> " /\\ "

  let pr c =
    fold (fun (u1,op,u2) pp_std ->
        pp_std ++ Universe.pr u1 ++ str (op_str op) ++
        Universe.pr u2 ++ fnl ()) c (str "")

  let equal x y = 
    x == y || equal x y

end

type universe_constraints = Constraints.t
type 'a constraint_accumulator = universe_constraints -> 'a -> 'a option
type 'a universe_constrained = 'a * universe_constraints

type 'a universe_constraint_function = 'a -> 'a -> universe_constraints -> universe_constraints

let enforce_eq_instances_univs strict x y c = 
  let d = if strict then ULub else UEq in
  let ax = Instance.to_array x and ay = Instance.to_array y in
    if Array.length ax != Array.length ay then
      CErrors.anomaly (Pp.str "Invalid argument: enforce_eq_instances_univs called with" ++
               Pp.str " instances of different lengths.");
    CArray.fold_right2
      (fun x y -> Constraints.add (Universe.make x, d, Universe.make y))
      ax ay c

let subst_univs_universe_constraint fn (u,d,v) =
  let u' = subst_univs_universe fn u and v' = subst_univs_universe fn v in
    if Universe.equal u' v' then None
    else Some (u',d,v')

let subst_univs_universe_constraints subst csts =
  Constraints.fold 
    (fun c -> Option.fold_right Constraints.add (subst_univs_universe_constraint subst c))
    csts Constraints.empty 


let to_constraints g s = 
  let tr (x,d,y) acc =
    let add l d l' acc = Constraint.add (l,Constraints.tr_dir d,l') acc in
      match Universe.level x, d, Universe.level y with
      | Some l, (ULe | UEq | ULub), Some l' -> add l d l' acc
      | _, ULe, Some l' -> enforce_leq x y acc
      | _, ULub, _ -> acc
      | _, d, _ -> 
        let f = if d == ULe then UGraph.check_leq else UGraph.check_eq in
          if f g x y then acc else 
            raise (Invalid_argument 
                   "to_constraints: non-trivial algebraic constraint between universes")
  in Constraints.fold tr s Constraint.empty

(** Variant of [eq_constr_univs_infer] taking kind-of-term functions,
    to expose subterms of [m] and [n], arguments. *)
let eq_constr_univs_infer_with kind1 kind2 univs fold m n accu =
  (* spiwack: duplicates the code of [eq_constr_univs_infer] because I
     haven't find a way to factor the code without destroying
     pointer-equality optimisations in [eq_constr_univs_infer].
     Pointer equality is not sufficient to ensure equality up to
     [kind1,kind2], because [kind1] and [kind2] may be different,
     typically evaluating [m] and [n] in different evar maps. *)
  let cstrs = ref accu in
  let eq_universes strict = UGraph.check_eq_instances univs in
  let eq_sorts s1 s2 = 
    if Sorts.equal s1 s2 then true
    else
      let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in
      match fold (Constraints.singleton (u1, UEq, u2)) !cstrs with
      | None -> false
      | Some accu -> cstrs := accu; true
  in
  let rec eq_constr' m n = 
    Constr.compare_head_gen_with kind1 kind2 eq_universes eq_sorts eq_constr' m n
  in
  let res = Constr.compare_head_gen_with kind1 kind2 eq_universes eq_sorts eq_constr' m n in
  if res then Some !cstrs else None

let compare_head_gen_proj env equ eqs eqc' m n =
  match kind m, kind n with
  | Proj (p, c), App (f, args)
  | App (f, args), Proj (p, c) -> 
      (match kind f with
      | Const (p', u) when Constant.equal (Projection.constant p) p' -> 
          let pb = Environ.lookup_projection p env in
          let npars = pb.Declarations.proj_npars in
          if Array.length args == npars + 1 then
            eqc' c args.(npars)
          else false
      | _ -> false)
  | _ -> Constr.compare_head_gen equ eqs eqc' m n
      
let eq_constr_universes_proj env m n =
  if m == n then true, Constraints.empty
  else 
    let cstrs = ref Constraints.empty in
    let eq_universes strict l l' = 
      cstrs := enforce_eq_instances_univs strict l l' !cstrs; true in
    let eq_sorts s1 s2 = 
      if Sorts.equal s1 s2 then true
      else
        (cstrs := Constraints.add 
           (Sorts.univ_of_sort s1, UEq, Sorts.univ_of_sort s2) !cstrs;
         true)
    in
    let rec eq_constr' m n = 
      m == n ||        compare_head_gen_proj env eq_universes eq_sorts eq_constr' m n
    in
    let res = eq_constr' m n in
    res, !cstrs

(* Generator of levels *)
let new_univ_level, set_remote_new_univ_level =
  RemoteCounter.new_counter ~name:"Universes" 0 ~incr:((+) 1)
    ~build:(fun n -> Univ.Level.make (Global.current_dirpath ()) n)

let new_univ_level _ = new_univ_level ()
  (* Univ.Level.make db (new_univ_level ()) *)

let fresh_level () = new_univ_level (Global.current_dirpath ())

(* TODO: remove *)
let new_univ dp = Univ.Universe.make (new_univ_level dp)
let new_Type dp = mkType (new_univ dp)
let new_Type_sort dp = Type (new_univ dp)

let fresh_universe_instance ctx =
  let init _ = new_univ_level (Global.current_dirpath ()) in
  Instance.of_array (Array.init (AUContext.size ctx) init)

let fresh_instance_from_context ctx =
  let inst = fresh_universe_instance ctx in
  let constraints = AUContext.instantiate inst ctx in
    inst, constraints

let fresh_instance ctx =
  let ctx' = ref LSet.empty in
  let init _ =
    let u = new_univ_level (Global.current_dirpath ()) in
    ctx' := LSet.add u !ctx'; u
  in
  let inst = Instance.of_array (Array.init (AUContext.size ctx) init)
  in !ctx', inst

let existing_instance ctx inst = 
  let () = 
    let len1 = Array.length (Instance.to_array inst)
    and len2 = AUContext.size ctx in
      if not (len1 == len2) then
        CErrors.user_err ~hdr:"Universes"
          (str "Polymorphic constant expected " ++ int len2 ++ 
             str" levels but was given " ++ int len1)
      else ()
  in LSet.empty, inst

let fresh_instance_from ctx inst =
  let ctx', inst = 
    match inst with 
    | Some inst -> existing_instance ctx inst
    | None -> fresh_instance ctx 
  in
  let constraints = AUContext.instantiate inst ctx in
    inst, (ctx', constraints)

(** Fresh universe polymorphic construction *)

let fresh_constant_instance env c inst =
  let cb = lookup_constant c env in
  match cb.Declarations.const_universes with
  | Declarations.Monomorphic_const _ -> ((c,Instance.empty), ContextSet.empty)
  | Declarations.Polymorphic_const auctx -> 
    let inst, ctx =
      fresh_instance_from auctx inst
    in
    ((c, inst), ctx)

let fresh_inductive_instance env ind inst = 
  let mib, mip = Inductive.lookup_mind_specif env ind in
  match mib.Declarations.mind_universes with
  | Declarations.Monomorphic_ind _ ->
    ((ind,Instance.empty), ContextSet.empty)
  | Declarations.Polymorphic_ind uactx ->
    let inst, ctx = (fresh_instance_from uactx) inst in 
     ((ind,inst), ctx)
  | Declarations.Cumulative_ind acumi ->
    let inst, ctx = 
      fresh_instance_from (Univ.ACumulativityInfo.univ_context acumi) inst
    in ((ind,inst), ctx)

let fresh_constructor_instance env (ind,i) inst = 
  let mib, mip = Inductive.lookup_mind_specif env ind in
  match mib.Declarations.mind_universes with
  | Declarations.Monomorphic_ind _ -> (((ind,i),Instance.empty), ContextSet.empty)
  | Declarations.Polymorphic_ind auctx ->
    let inst, ctx = fresh_instance_from auctx  inst in
        (((ind,i),inst), ctx)
  | Declarations.Cumulative_ind acumi ->
    let inst, ctx = fresh_instance_from (ACumulativityInfo.univ_context acumi) inst in
    (((ind,i),inst), ctx)

open Globnames

let fresh_global_instance ?names env gr =
  match gr with
  | VarRef id -> mkVar id, ContextSet.empty
  | ConstRef sp -> 
     let c, ctx = fresh_constant_instance env sp names in
       mkConstU c, ctx
  | ConstructRef sp ->
     let c, ctx = fresh_constructor_instance env sp names in
       mkConstructU c, ctx
  | IndRef sp -> 
     let c, ctx = fresh_inductive_instance env sp names in
       mkIndU c, ctx

let fresh_constant_instance env sp = 
  fresh_constant_instance env sp None

let fresh_inductive_instance env sp = 
  fresh_inductive_instance env sp None

let fresh_constructor_instance env sp = 
  fresh_constructor_instance env sp None

let constr_of_global gr =
  let c, ctx = fresh_global_instance (Global.env ()) gr in
    if not (Univ.ContextSet.is_empty ctx) then
      if Univ.LSet.is_empty (Univ.ContextSet.levels ctx) then 
        (* Should be an error as we might forget constraints, allow for now
           to make firstorder work with "using" clauses *)
        c
      else CErrors.user_err ~hdr:"constr_of_global"
          Pp.(str "globalization of polymorphic reference " ++ Nametab.pr_global_env Id.Set.empty gr ++
              str " would forget universes.")
    else c

let constr_of_reference = constr_of_global

let constr_of_global_univ (gr,u) =
  match gr with
  | VarRef id -> mkVar id
  | ConstRef sp -> mkConstU (sp,u)
  | ConstructRef sp -> mkConstructU (sp,u)
  | IndRef sp -> mkIndU (sp,u)

let fresh_global_or_constr_instance env = function
  | IsConstr c -> c, ContextSet.empty
  | IsGlobal gr -> fresh_global_instance env gr

let global_of_constr c =
  match kind c with
  | Const (c, u) -> ConstRef c, u
  | Ind (i, u) -> IndRef i, u
  | Construct (c, u) -> ConstructRef c, u
  | Var id -> VarRef id, Instance.empty
  | _ -> raise Not_found

open Declarations

let type_of_reference env r =
  match r with
  | VarRef id -> Environ.named_type id env, ContextSet.empty
  | ConstRef c ->
     let cb = Environ.lookup_constant c env in
     let ty = cb.const_type in
     begin
       match cb.const_universes with
       | Monomorphic_const _ -> ty, ContextSet.empty
       | Polymorphic_const auctx ->
         let inst, ctx = fresh_instance_from auctx None in
         Vars.subst_instance_constr inst ty, ctx
     end
  | IndRef ind ->
     let (mib, oib as specif) = Inductive.lookup_mind_specif env ind in
     begin
       match mib.mind_universes with
       | Monomorphic_ind _ ->
         let ty = Inductive.type_of_inductive env (specif, Univ.Instance.empty) in
         ty, ContextSet.empty
       | Polymorphic_ind auctx ->
         let inst, ctx = fresh_instance_from auctx  None in
         let ty = Inductive.type_of_inductive env (specif, inst) in
         ty, ctx
       | Cumulative_ind cumi ->
         let inst, ctx = 
           fresh_instance_from (ACumulativityInfo.univ_context cumi) None
         in
         let ty = Inductive.type_of_inductive env (specif, inst) in
         ty, ctx
     end
         
  | ConstructRef cstr ->
    let (mib,oib as specif) = 
      Inductive.lookup_mind_specif env (inductive_of_constructor cstr) 
    in
    begin
       match mib.mind_universes with
       | Monomorphic_ind _ ->
         Inductive.type_of_constructor (cstr,Instance.empty) specif, ContextSet.empty
       | Polymorphic_ind auctx ->
         let inst, ctx = fresh_instance_from auctx None in
         Inductive.type_of_constructor (cstr,inst) specif, ctx
       | Cumulative_ind cumi ->
         let inst, ctx = 
           fresh_instance_from (ACumulativityInfo.univ_context cumi) None 
         in
         Inductive.type_of_constructor (cstr,inst) specif, ctx
     end

let type_of_global t = type_of_reference (Global.env ()) t

let fresh_sort_in_family env = function
  | InProp -> Sorts.prop, ContextSet.empty
  | InSet -> Sorts.set, ContextSet.empty
  | InType -> 
    let u = fresh_level () in
      Type (Univ.Universe.make u), ContextSet.singleton u

let new_sort_in_family sf =
  fst (fresh_sort_in_family (Global.env ()) sf)

let extend_context (a, ctx) (ctx') =
  (a, ContextSet.union ctx ctx')

let new_global_univ () =
  let u = fresh_level () in
    (Univ.Universe.make u, ContextSet.singleton u)

(** Simplification *)

module LevelUnionFind = Unionfind.Make (Univ.LSet) (Univ.LMap)

let add_list_map u t map =
  try
    let l = LMap.find u map in
    LMap.update u (t :: l) map
  with Not_found ->
    LMap.add u [t] map

module UF = LevelUnionFind

(** Precondition: flexible <= ctx *)
let choose_canonical ctx flexible algs s =
  let global = LSet.diff s ctx in
  let flexible, rigid = LSet.partition flexible (LSet.inter s ctx) in
    (** If there is a global universe in the set, choose it *)
    if not (LSet.is_empty global) then
      let canon = LSet.choose global in
        canon, (LSet.remove canon global, rigid, flexible)
    else (** No global in the equivalence class, choose a rigid one *)
        if not (LSet.is_empty rigid) then
          let canon = LSet.choose rigid in
            canon, (global, LSet.remove canon rigid, flexible)
        else (** There are only flexible universes in the equivalence
                 class, choose a non-algebraic. *)
          let algs, nonalgs = LSet.partition (fun x -> LSet.mem x algs) flexible in
            if not (LSet.is_empty nonalgs) then
              let canon = LSet.choose nonalgs in
                canon, (global, rigid, LSet.remove canon flexible)
            else
              let canon = LSet.choose algs in
                canon, (global, rigid, LSet.remove canon flexible)

let subst_univs_fn_puniverses lsubst (c, u as cu) =
  let u' = Instance.subst_fn lsubst u in
    if u' == u then cu else (c, u')

let nf_evars_and_universes_opt_subst f subst =
  let subst = fun l -> match LMap.find l subst with None -> raise Not_found | Some l' -> l' in
  let lsubst = Univ.level_subst_of subst in
  let rec aux c =
    match kind c with
    | Evar (evk, args) ->
      let args = Array.map aux args in
      (match try f (evk, args) with Not_found -> None with
      | None -> c
      | Some c -> aux c)
    | Const pu -> 
      let pu' = subst_univs_fn_puniverses lsubst pu in
        if pu' == pu then c else mkConstU pu'
    | Ind pu ->
      let pu' = subst_univs_fn_puniverses lsubst pu in
        if pu' == pu then c else mkIndU pu'
    | Construct pu ->
      let pu' = subst_univs_fn_puniverses lsubst pu in
        if pu' == pu then c else mkConstructU pu'
    | Sort (Type u) ->
      let u' = Univ.subst_univs_universe subst u in
        if u' == u then c else mkSort (sort_of_univ u')
    | _ -> Constr.map aux c
  in aux

let fresh_universe_context_set_instance ctx =
  if ContextSet.is_empty ctx then LMap.empty, ctx
  else
    let (univs, cst) = ContextSet.levels ctx, ContextSet.constraints ctx in
    let univs',subst = LSet.fold
      (fun u (univs',subst) ->
        let u' = fresh_level () in
          (LSet.add u' univs', LMap.add u u' subst))
      univs (LSet.empty, LMap.empty)
    in
    let cst' = subst_univs_level_constraints subst cst in
      subst, (univs', cst')

let normalize_univ_variable ~find ~update =
  let rec aux cur =
    let b = find cur in
    let b' = subst_univs_universe aux b in
      if Universe.equal b' b then b
      else update cur b'
  in aux

let normalize_univ_variable_opt_subst ectx =
  let find l = 
    match Univ.LMap.find l !ectx with
    | Some b -> b
    | None -> raise Not_found
  in
  let update l b =
    assert (match Universe.level b with Some l' -> not (Level.equal l l') | None -> true);
    try ectx := Univ.LMap.add l (Some b) !ectx; b with Not_found -> assert false
  in normalize_univ_variable ~find ~update

let normalize_univ_variable_subst subst =
  let find l = Univ.LMap.find l !subst in
  let update l b =
    assert (match Universe.level b with Some l' -> not (Level.equal l l') | None -> true);
    try subst := Univ.LMap.update l b !subst; b with Not_found -> assert false in
    normalize_univ_variable ~find ~update

let normalize_universe_opt_subst subst =
  let normlevel = normalize_univ_variable_opt_subst subst in
    subst_univs_universe normlevel

let normalize_universe_subst subst =
  let normlevel = normalize_univ_variable_subst subst in
    subst_univs_universe normlevel

let normalize_opt_subst ctx = 
  let ectx = ref ctx in
  let normalize = normalize_univ_variable_opt_subst ectx in
  let () =
    Univ.LMap.iter (fun u v ->
      if Option.is_empty v then ()
      else try ignore(normalize u) with Not_found -> assert(false)) ctx 
  in !ectx

type universe_opt_subst = Universe.t option universe_map
          
let make_opt_subst s = 
  fun x -> 
    (match Univ.LMap.find x s with
    | Some u -> u
    | None -> raise Not_found)

let subst_opt_univs_constr s = 
  let f = make_opt_subst s in
    Vars.subst_univs_fn_constr f


let normalize_univ_variables ctx = 
  let ctx = normalize_opt_subst ctx in
  let undef, def, subst =
    Univ.LMap.fold (fun u v (undef, def, subst) -> 
      match v with
      | None -> (Univ.LSet.add u undef, def, subst)
      | Some b -> (undef, Univ.LSet.add u def, Univ.LMap.add u b subst))
    ctx (Univ.LSet.empty, Univ.LSet.empty, Univ.LMap.empty)
  in ctx, undef, def, subst

let pr_universe_body = function
  | None -> mt ()
  | Some v -> str" := " ++ Univ.Universe.pr v

let pr_universe_opt_subst = Univ.LMap.pr pr_universe_body

let compare_constraint_type d d' =
  match d, d' with
  | Eq, Eq -> 0
  | Eq, _ -> -1
  | _, Eq -> 1
  | Le, Le -> 0
  | Le, _ -> -1
  | _, Le -> 1
  | Lt, Lt -> 0

type lowermap = constraint_type LMap.t

let lower_union =
  let merge k a b =
    match a, b with
    | Some _, None -> a
    | None, Some _ -> b
    | None, None -> None
    | Some l, Some r ->
       if compare_constraint_type l r >= 0 then a
       else b
  in LMap.merge merge

let lower_add l c m =
  try let c' = LMap.find l m in
      if compare_constraint_type c c' > 0 then
        LMap.add l c m
      else m
  with Not_found -> LMap.add l c m

let lower_of_list l =
  List.fold_left (fun acc (d,l) -> LMap.add l d acc) LMap.empty l

exception Found of Level.t * lowermap
let find_inst insts v =
  try LMap.iter (fun k (enf,alg,v',lower) ->
    if not alg && enf && Universe.equal v' v then raise (Found (k, lower)))
        insts; raise Not_found
  with Found (f,l) -> (f,l)

let compute_lbound left =
 (** The universe variable was not fixed yet.
     Compute its level using its lower bound. *)
  let sup l lbound = 
    match lbound with
    | None -> Some l
    | Some l' -> Some (Universe.sup l l')
  in
    List.fold_left (fun lbound (d, l) -> 
      if d == Le (* l <= ?u *) then sup l lbound
      else (* l < ?u *) 
        (assert (d == Lt); 
         if not (Universe.level l == None) then
           sup (Universe.super l) lbound
         else None))
      None left
  
let instantiate_with_lbound u lbound lower alg enforce (ctx, us, algs, insts, cstrs) =
  if enforce then
    let inst = Universe.make u in
    let cstrs' = enforce_leq lbound inst cstrs in
      (ctx, us, LSet.remove u algs, 
       LMap.add u (enforce,alg,lbound,lower) insts, cstrs'),
      (enforce, alg, inst, lower)
  else (* Actually instantiate *)
    (Univ.LSet.remove u ctx, Univ.LMap.add u (Some lbound) us, algs,
     LMap.add u (enforce,alg,lbound,lower) insts, cstrs),
    (enforce, alg, lbound, lower)

type constraints_map = (Univ.constraint_type * Univ.LMap.key) list Univ.LMap.t

let _pr_constraints_map (cmap:constraints_map) =
  LMap.fold (fun l cstrs acc -> 
    Level.pr l ++ str " => " ++ 
      prlist_with_sep spc (fun (d,r) -> pr_constraint_type d ++ Level.pr r) cstrs ++
      fnl () ++ acc)
    cmap (mt ())

let remove_alg l (ctx, us, algs, insts, cstrs) =
  (ctx, us, LSet.remove l algs, insts, cstrs)

let remove_lower u lower =
  let levels = Universe.levels u in
  LSet.fold (fun l acc -> LMap.remove l acc) levels lower
    
let minimize_univ_variables ctx us algs left right cstrs =
  let left, lbounds = 
    Univ.LMap.fold (fun r lower (left, lbounds as acc)  ->
      if Univ.LMap.mem r us || not (Univ.LSet.mem r ctx) then acc
      else (* Fixed universe, just compute its glb for sharing *)
        let lbounds' = 
          match compute_lbound (List.map (fun (d,l) -> d, Universe.make l) lower) with
          | None -> lbounds
          | Some lbound -> LMap.add r (true, false, lbound, lower_of_list lower)
                                   lbounds
        in (Univ.LMap.remove r left, lbounds'))
      left (left, Univ.LMap.empty)
  in
  let rec instance (ctx', us, algs, insts, cstrs as acc) u =
    let acc, left, lower =
      try
        let l = LMap.find u left in
        let acc, left, newlow, lower =
          List.fold_left
          (fun (acc, left', newlow, lower') (d, l) ->
           let acc', (enf,alg,l',lower) = aux acc l in
           let l' =
             if enf then Universe.make l
             else l'
           in acc', (d, l') :: left',
              lower_add l d newlow, lower_union lower lower')
          (acc, [], LMap.empty, LMap.empty) l
        in
        let not_lower (d,l) =
        (* We're checking if (d,l) is already implied by the lower
          constraints on some level u. If it represents l < u (d is Lt
          or d is Le and i > 0, the i < 0 case is impossible due to
          invariants of Univ), and the lower constraints only have l <=
          u then it is not implied. *)
          Univ.Universe.exists
          (fun (l,i) ->
             let d =
               if i == 0 then d
               else match d with
                    | Le -> Lt
                    | d -> d
             in
             try let d' = LMap.find l lower in
                 (* If d is stronger than the already implied lower
                  * constraints we must keep it. *)
                 compare_constraint_type d d' > 0
             with Not_found ->
               (** No constraint existing on l *) true) l
        in
        let left = List.uniquize (List.filter not_lower left) in
        (acc, left, LMap.union newlow lower)
      with Not_found -> acc, [], LMap.empty
    and right =
      try Some (LMap.find u right)
      with Not_found -> None
    in
    let instantiate_lbound lbound =
      let alg = LSet.mem u algs in
        if alg then
          (* u is algebraic: we instantiate it with its lower bound, if any,
              or enforce the constraints if it is bounded from the top. *)
          let lower = remove_lower lbound lower in
          instantiate_with_lbound u lbound lower true false acc
        else (* u is non algebraic *)
          match Universe.level lbound with
          | Some l -> (* The lowerbound is directly a level *) 
             (* u is not algebraic but has no upper bounds,
                  we instantiate it with its lower bound if it is a 
                different level, otherwise we keep it. *)
             let lower = LMap.remove l lower in
             if not (Level.equal l u) then
               (* Should check that u does not 
                    have upper constraints that are not already in right *)
               let acc' = remove_alg l acc in
                 instantiate_with_lbound u lbound lower false false acc'
             else acc, (true, false, lbound, lower)
          | None ->
             try
               (* Another universe represents the same lower bound,
                  we can share them with no harm. *)
               let can, lower = find_inst insts lbound in
               let lower = LMap.remove can lower in
               instantiate_with_lbound u (Universe.make can) lower false false acc
          with Not_found -> 
            (* We set u as the canonical universe representing lbound *)
            instantiate_with_lbound u lbound lower false true acc
    in
    let acc' acc = 
      match right with
      | None -> acc
      | Some cstrs -> 
        let dangling = List.filter (fun (d, r) -> not (LMap.mem r us)) cstrs in
          if List.is_empty dangling then acc
          else
            let ((ctx', us, algs, insts, cstrs), (enf,_,inst,lower as b)) = acc in
            let cstrs' = List.fold_left (fun cstrs (d, r) -> 
              if d == Univ.Le then
                enforce_leq inst (Universe.make r) cstrs
              else
                try let lev = Option.get (Universe.level inst) in
                      Constraint.add (lev, d, r) cstrs
                with Option.IsNone -> failwith "")
              cstrs dangling
            in
              (ctx', us, algs, insts, cstrs'), b
    in
      if not (LSet.mem u ctx) then acc' (acc, (true, false, Universe.make u, lower))
      else
        let lbound = compute_lbound left in
          match lbound with
          | None -> (* Nothing to do *)
            acc' (acc, (true, false, Universe.make u, lower))
          | Some lbound ->
             try acc' (instantiate_lbound lbound) 
             with Failure _ -> acc' (acc, (true, false, Universe.make u, lower))
  and aux (ctx', us, algs, seen, cstrs as acc) u =
    try acc, LMap.find u seen 
    with Not_found -> instance acc u
  in
    LMap.fold (fun u v (ctx', us, algs, seen, cstrs as acc) -> 
      if v == None then fst (aux acc u)
      else LSet.remove u ctx', us, LSet.remove u algs, seen, cstrs)
      us (ctx, us, algs, lbounds, cstrs)

let normalize_context_set ctx us algs = 
  let (ctx, csts) = ContextSet.levels ctx, ContextSet.constraints ctx in
  let uf = UF.create () in
  (** Keep the Prop/Set <= i constraints separate for minimization *)
  let smallles, csts =
    Constraint.fold (fun (l,d,r as cstr) (smallles, noneqs) ->
        if d == Le then
          if Univ.Level.is_small l then
            if is_set_minimization () && LSet.mem r ctx then
              (Constraint.add cstr smallles, noneqs)
            else (smallles, noneqs)
          else if Level.is_small r then
            if Level.is_prop r then
              raise (Univ.UniverseInconsistency
                       (Le,Universe.make l,Universe.make r,None))
            else (smallles, Constraint.add (l,Eq,r) noneqs)
          else (smallles, Constraint.add cstr noneqs)
        else (smallles, Constraint.add cstr noneqs))
    csts (Constraint.empty, Constraint.empty)
  in
  let csts = 
    (* We first put constraints in a normal-form: all self-loops are collapsed
       to equalities. *)
    let g = Univ.LSet.fold (fun v g -> UGraph.add_universe v false g)
                           ctx UGraph.initial_universes
    in
    let g =
      Univ.Constraint.fold
        (fun (l, d, r) g ->
         let g =
           if not (Level.is_small l || LSet.mem l ctx) then
             try UGraph.add_universe l false g
             with UGraph.AlreadyDeclared -> g
           else g
         in
         let g =
           if not (Level.is_small r || LSet.mem r ctx) then
             try UGraph.add_universe r false g
             with UGraph.AlreadyDeclared -> g
           else g
         in g) csts g
    in
    let g = Univ.Constraint.fold UGraph.enforce_constraint csts g in
      UGraph.constraints_of_universes g
  in
  let noneqs =
    Constraint.fold (fun (l,d,r as cstr) noneqs ->
      if d == Eq then (UF.union l r uf; noneqs)
      else (* We ignore the trivial Prop/Set <= i constraints. *)
        if d == Le && Univ.Level.is_small l then noneqs
        else if Univ.Level.is_prop l && d == Lt && Univ.Level.is_set r
        then noneqs
        else Constraint.add cstr noneqs)
      csts Constraint.empty
  in
  let noneqs = Constraint.union noneqs smallles in
  let partition = UF.partition uf in
  let flex x = LMap.mem x us in
  let ctx, subst, us, eqs = List.fold_left (fun (ctx, subst, us, cstrs) s -> 
    let canon, (global, rigid, flexible) = choose_canonical ctx flex algs s in
    (* Add equalities for globals which can't be merged anymore. *)
    let cstrs = LSet.fold (fun g cst -> 
      Constraint.add (canon, Univ.Eq, g) cst) global
      cstrs 
    in
    (* Also add equalities for rigid variables *)
    let cstrs = LSet.fold (fun g cst -> 
      Constraint.add (canon, Univ.Eq, g) cst) rigid
      cstrs
    in
    let subst = LSet.fold (fun f -> LMap.add f canon) rigid subst in
    let subst = LSet.fold (fun f -> LMap.add f canon) flexible subst in
    let canonu = Some (Universe.make canon) in
    let us = LSet.fold (fun f -> LMap.add f canonu) flexible us in
      (LSet.diff ctx flexible, subst, us, cstrs))
    (ctx, LMap.empty, us, Constraint.empty) partition
  in
  (* Noneqs is now in canonical form w.r.t. equality constraints, 
     and contains only inequality constraints. *)
  let noneqs = subst_univs_level_constraints subst noneqs in
  (* Compute the left and right set of flexible variables, constraints
     mentionning other variables remain in noneqs. *)
  let noneqs, ucstrsl, ucstrsr = 
    Constraint.fold (fun (l,d,r as cstr) (noneq, ucstrsl, ucstrsr) -> 
      let lus = LMap.mem l us and rus = LMap.mem r us in
      let ucstrsl' = 
        if lus then add_list_map l (d, r) ucstrsl
        else ucstrsl
      and ucstrsr' = 
        add_list_map r (d, l) ucstrsr
      in 
      let noneqs = 
        if lus || rus then noneq 
        else Constraint.add cstr noneq
      in (noneqs, ucstrsl', ucstrsr'))
    noneqs (Constraint.empty, LMap.empty, LMap.empty)
  in
  (* Now we construct the instantiation of each variable. *)
  let ctx', us, algs, inst, noneqs = 
    minimize_univ_variables ctx us algs ucstrsr ucstrsl noneqs
  in
  let us = normalize_opt_subst us in
    (us, algs), (ctx', Constraint.union noneqs eqs)

(* let normalize_conkey = CProfile.declare_profile "normalize_context_set" *)
(* let normalize_context_set a b c = CProfile.profile3 normalize_conkey normalize_context_set a b c *)

let is_trivial_leq (l,d,r) =
  Univ.Level.is_prop l && (d == Univ.Le || (d == Univ.Lt && Univ.Level.is_set r))

(* Prop < i <-> Set+1 <= i <-> Set < i *)
let translate_cstr (l,d,r as cstr) =
  if Level.equal Level.prop l && d == Univ.Lt && not (Level.equal Level.set r) then
    (Level.set, d, r)
  else cstr

let refresh_constraints univs (ctx, cstrs) =
  let cstrs', univs' = 
    Univ.Constraint.fold (fun c (cstrs', univs as acc) -> 
      let c = translate_cstr c in
      if is_trivial_leq c then acc
      else (Univ.Constraint.add c cstrs', UGraph.enforce_constraint c univs))
      cstrs (Univ.Constraint.empty, univs)
  in ((ctx, cstrs'), univs')


(**********************************************************************)
(* Tools for sort-polymorphic inductive types                         *)

(* Miscellaneous functions to remove or test local univ assumed to
   occur only in the le constraints *)

(*
   Solve a system of universe constraint of the form

   u_s11, ..., u_s1p1, w1 <= u1
   ...
   u_sn1, ..., u_snpn, wn <= un

where

  - the ui (1 <= i <= n) are universe variables,
  - the sjk select subsets of the ui for each equations,
  - the wi are arbitrary complex universes that do not mention the ui.
*)

let is_direct_sort_constraint s v = match s with
  | Some u -> univ_level_mem u v
  | None -> false

let solve_constraints_system levels level_bounds level_min =
  let open Univ in
  let levels =
    Array.mapi (fun i o ->
      match o with
      | Some u ->
        (match Universe.level u with 
        | Some u -> Some u 
        | _ -> level_bounds.(i) <- Universe.sup level_bounds.(i) u; None)
      | None -> None)
      levels in
  let v = Array.copy level_bounds in
  let nind = Array.length v in
  let clos = Array.map (fun _ -> Int.Set.empty) levels in
  (* First compute the transitive closure of the levels dependencies *)
  for i=0 to nind-1 do
    for j=0 to nind-1 do
      if not (Int.equal i j) && is_direct_sort_constraint levels.(j) v.(i) then
        clos.(i) <- Int.Set.add j clos.(i);
    done;
  done;
  let rec closure () = 
    let continue = ref false in
      Array.iteri (fun i deps -> 
        let deps' = 
          Int.Set.fold (fun j acc -> Int.Set.union acc clos.(j)) deps deps
        in 
          if Int.Set.equal deps deps' then ()
          else (clos.(i) <- deps'; continue := true))
        clos;
      if !continue then closure ()
      else ()
  in 
  closure ();
  for i=0 to nind-1 do
    for j=0 to nind-1 do
      if not (Int.equal i j) && Int.Set.mem j clos.(i) then
        (v.(i) <- Universe.sup v.(i) level_bounds.(j));
    done;
  done;
  v


(** Operations for universe_info_ind *)

(** Given a universe context representing constraints of an inductive
    this function produces a UInfoInd.t that with the trivial subtyping relation. *)
let univ_inf_ind_from_universe_context univcst =
  let freshunivs = Instance.of_array
      (Array.map (fun _ -> new_univ_level ())
         (Instance.to_array (UContext.instance univcst)))
  in CumulativityInfo.from_universe_context univcst freshunivs