1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Sorts open Util open Pp open Names open Constr open Environ open Univ open Globnames let pr_with_global_universes l = try Id.print (LMap.find l (snd (Global.global_universe_names ()))) with Not_found -> Level.pr l (** Local universe names of polymorphic references *) type universe_binders = Univ.Level.t Names.Id.Map.t let empty_binders = Id.Map.empty let universe_binders_table = Summary.ref Refmap.empty ~name:"universe binders" let universe_binders_of_global ref : universe_binders = try let l = Refmap.find ref !universe_binders_table in l with Not_found -> Names.Id.Map.empty let cache_ubinder (_,(ref,l)) = universe_binders_table := Refmap.add ref l !universe_binders_table let subst_ubinder (subst,(ref,l as orig)) = let ref' = fst (Globnames.subst_global subst ref) in if ref == ref' then orig else ref', l let discharge_ubinder (_,(ref,l)) = Some (Lib.discharge_global ref, l) let ubinder_obj : Globnames.global_reference * universe_binders -> Libobject.obj = let open Libobject in declare_object { (default_object "universe binder") with cache_function = cache_ubinder; load_function = (fun _ x -> cache_ubinder x); classify_function = (fun x -> Substitute x); subst_function = subst_ubinder; discharge_function = discharge_ubinder; rebuild_function = (fun x -> x); } let register_universe_binders ref ubinders = (* Add the polymorphic (section) universes *) let open Names in let ubinders = Id.Map.fold (fun id (poly,lvl) ubinders -> if poly then Id.Map.add id lvl ubinders else ubinders) (fst (Global.global_universe_names ())) ubinders in if not (Id.Map.is_empty ubinders) then Lib.add_anonymous_leaf (ubinder_obj (ref,ubinders)) type univ_name_list = Name.t Loc.located list let universe_binders_with_opt_names ref levels = function | None -> universe_binders_of_global ref | Some udecl -> if Int.equal(List.length levels) (List.length udecl) then List.fold_left2 (fun acc (_,na) lvl -> match na with | Anonymous -> acc | Name na -> Names.Id.Map.add na lvl acc) empty_binders udecl levels else CErrors.user_err ~hdr:"universe_binders_with_opt_names" Pp.(str "Universe instance should have length " ++ int (List.length levels)) (* To disallow minimization to Set *) let set_minimization = ref true let is_set_minimization () = !set_minimization type universe_constraint_type = ULe | UEq | ULub type universe_constraint = Universe.t * universe_constraint_type * Universe.t module Constraints = struct module S = Set.Make( struct type t = universe_constraint let compare_type c c' = match c, c' with | ULe, ULe -> 0 | ULe, _ -> -1 | _, ULe -> 1 | UEq, UEq -> 0 | UEq, _ -> -1 | ULub, ULub -> 0 | ULub, _ -> 1 let compare (u,c,v) (u',c',v') = let i = compare_type c c' in if Int.equal i 0 then let i' = Universe.compare u u' in if Int.equal i' 0 then Universe.compare v v' else if c != ULe && Universe.compare u v' = 0 && Universe.compare v u' = 0 then 0 else i' else i end) include S let add (l,d,r as cst) s = if Universe.equal l r then s else add cst s let tr_dir = function | ULe -> Le | UEq -> Eq | ULub -> Eq let op_str = function ULe -> " <= " | UEq -> " = " | ULub -> " /\\ " let pr c = fold (fun (u1,op,u2) pp_std -> pp_std ++ Universe.pr u1 ++ str (op_str op) ++ Universe.pr u2 ++ fnl ()) c (str "") let equal x y = x == y || equal x y end type universe_constraints = Constraints.t type 'a constraint_accumulator = universe_constraints -> 'a -> 'a option type 'a universe_constrained = 'a * universe_constraints type 'a universe_constraint_function = 'a -> 'a -> universe_constraints -> universe_constraints let enforce_eq_instances_univs strict x y c = let d = if strict then ULub else UEq in let ax = Instance.to_array x and ay = Instance.to_array y in if Array.length ax != Array.length ay then CErrors.anomaly (Pp.str "Invalid argument: enforce_eq_instances_univs called with" ++ Pp.str " instances of different lengths."); CArray.fold_right2 (fun x y -> Constraints.add (Universe.make x, d, Universe.make y)) ax ay c let subst_univs_universe_constraint fn (u,d,v) = let u' = subst_univs_universe fn u and v' = subst_univs_universe fn v in if Universe.equal u' v' then None else Some (u',d,v') let subst_univs_universe_constraints subst csts = Constraints.fold (fun c -> Option.fold_right Constraints.add (subst_univs_universe_constraint subst c)) csts Constraints.empty let to_constraints g s = let tr (x,d,y) acc = let add l d l' acc = Constraint.add (l,Constraints.tr_dir d,l') acc in match Universe.level x, d, Universe.level y with | Some l, (ULe | UEq | ULub), Some l' -> add l d l' acc | _, ULe, Some l' -> enforce_leq x y acc | _, ULub, _ -> acc | _, d, _ -> let f = if d == ULe then UGraph.check_leq else UGraph.check_eq in if f g x y then acc else raise (Invalid_argument "to_constraints: non-trivial algebraic constraint between universes") in Constraints.fold tr s Constraint.empty (** Variant of [eq_constr_univs_infer] taking kind-of-term functions, to expose subterms of [m] and [n], arguments. *) let eq_constr_univs_infer_with kind1 kind2 univs fold m n accu = (* spiwack: duplicates the code of [eq_constr_univs_infer] because I haven't find a way to factor the code without destroying pointer-equality optimisations in [eq_constr_univs_infer]. Pointer equality is not sufficient to ensure equality up to [kind1,kind2], because [kind1] and [kind2] may be different, typically evaluating [m] and [n] in different evar maps. *) let cstrs = ref accu in let eq_universes strict = UGraph.check_eq_instances univs in let eq_sorts s1 s2 = if Sorts.equal s1 s2 then true else let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in match fold (Constraints.singleton (u1, UEq, u2)) !cstrs with | None -> false | Some accu -> cstrs := accu; true in let rec eq_constr' m n = Constr.compare_head_gen_with kind1 kind2 eq_universes eq_sorts eq_constr' m n in let res = Constr.compare_head_gen_with kind1 kind2 eq_universes eq_sorts eq_constr' m n in if res then Some !cstrs else None let compare_head_gen_proj env equ eqs eqc' m n = match kind m, kind n with | Proj (p, c), App (f, args) | App (f, args), Proj (p, c) -> (match kind f with | Const (p', u) when Constant.equal (Projection.constant p) p' -> let pb = Environ.lookup_projection p env in let npars = pb.Declarations.proj_npars in if Array.length args == npars + 1 then eqc' c args.(npars) else false | _ -> false) | _ -> Constr.compare_head_gen equ eqs eqc' m n let eq_constr_universes_proj env m n = if m == n then true, Constraints.empty else let cstrs = ref Constraints.empty in let eq_universes strict l l' = cstrs := enforce_eq_instances_univs strict l l' !cstrs; true in let eq_sorts s1 s2 = if Sorts.equal s1 s2 then true else (cstrs := Constraints.add (Sorts.univ_of_sort s1, UEq, Sorts.univ_of_sort s2) !cstrs; true) in let rec eq_constr' m n = m == n || compare_head_gen_proj env eq_universes eq_sorts eq_constr' m n in let res = eq_constr' m n in res, !cstrs (* Generator of levels *) let new_univ_level, set_remote_new_univ_level = RemoteCounter.new_counter ~name:"Universes" 0 ~incr:((+) 1) ~build:(fun n -> Univ.Level.make (Global.current_dirpath ()) n) let new_univ_level _ = new_univ_level () (* Univ.Level.make db (new_univ_level ()) *) let fresh_level () = new_univ_level (Global.current_dirpath ()) (* TODO: remove *) let new_univ dp = Univ.Universe.make (new_univ_level dp) let new_Type dp = mkType (new_univ dp) let new_Type_sort dp = Type (new_univ dp) let fresh_universe_instance ctx = let init _ = new_univ_level (Global.current_dirpath ()) in Instance.of_array (Array.init (AUContext.size ctx) init) let fresh_instance_from_context ctx = let inst = fresh_universe_instance ctx in let constraints = AUContext.instantiate inst ctx in inst, constraints let fresh_instance ctx = let ctx' = ref LSet.empty in let init _ = let u = new_univ_level (Global.current_dirpath ()) in ctx' := LSet.add u !ctx'; u in let inst = Instance.of_array (Array.init (AUContext.size ctx) init) in !ctx', inst let existing_instance ctx inst = let () = let len1 = Array.length (Instance.to_array inst) and len2 = AUContext.size ctx in if not (len1 == len2) then CErrors.user_err ~hdr:"Universes" (str "Polymorphic constant expected " ++ int len2 ++ str" levels but was given " ++ int len1) else () in LSet.empty, inst let fresh_instance_from ctx inst = let ctx', inst = match inst with | Some inst -> existing_instance ctx inst | None -> fresh_instance ctx in let constraints = AUContext.instantiate inst ctx in inst, (ctx', constraints) (** Fresh universe polymorphic construction *) let fresh_constant_instance env c inst = let cb = lookup_constant c env in match cb.Declarations.const_universes with | Declarations.Monomorphic_const _ -> ((c,Instance.empty), ContextSet.empty) | Declarations.Polymorphic_const auctx -> let inst, ctx = fresh_instance_from auctx inst in ((c, inst), ctx) let fresh_inductive_instance env ind inst = let mib, mip = Inductive.lookup_mind_specif env ind in match mib.Declarations.mind_universes with | Declarations.Monomorphic_ind _ -> ((ind,Instance.empty), ContextSet.empty) | Declarations.Polymorphic_ind uactx -> let inst, ctx = (fresh_instance_from uactx) inst in ((ind,inst), ctx) | Declarations.Cumulative_ind acumi -> let inst, ctx = fresh_instance_from (Univ.ACumulativityInfo.univ_context acumi) inst in ((ind,inst), ctx) let fresh_constructor_instance env (ind,i) inst = let mib, mip = Inductive.lookup_mind_specif env ind in match mib.Declarations.mind_universes with | Declarations.Monomorphic_ind _ -> (((ind,i),Instance.empty), ContextSet.empty) | Declarations.Polymorphic_ind auctx -> let inst, ctx = fresh_instance_from auctx inst in (((ind,i),inst), ctx) | Declarations.Cumulative_ind acumi -> let inst, ctx = fresh_instance_from (ACumulativityInfo.univ_context acumi) inst in (((ind,i),inst), ctx) open Globnames let fresh_global_instance ?names env gr = match gr with | VarRef id -> mkVar id, ContextSet.empty | ConstRef sp -> let c, ctx = fresh_constant_instance env sp names in mkConstU c, ctx | ConstructRef sp -> let c, ctx = fresh_constructor_instance env sp names in mkConstructU c, ctx | IndRef sp -> let c, ctx = fresh_inductive_instance env sp names in mkIndU c, ctx let fresh_constant_instance env sp = fresh_constant_instance env sp None let fresh_inductive_instance env sp = fresh_inductive_instance env sp None let fresh_constructor_instance env sp = fresh_constructor_instance env sp None let constr_of_global gr = let c, ctx = fresh_global_instance (Global.env ()) gr in if not (Univ.ContextSet.is_empty ctx) then if Univ.LSet.is_empty (Univ.ContextSet.levels ctx) then (* Should be an error as we might forget constraints, allow for now to make firstorder work with "using" clauses *) c else CErrors.user_err ~hdr:"constr_of_global" Pp.(str "globalization of polymorphic reference " ++ Nametab.pr_global_env Id.Set.empty gr ++ str " would forget universes.") else c let constr_of_reference = constr_of_global let constr_of_global_univ (gr,u) = match gr with | VarRef id -> mkVar id | ConstRef sp -> mkConstU (sp,u) | ConstructRef sp -> mkConstructU (sp,u) | IndRef sp -> mkIndU (sp,u) let fresh_global_or_constr_instance env = function | IsConstr c -> c, ContextSet.empty | IsGlobal gr -> fresh_global_instance env gr let global_of_constr c = match kind c with | Const (c, u) -> ConstRef c, u | Ind (i, u) -> IndRef i, u | Construct (c, u) -> ConstructRef c, u | Var id -> VarRef id, Instance.empty | _ -> raise Not_found open Declarations let type_of_reference env r = match r with | VarRef id -> Environ.named_type id env, ContextSet.empty | ConstRef c -> let cb = Environ.lookup_constant c env in let ty = cb.const_type in begin match cb.const_universes with | Monomorphic_const _ -> ty, ContextSet.empty | Polymorphic_const auctx -> let inst, ctx = fresh_instance_from auctx None in Vars.subst_instance_constr inst ty, ctx end | IndRef ind -> let (mib, oib as specif) = Inductive.lookup_mind_specif env ind in begin match mib.mind_universes with | Monomorphic_ind _ -> let ty = Inductive.type_of_inductive env (specif, Univ.Instance.empty) in ty, ContextSet.empty | Polymorphic_ind auctx -> let inst, ctx = fresh_instance_from auctx None in let ty = Inductive.type_of_inductive env (specif, inst) in ty, ctx | Cumulative_ind cumi -> let inst, ctx = fresh_instance_from (ACumulativityInfo.univ_context cumi) None in let ty = Inductive.type_of_inductive env (specif, inst) in ty, ctx end | ConstructRef cstr -> let (mib,oib as specif) = Inductive.lookup_mind_specif env (inductive_of_constructor cstr) in begin match mib.mind_universes with | Monomorphic_ind _ -> Inductive.type_of_constructor (cstr,Instance.empty) specif, ContextSet.empty | Polymorphic_ind auctx -> let inst, ctx = fresh_instance_from auctx None in Inductive.type_of_constructor (cstr,inst) specif, ctx | Cumulative_ind cumi -> let inst, ctx = fresh_instance_from (ACumulativityInfo.univ_context cumi) None in Inductive.type_of_constructor (cstr,inst) specif, ctx end let type_of_global t = type_of_reference (Global.env ()) t let fresh_sort_in_family env = function | InProp -> Sorts.prop, ContextSet.empty | InSet -> Sorts.set, ContextSet.empty | InType -> let u = fresh_level () in Type (Univ.Universe.make u), ContextSet.singleton u let new_sort_in_family sf = fst (fresh_sort_in_family (Global.env ()) sf) let extend_context (a, ctx) (ctx') = (a, ContextSet.union ctx ctx') let new_global_univ () = let u = fresh_level () in (Univ.Universe.make u, ContextSet.singleton u) (** Simplification *) module LevelUnionFind = Unionfind.Make (Univ.LSet) (Univ.LMap) let add_list_map u t map = try let l = LMap.find u map in LMap.update u (t :: l) map with Not_found -> LMap.add u [t] map module UF = LevelUnionFind (** Precondition: flexible <= ctx *) let choose_canonical ctx flexible algs s = let global = LSet.diff s ctx in let flexible, rigid = LSet.partition flexible (LSet.inter s ctx) in (** If there is a global universe in the set, choose it *) if not (LSet.is_empty global) then let canon = LSet.choose global in canon, (LSet.remove canon global, rigid, flexible) else (** No global in the equivalence class, choose a rigid one *) if not (LSet.is_empty rigid) then let canon = LSet.choose rigid in canon, (global, LSet.remove canon rigid, flexible) else (** There are only flexible universes in the equivalence class, choose a non-algebraic. *) let algs, nonalgs = LSet.partition (fun x -> LSet.mem x algs) flexible in if not (LSet.is_empty nonalgs) then let canon = LSet.choose nonalgs in canon, (global, rigid, LSet.remove canon flexible) else let canon = LSet.choose algs in canon, (global, rigid, LSet.remove canon flexible) let subst_univs_fn_puniverses lsubst (c, u as cu) = let u' = Instance.subst_fn lsubst u in if u' == u then cu else (c, u') let nf_evars_and_universes_opt_subst f subst = let subst = fun l -> match LMap.find l subst with None -> raise Not_found | Some l' -> l' in let lsubst = Univ.level_subst_of subst in let rec aux c = match kind c with | Evar (evk, args) -> let args = Array.map aux args in (match try f (evk, args) with Not_found -> None with | None -> c | Some c -> aux c) | Const pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkConstU pu' | Ind pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkIndU pu' | Construct pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkConstructU pu' | Sort (Type u) -> let u' = Univ.subst_univs_universe subst u in if u' == u then c else mkSort (sort_of_univ u') | _ -> Constr.map aux c in aux let fresh_universe_context_set_instance ctx = if ContextSet.is_empty ctx then LMap.empty, ctx else let (univs, cst) = ContextSet.levels ctx, ContextSet.constraints ctx in let univs',subst = LSet.fold (fun u (univs',subst) -> let u' = fresh_level () in (LSet.add u' univs', LMap.add u u' subst)) univs (LSet.empty, LMap.empty) in let cst' = subst_univs_level_constraints subst cst in subst, (univs', cst') let normalize_univ_variable ~find ~update = let rec aux cur = let b = find cur in let b' = subst_univs_universe aux b in if Universe.equal b' b then b else update cur b' in aux let normalize_univ_variable_opt_subst ectx = let find l = match Univ.LMap.find l !ectx with | Some b -> b | None -> raise Not_found in let update l b = assert (match Universe.level b with Some l' -> not (Level.equal l l') | None -> true); try ectx := Univ.LMap.add l (Some b) !ectx; b with Not_found -> assert false in normalize_univ_variable ~find ~update let normalize_univ_variable_subst subst = let find l = Univ.LMap.find l !subst in let update l b = assert (match Universe.level b with Some l' -> not (Level.equal l l') | None -> true); try subst := Univ.LMap.update l b !subst; b with Not_found -> assert false in normalize_univ_variable ~find ~update let normalize_universe_opt_subst subst = let normlevel = normalize_univ_variable_opt_subst subst in subst_univs_universe normlevel let normalize_universe_subst subst = let normlevel = normalize_univ_variable_subst subst in subst_univs_universe normlevel let normalize_opt_subst ctx = let ectx = ref ctx in let normalize = normalize_univ_variable_opt_subst ectx in let () = Univ.LMap.iter (fun u v -> if Option.is_empty v then () else try ignore(normalize u) with Not_found -> assert(false)) ctx in !ectx type universe_opt_subst = Universe.t option universe_map let make_opt_subst s = fun x -> (match Univ.LMap.find x s with | Some u -> u | None -> raise Not_found) let subst_opt_univs_constr s = let f = make_opt_subst s in Vars.subst_univs_fn_constr f let normalize_univ_variables ctx = let ctx = normalize_opt_subst ctx in let undef, def, subst = Univ.LMap.fold (fun u v (undef, def, subst) -> match v with | None -> (Univ.LSet.add u undef, def, subst) | Some b -> (undef, Univ.LSet.add u def, Univ.LMap.add u b subst)) ctx (Univ.LSet.empty, Univ.LSet.empty, Univ.LMap.empty) in ctx, undef, def, subst let pr_universe_body = function | None -> mt () | Some v -> str" := " ++ Univ.Universe.pr v let pr_universe_opt_subst = Univ.LMap.pr pr_universe_body let compare_constraint_type d d' = match d, d' with | Eq, Eq -> 0 | Eq, _ -> -1 | _, Eq -> 1 | Le, Le -> 0 | Le, _ -> -1 | _, Le -> 1 | Lt, Lt -> 0 type lowermap = constraint_type LMap.t let lower_union = let merge k a b = match a, b with | Some _, None -> a | None, Some _ -> b | None, None -> None | Some l, Some r -> if compare_constraint_type l r >= 0 then a else b in LMap.merge merge let lower_add l c m = try let c' = LMap.find l m in if compare_constraint_type c c' > 0 then LMap.add l c m else m with Not_found -> LMap.add l c m let lower_of_list l = List.fold_left (fun acc (d,l) -> LMap.add l d acc) LMap.empty l exception Found of Level.t * lowermap let find_inst insts v = try LMap.iter (fun k (enf,alg,v',lower) -> if not alg && enf && Universe.equal v' v then raise (Found (k, lower))) insts; raise Not_found with Found (f,l) -> (f,l) let compute_lbound left = (** The universe variable was not fixed yet. Compute its level using its lower bound. *) let sup l lbound = match lbound with | None -> Some l | Some l' -> Some (Universe.sup l l') in List.fold_left (fun lbound (d, l) -> if d == Le (* l <= ?u *) then sup l lbound else (* l < ?u *) (assert (d == Lt); if not (Universe.level l == None) then sup (Universe.super l) lbound else None)) None left let instantiate_with_lbound u lbound lower alg enforce (ctx, us, algs, insts, cstrs) = if enforce then let inst = Universe.make u in let cstrs' = enforce_leq lbound inst cstrs in (ctx, us, LSet.remove u algs, LMap.add u (enforce,alg,lbound,lower) insts, cstrs'), (enforce, alg, inst, lower) else (* Actually instantiate *) (Univ.LSet.remove u ctx, Univ.LMap.add u (Some lbound) us, algs, LMap.add u (enforce,alg,lbound,lower) insts, cstrs), (enforce, alg, lbound, lower) type constraints_map = (Univ.constraint_type * Univ.LMap.key) list Univ.LMap.t let _pr_constraints_map (cmap:constraints_map) = LMap.fold (fun l cstrs acc -> Level.pr l ++ str " => " ++ prlist_with_sep spc (fun (d,r) -> pr_constraint_type d ++ Level.pr r) cstrs ++ fnl () ++ acc) cmap (mt ()) let remove_alg l (ctx, us, algs, insts, cstrs) = (ctx, us, LSet.remove l algs, insts, cstrs) let remove_lower u lower = let levels = Universe.levels u in LSet.fold (fun l acc -> LMap.remove l acc) levels lower let minimize_univ_variables ctx us algs left right cstrs = let left, lbounds = Univ.LMap.fold (fun r lower (left, lbounds as acc) -> if Univ.LMap.mem r us || not (Univ.LSet.mem r ctx) then acc else (* Fixed universe, just compute its glb for sharing *) let lbounds' = match compute_lbound (List.map (fun (d,l) -> d, Universe.make l) lower) with | None -> lbounds | Some lbound -> LMap.add r (true, false, lbound, lower_of_list lower) lbounds in (Univ.LMap.remove r left, lbounds')) left (left, Univ.LMap.empty) in let rec instance (ctx', us, algs, insts, cstrs as acc) u = let acc, left, lower = try let l = LMap.find u left in let acc, left, newlow, lower = List.fold_left (fun (acc, left', newlow, lower') (d, l) -> let acc', (enf,alg,l',lower) = aux acc l in let l' = if enf then Universe.make l else l' in acc', (d, l') :: left', lower_add l d newlow, lower_union lower lower') (acc, [], LMap.empty, LMap.empty) l in let not_lower (d,l) = (* We're checking if (d,l) is already implied by the lower constraints on some level u. If it represents l < u (d is Lt or d is Le and i > 0, the i < 0 case is impossible due to invariants of Univ), and the lower constraints only have l <= u then it is not implied. *) Univ.Universe.exists (fun (l,i) -> let d = if i == 0 then d else match d with | Le -> Lt | d -> d in try let d' = LMap.find l lower in (* If d is stronger than the already implied lower * constraints we must keep it. *) compare_constraint_type d d' > 0 with Not_found -> (** No constraint existing on l *) true) l in let left = List.uniquize (List.filter not_lower left) in (acc, left, LMap.union newlow lower) with Not_found -> acc, [], LMap.empty and right = try Some (LMap.find u right) with Not_found -> None in let instantiate_lbound lbound = let alg = LSet.mem u algs in if alg then (* u is algebraic: we instantiate it with its lower bound, if any, or enforce the constraints if it is bounded from the top. *) let lower = remove_lower lbound lower in instantiate_with_lbound u lbound lower true false acc else (* u is non algebraic *) match Universe.level lbound with | Some l -> (* The lowerbound is directly a level *) (* u is not algebraic but has no upper bounds, we instantiate it with its lower bound if it is a different level, otherwise we keep it. *) let lower = LMap.remove l lower in if not (Level.equal l u) then (* Should check that u does not have upper constraints that are not already in right *) let acc' = remove_alg l acc in instantiate_with_lbound u lbound lower false false acc' else acc, (true, false, lbound, lower) | None -> try (* Another universe represents the same lower bound, we can share them with no harm. *) let can, lower = find_inst insts lbound in let lower = LMap.remove can lower in instantiate_with_lbound u (Universe.make can) lower false false acc with Not_found -> (* We set u as the canonical universe representing lbound *) instantiate_with_lbound u lbound lower false true acc in let acc' acc = match right with | None -> acc | Some cstrs -> let dangling = List.filter (fun (d, r) -> not (LMap.mem r us)) cstrs in if List.is_empty dangling then acc else let ((ctx', us, algs, insts, cstrs), (enf,_,inst,lower as b)) = acc in let cstrs' = List.fold_left (fun cstrs (d, r) -> if d == Univ.Le then enforce_leq inst (Universe.make r) cstrs else try let lev = Option.get (Universe.level inst) in Constraint.add (lev, d, r) cstrs with Option.IsNone -> failwith "") cstrs dangling in (ctx', us, algs, insts, cstrs'), b in if not (LSet.mem u ctx) then acc' (acc, (true, false, Universe.make u, lower)) else let lbound = compute_lbound left in match lbound with | None -> (* Nothing to do *) acc' (acc, (true, false, Universe.make u, lower)) | Some lbound -> try acc' (instantiate_lbound lbound) with Failure _ -> acc' (acc, (true, false, Universe.make u, lower)) and aux (ctx', us, algs, seen, cstrs as acc) u = try acc, LMap.find u seen with Not_found -> instance acc u in LMap.fold (fun u v (ctx', us, algs, seen, cstrs as acc) -> if v == None then fst (aux acc u) else LSet.remove u ctx', us, LSet.remove u algs, seen, cstrs) us (ctx, us, algs, lbounds, cstrs) let normalize_context_set ctx us algs = let (ctx, csts) = ContextSet.levels ctx, ContextSet.constraints ctx in let uf = UF.create () in (** Keep the Prop/Set <= i constraints separate for minimization *) let smallles, csts = Constraint.fold (fun (l,d,r as cstr) (smallles, noneqs) -> if d == Le then if Univ.Level.is_small l then if is_set_minimization () && LSet.mem r ctx then (Constraint.add cstr smallles, noneqs) else (smallles, noneqs) else if Level.is_small r then if Level.is_prop r then raise (Univ.UniverseInconsistency (Le,Universe.make l,Universe.make r,None)) else (smallles, Constraint.add (l,Eq,r) noneqs) else (smallles, Constraint.add cstr noneqs) else (smallles, Constraint.add cstr noneqs)) csts (Constraint.empty, Constraint.empty) in let csts = (* We first put constraints in a normal-form: all self-loops are collapsed to equalities. *) let g = Univ.LSet.fold (fun v g -> UGraph.add_universe v false g) ctx UGraph.initial_universes in let g = Univ.Constraint.fold (fun (l, d, r) g -> let g = if not (Level.is_small l || LSet.mem l ctx) then try UGraph.add_universe l false g with UGraph.AlreadyDeclared -> g else g in let g = if not (Level.is_small r || LSet.mem r ctx) then try UGraph.add_universe r false g with UGraph.AlreadyDeclared -> g else g in g) csts g in let g = Univ.Constraint.fold UGraph.enforce_constraint csts g in UGraph.constraints_of_universes g in let noneqs = Constraint.fold (fun (l,d,r as cstr) noneqs -> if d == Eq then (UF.union l r uf; noneqs) else (* We ignore the trivial Prop/Set <= i constraints. *) if d == Le && Univ.Level.is_small l then noneqs else if Univ.Level.is_prop l && d == Lt && Univ.Level.is_set r then noneqs else Constraint.add cstr noneqs) csts Constraint.empty in let noneqs = Constraint.union noneqs smallles in let partition = UF.partition uf in let flex x = LMap.mem x us in let ctx, subst, us, eqs = List.fold_left (fun (ctx, subst, us, cstrs) s -> let canon, (global, rigid, flexible) = choose_canonical ctx flex algs s in (* Add equalities for globals which can't be merged anymore. *) let cstrs = LSet.fold (fun g cst -> Constraint.add (canon, Univ.Eq, g) cst) global cstrs in (* Also add equalities for rigid variables *) let cstrs = LSet.fold (fun g cst -> Constraint.add (canon, Univ.Eq, g) cst) rigid cstrs in let subst = LSet.fold (fun f -> LMap.add f canon) rigid subst in let subst = LSet.fold (fun f -> LMap.add f canon) flexible subst in let canonu = Some (Universe.make canon) in let us = LSet.fold (fun f -> LMap.add f canonu) flexible us in (LSet.diff ctx flexible, subst, us, cstrs)) (ctx, LMap.empty, us, Constraint.empty) partition in (* Noneqs is now in canonical form w.r.t. equality constraints, and contains only inequality constraints. *) let noneqs = subst_univs_level_constraints subst noneqs in (* Compute the left and right set of flexible variables, constraints mentionning other variables remain in noneqs. *) let noneqs, ucstrsl, ucstrsr = Constraint.fold (fun (l,d,r as cstr) (noneq, ucstrsl, ucstrsr) -> let lus = LMap.mem l us and rus = LMap.mem r us in let ucstrsl' = if lus then add_list_map l (d, r) ucstrsl else ucstrsl and ucstrsr' = add_list_map r (d, l) ucstrsr in let noneqs = if lus || rus then noneq else Constraint.add cstr noneq in (noneqs, ucstrsl', ucstrsr')) noneqs (Constraint.empty, LMap.empty, LMap.empty) in (* Now we construct the instantiation of each variable. *) let ctx', us, algs, inst, noneqs = minimize_univ_variables ctx us algs ucstrsr ucstrsl noneqs in let us = normalize_opt_subst us in (us, algs), (ctx', Constraint.union noneqs eqs) (* let normalize_conkey = CProfile.declare_profile "normalize_context_set" *) (* let normalize_context_set a b c = CProfile.profile3 normalize_conkey normalize_context_set a b c *) let is_trivial_leq (l,d,r) = Univ.Level.is_prop l && (d == Univ.Le || (d == Univ.Lt && Univ.Level.is_set r)) (* Prop < i <-> Set+1 <= i <-> Set < i *) let translate_cstr (l,d,r as cstr) = if Level.equal Level.prop l && d == Univ.Lt && not (Level.equal Level.set r) then (Level.set, d, r) else cstr let refresh_constraints univs (ctx, cstrs) = let cstrs', univs' = Univ.Constraint.fold (fun c (cstrs', univs as acc) -> let c = translate_cstr c in if is_trivial_leq c then acc else (Univ.Constraint.add c cstrs', UGraph.enforce_constraint c univs)) cstrs (Univ.Constraint.empty, univs) in ((ctx, cstrs'), univs') (**********************************************************************) (* Tools for sort-polymorphic inductive types *) (* Miscellaneous functions to remove or test local univ assumed to occur only in the le constraints *) (* Solve a system of universe constraint of the form u_s11, ..., u_s1p1, w1 <= u1 ... u_sn1, ..., u_snpn, wn <= un where - the ui (1 <= i <= n) are universe variables, - the sjk select subsets of the ui for each equations, - the wi are arbitrary complex universes that do not mention the ui. *) let is_direct_sort_constraint s v = match s with | Some u -> univ_level_mem u v | None -> false let solve_constraints_system levels level_bounds level_min = let open Univ in let levels = Array.mapi (fun i o -> match o with | Some u -> (match Universe.level u with | Some u -> Some u | _ -> level_bounds.(i) <- Universe.sup level_bounds.(i) u; None) | None -> None) levels in let v = Array.copy level_bounds in let nind = Array.length v in let clos = Array.map (fun _ -> Int.Set.empty) levels in (* First compute the transitive closure of the levels dependencies *) for i=0 to nind-1 do for j=0 to nind-1 do if not (Int.equal i j) && is_direct_sort_constraint levels.(j) v.(i) then clos.(i) <- Int.Set.add j clos.(i); done; done; let rec closure () = let continue = ref false in Array.iteri (fun i deps -> let deps' = Int.Set.fold (fun j acc -> Int.Set.union acc clos.(j)) deps deps in if Int.Set.equal deps deps' then () else (clos.(i) <- deps'; continue := true)) clos; if !continue then closure () else () in closure (); for i=0 to nind-1 do for j=0 to nind-1 do if not (Int.equal i j) && Int.Set.mem j clos.(i) then (v.(i) <- Universe.sup v.(i) level_bounds.(j)); done; done; v (** Operations for universe_info_ind *) (** Given a universe context representing constraints of an inductive this function produces a UInfoInd.t that with the trivial subtyping relation. *) let univ_inf_ind_from_universe_context univcst = let freshunivs = Instance.of_array (Array.map (fun _ -> new_univ_level ()) (Instance.to_array (UContext.instance univcst))) in CumulativityInfo.from_universe_context univcst freshunivs