1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open CErrors open Util open Names open Cic open Term open Inductive open Reduction open Typeops open Pp open Declarations open Environ let rec debug_string_of_mp = function | MPfile sl -> DirPath.to_string sl | MPbound uid -> "bound("^MBId.to_string uid^")" | MPdot (mp,l) -> debug_string_of_mp mp ^ "." ^ Label.to_string l let rec string_of_mp = function | MPfile sl -> DirPath.to_string sl | MPbound uid -> MBId.to_string uid | MPdot (mp,l) -> string_of_mp mp ^ "." ^ Label.to_string l let string_of_mp mp = if !Flags.debug then debug_string_of_mp mp else string_of_mp mp let prkn kn = let (mp,_,l) = KerName.repr kn in str(string_of_mp mp ^ "." ^ Label.to_string l) let prcon c = let ck = Constant.canonical c in let uk = Constant.user c in if KerName.equal ck uk then prkn uk else (prkn uk ++str"(="++prkn ck++str")") (* Same as noccur_between but may perform reductions. Could be refined more... *) let weaker_noccur_between env x nvars t = if noccur_between x nvars t then Some t else let t' = whd_all env t in if noccur_between x nvars t' then Some t' else None let is_constructor_head t = match fst(decompose_app t) with | Rel _ -> true | _ -> false let conv_ctxt_prefix env (ctx1:rel_context) ctx2 = let rec chk env rctx1 rctx2 = match rctx1, rctx2 with (LocalAssum (_,ty1) as d1)::rctx1', LocalAssum (_,ty2)::rctx2' -> conv env ty1 ty2; chk (push_rel d1 env) rctx1' rctx2' | (LocalDef (_,bd1,ty1) as d1)::rctx1', LocalDef (_,bd2,ty2)::rctx2' -> conv env ty1 ty2; conv env bd1 bd2; chk (push_rel d1 env) rctx1' rctx2' | [],_ -> () | _ -> failwith "non convertible contexts" in chk env (List.rev ctx1) (List.rev ctx2) (************************************************************************) (* Various well-formedness check for inductive declarations *) (* Errors related to inductive constructions *) type inductive_error = | NonPos of env * constr * constr | NotEnoughArgs of env * constr * constr | NotConstructor of env * constr * constr | NonPar of env * constr * int * constr * constr | SameNamesTypes of Id.t | SameNamesConstructors of Id.t | SameNamesOverlap of Id.t list | NotAnArity of Id.t | BadEntry exception InductiveError of inductive_error (************************************************************************) (************************************************************************) (* Typing the arities and constructor types *) let rec sorts_of_constr_args env t = let t = whd_allnolet env t in match t with | Prod (name,c1,c2) -> let varj = infer_type env c1 in let env1 = push_rel (LocalAssum (name,c1)) env in varj :: sorts_of_constr_args env1 c2 | LetIn (name,def,ty,c) -> let env1 = push_rel (LocalDef (name,def,ty)) env in sorts_of_constr_args env1 c | _ when is_constructor_head t -> [] | _ -> anomaly ~label:"infos_and_sort" (Pp.str "not a positive constructor.") (* Prop and Set are small *) let is_small_sort = function | Prop _ -> true | _ -> false let is_logic_sort = function | Prop Null -> true | _ -> false (* [infos] is a sequence of pair [islogic,issmall] for each type in the product of a constructor or arity *) let is_small_constr infos = List.for_all (fun s -> is_small_sort s) infos let is_logic_constr infos = List.for_all (fun s -> is_logic_sort s) infos (* An inductive definition is a "unit" if it has only one constructor and that all arguments expected by this constructor are logical, this is the case for equality, conjunction of logical properties *) let is_unit constrsinfos = match constrsinfos with (* One info = One constructor *) | [|constrinfos|] -> is_logic_constr constrinfos | [||] -> (* type without constructors *) true | _ -> false let small_unit constrsinfos = let issmall = Array.for_all is_small_constr constrsinfos and isunit = is_unit constrsinfos in issmall, isunit (* check information related to inductive arity *) let typecheck_arity env params inds = let nparamargs = rel_context_nhyps params in let nparamdecls = rel_context_length params in let check_arity arctxt = function | RegularArity mar -> let ar = mar.mind_user_arity in let _ = infer_type env ar in conv env (it_mkProd_or_LetIn (Sort mar.mind_sort) arctxt) ar; ar | TemplateArity par -> check_polymorphic_arity env params par; it_mkProd_or_LetIn (Sort(Type par.template_level)) arctxt in let env_arities = Array.fold_left (fun env_ar ind -> let ar_ctxt = ind.mind_arity_ctxt in let _ = check_ctxt env ar_ctxt in conv_ctxt_prefix env params ar_ctxt; (* Arities (with params) are typed-checked here *) let arity = check_arity ar_ctxt ind.mind_arity in (* mind_nrealargs *) let nrealargs = rel_context_nhyps ar_ctxt - nparamargs in if ind.mind_nrealargs <> nrealargs then failwith "bad number of real inductive arguments"; let nrealargs_ctxt = rel_context_length ar_ctxt - nparamdecls in if ind.mind_nrealdecls <> nrealargs_ctxt then failwith "bad length of real inductive arguments signature"; (* We do not need to generate the universe of full_arity; if later, after the validation of the inductive definition, full_arity is used as argument or subject to cast, an upper universe will be generated *) let id = ind.mind_typename in let env_ar' = push_rel (LocalAssum (Name id, arity)) env_ar in env_ar') env inds in env_arities (* Allowed eliminations *) let check_predicativity env s small level = match s, engagement env with Type u, _ -> (* let u' = fresh_local_univ () in *) (* let cst = *) (* merge_constraints (enforce_leq u u' empty_constraint) *) (* (universes env) in *) if not (Univ.check_leq (universes env) level u) then failwith "impredicative Type inductive type" | Prop Pos, ImpredicativeSet -> () | Prop Pos, _ -> if not small then failwith "impredicative Set inductive type" | Prop Null,_ -> () let sort_of_ind = function | RegularArity mar -> mar.mind_sort | TemplateArity par -> Type par.template_level let all_sorts = [InProp;InSet;InType] let small_sorts = [InProp;InSet] let logical_sorts = [InProp] let allowed_sorts issmall isunit s = match family_of_sort s with (* Type: all elimination allowed *) | InType -> all_sorts (* Small Set is predicative: all elimination allowed *) | InSet when issmall -> all_sorts (* Large Set is necessarily impredicative: forbids large elimination *) | InSet -> small_sorts (* Unitary/empty Prop: elimination to all sorts are realizable *) (* unless the type is large. If it is large, forbids large elimination *) (* which otherwise allows simulating the inconsistent system Type:Type *) | InProp when isunit -> if issmall then all_sorts else small_sorts (* Other propositions: elimination only to Prop *) | InProp -> logical_sorts let compute_elim_sorts env_ar params mib arity lc = let inst = extended_rel_list 0 params in let env_params = push_rel_context params env_ar in let lc = Array.map (fun c -> hnf_prod_applist env_params (lift (rel_context_length params) c) inst) lc in let s = sort_of_ind arity in let infos = Array.map (sorts_of_constr_args env_params) lc in let (small,unit) = small_unit infos in (* We accept recursive unit types... *) (* compute the max of the sorts of the products of the constructor type *) let level = max_inductive_sort (Array.concat (Array.to_list (Array.map Array.of_list infos))) in check_predicativity env_ar s small level; allowed_sorts small unit s let typecheck_one_inductive env params mib mip = (* mind_typename and mind_consnames not checked *) (* mind_reloc_tbl, mind_nb_constant, mind_nb_args not checked (VM) *) (* mind_arity_ctxt, mind_arity, mind_nrealargs DONE (typecheck_arity) *) (* mind_user_lc *) let _ = Array.map (infer_type env) mip.mind_user_lc in (* mind_nf_lc *) let _ = Array.map (infer_type env) mip.mind_nf_lc in Array.iter2 (conv env) mip.mind_nf_lc mip.mind_user_lc; (* mind_consnrealdecls *) let check_cons_args c n = let ctx,_ = decompose_prod_assum c in if n <> rel_context_length ctx - rel_context_length params then failwith "bad number of real constructor arguments" in Array.iter2 check_cons_args mip.mind_nf_lc mip.mind_consnrealdecls; (* mind_kelim: checked by positivity criterion ? *) let sorts = compute_elim_sorts env params mib mip.mind_arity mip.mind_nf_lc in let reject_sort s = not (List.mem_f family_equal s sorts) in if List.exists reject_sort mip.mind_kelim then failwith "elimination not allowed"; (* mind_recargs: checked by positivity criterion *) () (************************************************************************) (************************************************************************) (* Positivity *) type ill_formed_ind = | LocalNonPos of int | LocalNotEnoughArgs of int | LocalNotConstructor | LocalNonPar of int * int * int exception IllFormedInd of ill_formed_ind (* [mind_extract_params mie] extracts the params from an inductive types declaration, and checks that they are all present (and all the same) for all the given types. *) let mind_extract_params = decompose_prod_n_assum let explain_ind_err ntyp env0 nbpar c err = let (lpar,c') = mind_extract_params nbpar c in let env = push_rel_context lpar env0 in match err with | LocalNonPos kt -> raise (InductiveError (NonPos (env,c',Rel (kt+nbpar)))) | LocalNotEnoughArgs kt -> raise (InductiveError (NotEnoughArgs (env,c',Rel (kt+nbpar)))) | LocalNotConstructor -> raise (InductiveError (NotConstructor (env,c',Rel (ntyp+nbpar)))) | LocalNonPar (n,i,l) -> raise (InductiveError (NonPar (env,c',n,Rel i,Rel (l+nbpar)))) let failwith_non_pos n ntypes c = for k = n to n + ntypes - 1 do if not (noccurn k c) then raise (IllFormedInd (LocalNonPos (k-n+1))) done let failwith_non_pos_vect n ntypes v = Array.iter (failwith_non_pos n ntypes) v; anomaly ~label:"failwith_non_pos_vect" (Pp.str "some k in [n;n+ntypes-1] should occur.") let failwith_non_pos_list n ntypes l = List.iter (failwith_non_pos n ntypes) l; anomaly ~label:"failwith_non_pos_list" (Pp.str "some k in [n;n+ntypes-1] should occur.") (* Conclusion of constructors: check the inductive type is called with the expected parameters *) let check_correct_par (env,n,ntypes,_) hyps l largs = let nparams = rel_context_nhyps hyps in let largs = Array.of_list largs in if Array.length largs < nparams then raise (IllFormedInd (LocalNotEnoughArgs l)); let (lpar,largs') = Array.chop nparams largs in let nhyps = List.length hyps in let rec check k index = function | [] -> () | LocalDef _ :: hyps -> check k (index+1) hyps | _::hyps -> match whd_all env lpar.(k) with | Rel w when w = index -> check (k-1) (index+1) hyps | _ -> raise (IllFormedInd (LocalNonPar (k+1,index,l))) in check (nparams-1) (n-nhyps) hyps; if not (Array.for_all (noccur_between n ntypes) largs') then failwith_non_pos_vect n ntypes largs' (* Arguments of constructor: check the number of recursive parameters nrecp. the first parameters which are constant in recursive arguments n is the current depth, nmr is the maximum number of possible recursive parameters *) let check_rec_par (env,n,_,_) hyps nrecp largs = let (lpar,_) = List.chop nrecp largs in let rec find index = function | ([],_) -> () | (_,[]) -> failwith "number of recursive parameters cannot be greater than the number of parameters." | (lp,LocalDef _ :: hyps) -> find (index-1) (lp,hyps) | (p::lp,_::hyps) -> (match whd_all env p with | Rel w when w = index -> find (index-1) (lp,hyps) | _ -> failwith "bad number of recursive parameters") in find (n-1) (lpar,List.rev hyps) let lambda_implicit_lift n a = let lambda_implicit a = Lambda(Anonymous,Evar(0,[||]),a) in iterate lambda_implicit n (lift n a) (* This removes global parameters of the inductive types in lc (for nested inductive types only ) *) let abstract_mind_lc env ntyps npars lc = if npars = 0 then lc else let make_abs = List.init ntyps (function i -> lambda_implicit_lift npars (Rel (i+1))) in Array.map (substl make_abs) lc (* [env] is the typing environment [n] is the dB of the last inductive type [ntypes] is the number of inductive types in the definition (i.e. range of inductives is [n; n+ntypes-1]) [lra] is the list of recursive tree of each variable *) let ienv_push_var (env, n, ntypes, lra) (x,a,ra) = (push_rel (LocalAssum (x,a)) env, n+1, ntypes, (Norec,ra)::lra) let ienv_push_inductive (env, n, ntypes, ra_env) ((mi,u),lpar) = let auxntyp = 1 in let specif = lookup_mind_specif env mi in let env' = let decl = LocalAssum (Anonymous, hnf_prod_applist env (type_of_inductive env (specif,u)) lpar) in push_rel decl env in let ra_env' = (Imbr mi,(Rtree.mk_rec_calls 1).(0)) :: List.map (fun (r,t) -> (r,Rtree.lift 1 t)) ra_env in (* New index of the inductive types *) let newidx = n + auxntyp in (env', newidx, ntypes, ra_env') let rec ienv_decompose_prod (env,_,_,_ as ienv) n c = if n=0 then (ienv,c) else let c' = whd_all env c in match c' with Prod(na,a,b) -> let ienv' = ienv_push_var ienv (na,a,mk_norec) in ienv_decompose_prod ienv' (n-1) b | _ -> assert false (* The recursive function that checks positivity and builds the list of recursive arguments *) let check_positivity_one (env, _,ntypes,_ as ienv) hyps nrecp (_,i as ind) indlc = let lparams = rel_context_length hyps in (* check the inductive types occur positively in [c] *) let rec check_pos (env, n, ntypes, ra_env as ienv) c = let x,largs = decompose_app (whd_all env c) in match x with | Prod (na,b,d) -> assert (List.is_empty largs); (match weaker_noccur_between env n ntypes b with None -> failwith_non_pos_list n ntypes [b] | Some b -> check_pos (ienv_push_var ienv (na, b, mk_norec)) d) | Rel k -> (try let (ra,rarg) = List.nth ra_env (k-1) in (match ra with Mrec _ -> check_rec_par ienv hyps nrecp largs | _ -> ()); if not (List.for_all (noccur_between n ntypes) largs) then failwith_non_pos_list n ntypes largs else rarg with Failure _ | Invalid_argument _ -> mk_norec) | Ind ind_kn -> (* If the inductive type being defined appears in a parameter, then we have an imbricated type *) if List.for_all (noccur_between n ntypes) largs then mk_norec else check_positive_imbr ienv (ind_kn, largs) | err -> if noccur_between n ntypes x && List.for_all (noccur_between n ntypes) largs then mk_norec else failwith_non_pos_list n ntypes (x::largs) (* accesses to the environment are not factorised, but is it worth it? *) and check_positive_imbr (env,n,ntypes,ra_env as ienv) ((mi,u), largs) = let (mib,mip) = lookup_mind_specif env mi in let auxnpar = mib.mind_nparams_rec in let nonrecpar = mib.mind_nparams - auxnpar in let (lpar,auxlargs) = try List.chop auxnpar largs with Failure _ -> raise (IllFormedInd (LocalNonPos n)) in (* If the inductive appears in the args (non params) then the definition is not positive. *) if not (List.for_all (noccur_between n ntypes) auxlargs) then raise (IllFormedInd (LocalNonPos n)); (* We do not deal with imbricated mutual inductive types *) let auxntyp = mib.mind_ntypes in if auxntyp <> 1 then raise (IllFormedInd (LocalNonPos n)); (* The nested inductive type with parameters removed *) let auxlcvect = abstract_mind_lc env auxntyp auxnpar mip.mind_nf_lc in (* Extends the environment with a variable corresponding to the inductive def *) let (env',_,_,_ as ienv') = ienv_push_inductive ienv ((mi,u),lpar) in (* Parameters expressed in env' *) let lpar' = List.map (lift auxntyp) lpar in let irecargs = (* fails if the inductive type occurs non positively *) (* with recursive parameters substituted *) Array.map (function c -> let c' = hnf_prod_applist env' c lpar' in (* skip non-recursive parameters *) let (ienv',c') = ienv_decompose_prod ienv' nonrecpar c' in check_constructors ienv' false c') auxlcvect in (Rtree.mk_rec [|mk_paths (Imbr mi) irecargs|]).(0) (* check the inductive types occur positively in the products of C, if check_head=true, also check the head corresponds to a constructor of the ith type *) and check_constructors ienv check_head c = let rec check_constr_rec (env,n,ntypes,ra_env as ienv) lrec c = let x,largs = decompose_app (whd_all env c) in match x with | Prod (na,b,d) -> assert (List.is_empty largs); let recarg = check_pos ienv b in let ienv' = ienv_push_var ienv (na,b,mk_norec) in check_constr_rec ienv' (recarg::lrec) d | hd -> if check_head then match hd with | Rel j when j = (n + ntypes - i - 1) -> check_correct_par ienv hyps (ntypes-i) largs | _ -> raise (IllFormedInd LocalNotConstructor) else if not (List.for_all (noccur_between n ntypes) largs) then raise (IllFormedInd (LocalNonPos n)); List.rev lrec in check_constr_rec ienv [] c in let irecargs = Array.map (fun c -> let _,rawc = mind_extract_params lparams c in try check_constructors ienv true rawc with IllFormedInd err -> explain_ind_err (ntypes-i) env lparams c err) indlc in mk_paths (Mrec ind) irecargs let check_subtree t1 t2 = let cmp_labels l1 l2 = l1 == Norec || eq_recarg l1 l2 in if not (Rtree.equiv eq_recarg cmp_labels t1 t2) then failwith "bad recursive trees" (* if t1=t2 then () else msg_warning (str"TODO: check recursive positions")*) let check_positivity env_ar mind params nrecp inds = let ntypes = Array.length inds in let rc = Array.mapi (fun j t -> (Mrec(mind,j),t)) (Rtree.mk_rec_calls ntypes) in let lra_ind = List.rev (Array.to_list rc) in let lparams = rel_context_length params in let check_one i mip = let ra_env = List.init lparams (fun _ -> (Norec,mk_norec)) @ lra_ind in let ienv = (env_ar, 1+lparams, ntypes, ra_env) in check_positivity_one ienv params nrecp (mind,i) mip.mind_nf_lc in let irecargs = Array.mapi check_one inds in let wfp = Rtree.mk_rec irecargs in Array.iter2 (fun ind wfpi -> check_subtree ind.mind_recargs wfpi) inds wfp (* Check arities and constructors *) let check_subtyping_arity_constructor env (subst : Univ.Instance.t) (arcn : constr) numparams is_arity = let numchecked = ref 0 in let basic_check ev tp = if !numchecked < numparams then () else conv_leq ev tp (Term.subst_instance_constr subst tp); numchecked := !numchecked + 1 in let check_typ typ typ_env = match typ with | LocalAssum (_, typ') -> begin try basic_check typ_env typ'; Environ.push_rel typ typ_env with NotConvertible -> anomaly ~label:"bad inductive subtyping relation" (Pp.str "Invalid subtyping relation") end | _ -> anomaly (Pp.str "") in let typs, codom = dest_prod env arcn in let last_env = fold_rel_context_outside check_typ typs ~init:env in if not is_arity then basic_check last_env codom else () (* Check that the subtyping information inferred for inductive types in the block is correct. *) (* This check produces a value of the unit type if successful or raises an anomaly if check fails. *) let check_subtyping cumi paramsctxt env inds = let open Univ in let numparams = rel_context_nhyps paramsctxt in (** In [env] we already have [ Var(0) ... Var(n-1) |- cst ] available. We must produce the substitution σ : [ Var(i) -> Var (i + n) | 0 <= i < n] and push the constraints [ Var(n) ... Var(2n - 1) |- cst{σ} ], together with the cumulativity constraints [ cumul_cst ]. *) let len = AUContext.size (ACumulativityInfo.univ_context cumi) in let inst = Instance.of_array (Array.init len (fun i -> Level.var (i + len))) in let other_context = ACumulativityInfo.univ_context cumi in let uctx_other = UContext.make (inst, AUContext.instantiate inst other_context) in let cumul_context = AUContext.repr (ACumulativityInfo.subtyp_context cumi) in let cumul_cst = UContext.constraints cumul_context in let env = Environ.push_context uctx_other env in let env = Environ.add_constraints cumul_cst env in (* process individual inductive types: *) Array.iter (fun { mind_user_lc = lc; mind_arity = arity } -> match arity with | RegularArity { mind_user_arity = full_arity} -> check_subtyping_arity_constructor env inst full_arity numparams true; Array.iter (fun cnt -> check_subtyping_arity_constructor env inst cnt numparams false) lc | TemplateArity _ -> () ) inds (************************************************************************) (************************************************************************) let check_inductive env kn mib = Flags.if_verbose Feedback.msg_notice (str " checking ind: " ++ MutInd.print kn); (* check mind_constraints: should be consistent with env *) let ind_ctx = match mib.mind_universes with | Monomorphic_ind _ -> Univ.UContext.empty (** Already in the global environment *) | Polymorphic_ind auctx -> Univ.AUContext.repr auctx | Cumulative_ind cumi -> Univ.AUContext.repr (Univ.ACumulativityInfo.univ_context cumi) in let env = Environ.push_context ind_ctx env in (* check mind_record : TODO ? check #constructor = 1 ? *) (* check mind_finite : always OK *) (* check mind_ntypes *) if Array.length mib.mind_packets <> mib.mind_ntypes then user_err Pp.(str "not the right number of packets"); (* check mind_params_ctxt *) let params = mib.mind_params_ctxt in let _ = check_ctxt env params in (* check mind_nparams *) if rel_context_nhyps params <> mib.mind_nparams then user_err Pp.(str "number the right number of parameters"); (* mind_packets *) (* - check arities *) let env_ar = typecheck_arity env params mib.mind_packets in (* - check constructor types *) Array.iter (typecheck_one_inductive env_ar params mib) mib.mind_packets; (* check the inferred subtyping relation *) let () = match mib.mind_universes with | Monomorphic_ind _ | Polymorphic_ind _ -> () | Cumulative_ind acumi -> check_subtyping acumi params env_ar mib.mind_packets in (* check mind_nparams_rec: positivity condition *) check_positivity env_ar kn params mib.mind_nparams_rec mib.mind_packets; (* check mind_equiv... *) (* Now we can add the inductive *) add_mind kn mib env