1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (**************************************************************************) (* *) (* Omega: a solver of quantifier-free problems in Presburger Arithmetic *) (* *) (* Pierre Crégut (CNET, Lannion, France) *) (* *) (* 13/10/2002 : modified to cope with an external numbering of equations *) (* and hypothesis. Its use for Omega is not more complex and it makes *) (* things much simpler for the reflexive version where we should limit *) (* the number of source of numbering. *) (**************************************************************************) module type INT = sig type bigint val equal : bigint -> bigint -> bool val less_than : bigint -> bigint -> bool val add : bigint -> bigint -> bigint val sub : bigint -> bigint -> bigint val mult : bigint -> bigint -> bigint val euclid : bigint -> bigint -> bigint * bigint val neg : bigint -> bigint val zero : bigint val one : bigint val to_string : bigint -> string end let debug = ref false module MakeOmegaSolver (I:INT) = struct type bigint = I.bigint let (=?) = I.equal let (<?) = I.less_than let (<=?) x y = I.less_than x y || x = y let (>?) x y = I.less_than y x let (>=?) x y = I.less_than y x || x = y let (+) = I.add let (-) = I.sub let ( * ) = I.mult let (/) x y = fst (I.euclid x y) let (mod) x y = snd (I.euclid x y) let zero = I.zero let one = I.one let two = one + one let negone = I.neg one let abs x = if I.less_than x zero then I.neg x else x let string_of_bigint = I.to_string let neg = I.neg (* To ensure that polymorphic (<) is not used mistakenly on big integers *) (* Warning: do not use (=) either on big int *) let (<) = ((<) : int -> int -> bool) let (>) = ((>) : int -> int -> bool) let (<=) = ((<=) : int -> int -> bool) let (>=) = ((>=) : int -> int -> bool) let pp i = print_int i; print_newline (); flush stdout let push v l = l := v :: !l let rec pgcd x y = if y =? zero then x else pgcd y (x mod y) let pgcd_l = function | [] -> failwith "pgcd_l" | x :: l -> List.fold_left pgcd x l let floor_div a b = match a >=? zero , b >? zero with | true,true -> a / b | false,false -> a / b | true, false -> (a-one) / b - one | false,true -> (a+one) / b - one type coeff = {c: bigint ; v: int} type linear = coeff list type eqn_kind = EQUA | INEQ | DISE type afine = { (* a number uniquely identifying the equation *) id: int ; (* a boolean true for an eq, false for an ineq (Sigma a_i x_i >= 0) *) kind: eqn_kind; (* the variables and their coefficient *) body: coeff list; (* a constant *) constant: bigint } type state_action = { st_new_eq : afine; st_def : afine; (* /!\ this represents [st_def = st_var] *) st_orig : afine; st_coef : bigint; st_var : int } type action = | DIVIDE_AND_APPROX of afine * afine * bigint * bigint | NOT_EXACT_DIVIDE of afine * bigint | FORGET_C of int | EXACT_DIVIDE of afine * bigint | SUM of int * (bigint * afine) * (bigint * afine) | STATE of state_action | HYP of afine | FORGET of int * int | FORGET_I of int * int | CONTRADICTION of afine * afine | NEGATE_CONTRADICT of afine * afine * bool | MERGE_EQ of int * afine * int | CONSTANT_NOT_NUL of int * bigint | CONSTANT_NUL of int | CONSTANT_NEG of int * bigint | SPLIT_INEQ of afine * (int * action list) * (int * action list) | WEAKEN of int * bigint exception UNSOLVABLE exception NO_CONTRADICTION let display_eq print_var (l,e) = let _ = List.fold_left (fun not_first f -> print_string (if f.c <? zero then "- " else if not_first then "+ " else ""); let c = abs f.c in if c =? one then Printf.printf "%s " (print_var f.v) else Printf.printf "%s %s " (string_of_bigint c) (print_var f.v); true) false l in if e >? zero then Printf.printf "+ %s " (string_of_bigint e) else if e <? zero then Printf.printf "- %s " (string_of_bigint (abs e)) let rec trace_length l = let action_length accu = function | SPLIT_INEQ (_,(_,l1),(_,l2)) -> accu + one + trace_length l1 + trace_length l2 | _ -> accu + one in List.fold_left action_length zero l let operator_of_eq = function | EQUA -> "=" | DISE -> "!=" | INEQ -> ">=" let kind_of = function | EQUA -> "equation" | DISE -> "disequation" | INEQ -> "inequation" let display_system print_var l = List.iter (fun { kind=b; body=e; constant=c; id=id} -> Printf.printf "E%d: " id; display_eq print_var (e,c); Printf.printf "%s 0\n" (operator_of_eq b)) l; print_string "------------------------\n\n" let display_inequations print_var l = List.iter (fun e -> display_eq print_var e;print_string ">= 0\n") l; print_string "------------------------\n\n" let sbi = string_of_bigint let rec display_action print_var = function | act :: l -> begin match act with | DIVIDE_AND_APPROX (e1,e2,k,d) -> Printf.printf "Inequation E%d is divided by %s and the constant coefficient is \ rounded by substracting %s.\n" e1.id (sbi k) (sbi d) | NOT_EXACT_DIVIDE (e,k) -> Printf.printf "Constant in equation E%d is not divisible by the pgcd \ %s of its other coefficients.\n" e.id (sbi k) | EXACT_DIVIDE (e,k) -> Printf.printf "Equation E%d is divided by the pgcd \ %s of its coefficients.\n" e.id (sbi k) | WEAKEN (e,k) -> Printf.printf "To ensure a solution in the dark shadow \ the equation E%d is weakened by %s.\n" e (sbi k) | SUM (e,(c1,e1),(c2,e2)) -> Printf.printf "We state %s E%d = %s %s E%d + %s %s E%d.\n" (kind_of e1.kind) e (sbi c1) (kind_of e1.kind) e1.id (sbi c2) (kind_of e2.kind) e2.id | STATE { st_new_eq = e } -> Printf.printf "We define a new equation E%d: " e.id; display_eq print_var (e.body,e.constant); print_string (operator_of_eq e.kind); print_string " 0" | HYP e -> Printf.printf "We define E%d: " e.id; display_eq print_var (e.body,e.constant); print_string (operator_of_eq e.kind); print_string " 0\n" | FORGET_C e -> Printf.printf "E%d is trivially satisfiable.\n" e | FORGET (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2 | FORGET_I (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2 | MERGE_EQ (e,e1,e2) -> Printf.printf "E%d and E%d can be merged into E%d.\n" e1.id e2 e | CONTRADICTION (e1,e2) -> Printf.printf "Equations E%d and E%d imply a contradiction on their \ constant factors.\n" e1.id e2.id | NEGATE_CONTRADICT(e1,e2,b) -> Printf.printf "Equations E%d and E%d state that their body is at the same time \ equal and different\n" e1.id e2.id | CONSTANT_NOT_NUL (e,k) -> Printf.printf "Equation E%d states %s = 0.\n" e (sbi k) | CONSTANT_NEG(e,k) -> Printf.printf "Equation E%d states %s >= 0.\n" e (sbi k) | CONSTANT_NUL e -> Printf.printf "Inequation E%d states 0 != 0.\n" e | SPLIT_INEQ (e,(e1,l1),(e2,l2)) -> Printf.printf "Equation E%d is split in E%d and E%d\n\n" e.id e1 e2; display_action print_var l1; print_newline (); display_action print_var l2; print_newline () end; display_action print_var l | [] -> flush stdout let default_print_var v = Printf.sprintf "X%d" v (* For debugging *) (*""*) let add_event, history, clear_history = let accu = ref [] in (fun (v:action) -> if !debug then display_action default_print_var [v]; push v accu), (fun () -> !accu), (fun () -> accu := []) let nf_linear = List.sort (fun x y -> Pervasives.(-) y.v x.v) let nf ((b : bool),(e,(x : int))) = (b,(nf_linear e,x)) let map_eq_linear f = let rec loop = function | x :: l -> let c = f x.c in if c=?zero then loop l else {v=x.v; c=c} :: loop l | [] -> [] in loop let map_eq_afine f e = { id = e.id; kind = e.kind; body = map_eq_linear f e.body; constant = f e.constant } let negate_eq = map_eq_afine (fun x -> neg x) let rec sum p0 p1 = match (p0,p1) with | ([], l) -> l | (l, []) -> l | (((x1::l1) as l1'), ((x2::l2) as l2')) -> if x1.v = x2.v then let c = x1.c + x2.c in if c =? zero then sum l1 l2 else {v=x1.v;c=c} :: sum l1 l2 else if x1.v > x2.v then x1 :: sum l1 l2' else x2 :: sum l1' l2 let sum_afine new_eq_id eq1 eq2 = { kind = eq1.kind; id = new_eq_id (); body = sum eq1.body eq2.body; constant = eq1.constant + eq2.constant } exception FACTOR1 let rec chop_factor_1 = function | x :: l -> if abs x.c =? one then x,l else let (c',l') = chop_factor_1 l in (c',x::l') | [] -> raise FACTOR1 exception CHOPVAR let rec chop_var v = function | f :: l -> if f.v = v then f,l else let (f',l') = chop_var v l in (f',f::l') | [] -> raise CHOPVAR let normalize ({id=id; kind=eq_flag; body=e; constant =x} as eq) = if e = [] then begin match eq_flag with | EQUA -> if x =? zero then [] else begin add_event (CONSTANT_NOT_NUL(id,x)); raise UNSOLVABLE end | DISE -> if x <> zero then [] else begin add_event (CONSTANT_NUL id); raise UNSOLVABLE end | INEQ -> if x >=? zero then [] else begin add_event (CONSTANT_NEG(id,x)); raise UNSOLVABLE end end else let gcd = pgcd_l (List.map (fun f -> abs f.c) e) in if eq_flag=EQUA && x mod gcd <> zero then begin add_event (NOT_EXACT_DIVIDE (eq,gcd)); raise UNSOLVABLE end else if eq_flag=DISE && x mod gcd <> zero then begin add_event (FORGET_C eq.id); [] end else if gcd <> one then begin let c = floor_div x gcd in let d = x - c * gcd in let new_eq = {id=id; kind=eq_flag; constant=c; body=map_eq_linear (fun c -> c / gcd) e} in add_event (if eq_flag=EQUA || eq_flag = DISE then EXACT_DIVIDE(eq,gcd) else DIVIDE_AND_APPROX(eq,new_eq,gcd,d)); [new_eq] end else [eq] let eliminate_with_in new_eq_id {v=v;c=c_unite} eq2 ({body=e1; constant=c1} as eq1) = try let (f,_) = chop_var v e1 in let coeff = if c_unite=?one then neg f.c else if c_unite=? negone then f.c else failwith "eliminate_with_in" in let res = sum_afine new_eq_id eq1 (map_eq_afine (fun c -> c * coeff) eq2) in add_event (SUM (res.id,(one,eq1),(coeff,eq2))); res with CHOPVAR -> eq1 let omega_mod a b = a - b * floor_div (two * a + b) (two * b) let banerjee_step (new_eq_id,new_var_id,print_var) original l1 l2 = let e = original.body in let sigma = new_var_id () in if e == [] then begin display_system print_var [original] ; failwith "TL" end; let smallest,var = List.fold_left (fun (v,p) c -> if v >? (abs c.c) then abs c.c,c.v else (v,p)) (abs (List.hd e).c, (List.hd e).v) (List.tl e) in let m = smallest + one in let new_eq = { constant = omega_mod original.constant m; body = {c= neg m;v=sigma} :: map_eq_linear (fun a -> omega_mod a m) original.body; id = new_eq_id (); kind = EQUA } in let definition = { constant = neg (floor_div (two * original.constant + m) (two * m)); body = map_eq_linear (fun a -> neg (floor_div (two * a + m) (two * m))) original.body; id = new_eq_id (); kind = EQUA } in add_event (STATE {st_new_eq = new_eq; st_def = definition; st_orig = original; st_coef = m; st_var = sigma}); let new_eq = List.hd (normalize new_eq) in let eliminated_var, def = chop_var var new_eq.body in let other_equations = Util.List.map_append (fun e -> normalize (eliminate_with_in new_eq_id eliminated_var new_eq e)) l1 in let inequations = Util.List.map_append (fun e -> normalize (eliminate_with_in new_eq_id eliminated_var new_eq e)) l2 in let original' = eliminate_with_in new_eq_id eliminated_var new_eq original in let mod_original = map_eq_afine (fun c -> c / m) original' in add_event (EXACT_DIVIDE (original',m)); List.hd (normalize mod_original),other_equations,inequations let rec eliminate_one_equation ((new_eq_id,new_var_id,print_var) as new_ids) (e,other,ineqs) = if !debug then display_system print_var (e::other); try let v,def = chop_factor_1 e.body in (Util.List.map_append (fun e' -> normalize (eliminate_with_in new_eq_id v e e')) other, Util.List.map_append (fun e' -> normalize (eliminate_with_in new_eq_id v e e')) ineqs) with FACTOR1 -> eliminate_one_equation new_ids (banerjee_step new_ids e other ineqs) let rec banerjee ((_,_,print_var) as new_ids) (sys_eq,sys_ineq) = let rec fst_eq_1 = function (eq::l) -> if List.exists (fun x -> abs x.c =? one) eq.body then eq,l else let (eq',l') = fst_eq_1 l in (eq',eq::l') | [] -> raise Not_found in match sys_eq with [] -> if !debug then display_system print_var sys_ineq; sys_ineq | (e1::rest) -> let eq,other = try fst_eq_1 sys_eq with Not_found -> (e1,rest) in if eq.body = [] then if eq.constant =? zero then begin add_event (FORGET_C eq.id); banerjee new_ids (other,sys_ineq) end else begin add_event (CONSTANT_NOT_NUL(eq.id,eq.constant)); raise UNSOLVABLE end else banerjee new_ids (eliminate_one_equation new_ids (eq,other,sys_ineq)) type kind = INVERTED | NORMAL let redundancy_elimination new_eq_id system = let normal = function ({body=f::_} as e) when f.c <? zero -> negate_eq e, INVERTED | e -> e,NORMAL in let table = Hashtbl.create 7 in List.iter (fun e -> let ({body=ne} as nx) ,kind = normal e in if ne = [] then if nx.constant <? zero then begin add_event (CONSTANT_NEG(nx.id,nx.constant)); raise UNSOLVABLE end else add_event (FORGET_C nx.id) else try let (optnormal,optinvert) = Hashtbl.find table ne in let final = if kind = NORMAL then begin match optnormal with Some v -> let kept = if v.constant <? nx.constant then begin add_event (FORGET (v.id,nx.id));v end else begin add_event (FORGET (nx.id,v.id));nx end in (Some(kept),optinvert) | None -> Some nx,optinvert end else begin match optinvert with Some v -> let _kept = if v.constant >? nx.constant then begin add_event (FORGET_I (v.id,nx.id));v end else begin add_event (FORGET_I (nx.id,v.id));nx end in (optnormal,Some(if v.constant >? nx.constant then v else nx)) | None -> optnormal,Some nx end in begin match final with (Some high, Some low) -> if high.constant <? low.constant then begin add_event(CONTRADICTION (high,negate_eq low)); raise UNSOLVABLE end | _ -> () end; Hashtbl.remove table ne; Hashtbl.add table ne final with Not_found -> Hashtbl.add table ne (if kind = NORMAL then (Some nx,None) else (None,Some nx))) system; let accu_eq = ref [] in let accu_ineq = ref [] in Hashtbl.iter (fun p0 p1 -> match (p0,p1) with | (e, (Some x, Some y)) when x.constant =? y.constant -> let id=new_eq_id () in add_event (MERGE_EQ(id,x,y.id)); push {id=id; kind=EQUA; body=x.body; constant=x.constant} accu_eq | (e, (optnorm,optinvert)) -> begin match optnorm with Some x -> push x accu_ineq | _ -> () end; begin match optinvert with Some x -> push (negate_eq x) accu_ineq | _ -> () end) table; !accu_eq,!accu_ineq exception SOLVED_SYSTEM let select_variable system = let table = Hashtbl.create 7 in let push v c= try let r = Hashtbl.find table v in r := max !r (abs c) with Not_found -> Hashtbl.add table v (ref (abs c)) in List.iter (fun {body=l} -> List.iter (fun f -> push f.v f.c) l) system; let vmin,cmin = ref (-1), ref zero in let var_cpt = ref 0 in Hashtbl.iter (fun v ({contents = c}) -> incr var_cpt; if c <? !cmin || !vmin = (-1) then begin vmin := v; cmin := c end) table; if !var_cpt < 1 then raise SOLVED_SYSTEM; !vmin let classify v system = List.fold_left (fun (not_occ,below,over) eq -> try let f,eq' = chop_var v eq.body in if f.c >=? zero then (not_occ,((f.c,eq) :: below),over) else (not_occ,below,((neg f.c,eq) :: over)) with CHOPVAR -> (eq::not_occ,below,over)) ([],[],[]) system let product new_eq_id dark_shadow low high = List.fold_left (fun accu (a,eq1) -> List.fold_left (fun accu (b,eq2) -> let eq = sum_afine new_eq_id (map_eq_afine (fun c -> c * b) eq1) (map_eq_afine (fun c -> c * a) eq2) in add_event(SUM(eq.id,(b,eq1),(a,eq2))); match normalize eq with | [eq] -> let final_eq = if dark_shadow then let delta = (a - one) * (b - one) in add_event(WEAKEN(eq.id,delta)); {id = eq.id; kind=INEQ; body = eq.body; constant = eq.constant - delta} else eq in final_eq :: accu | (e::_) -> failwith "Product dardk" | [] -> accu) accu high) [] low let fourier_motzkin (new_eq_id,_,print_var) dark_shadow system = let v = select_variable system in let (ineq_out, ineq_low,ineq_high) = classify v system in let expanded = ineq_out @ product new_eq_id dark_shadow ineq_low ineq_high in if !debug then display_system print_var expanded; expanded let simplify ((new_eq_id,new_var_id,print_var) as new_ids) dark_shadow system = if List.exists (fun e -> e.kind = DISE) system then failwith "disequation in simplify"; clear_history (); List.iter (fun e -> add_event (HYP e)) system; let system = Util.List.map_append normalize system in let eqs,ineqs = List.partition (fun e -> e.kind=EQUA) system in let simp_eq,simp_ineq = redundancy_elimination new_eq_id ineqs in let system = (eqs @ simp_eq,simp_ineq) in let rec loop1a system = let sys_ineq = banerjee new_ids system in loop1b sys_ineq and loop1b sys_ineq = let simp_eq,simp_ineq = redundancy_elimination new_eq_id sys_ineq in if simp_eq = [] then simp_ineq else loop1a (simp_eq,simp_ineq) in let rec loop2 system = try let expanded = fourier_motzkin new_ids dark_shadow system in loop2 (loop1b expanded) with SOLVED_SYSTEM -> if !debug then display_system print_var system; system in loop2 (loop1a system) let rec depend relie_on accu = function | act :: l -> begin match act with | DIVIDE_AND_APPROX (e,_,_,_) -> if Int.List.mem e.id relie_on then depend relie_on (act::accu) l else depend relie_on accu l | EXACT_DIVIDE (e,_) -> if Int.List.mem e.id relie_on then depend relie_on (act::accu) l else depend relie_on accu l | WEAKEN (e,_) -> if Int.List.mem e relie_on then depend relie_on (act::accu) l else depend relie_on accu l | SUM (e,(_,e1),(_,e2)) -> if Int.List.mem e relie_on then depend (e1.id::e2.id::relie_on) (act::accu) l else depend relie_on accu l | STATE {st_new_eq=e;st_orig=o} -> if Int.List.mem e.id relie_on then depend (o.id::relie_on) (act::accu) l else depend relie_on accu l | HYP e -> if Int.List.mem e.id relie_on then depend relie_on (act::accu) l else depend relie_on accu l | FORGET_C _ -> depend relie_on accu l | FORGET _ -> depend relie_on accu l | FORGET_I _ -> depend relie_on accu l | MERGE_EQ (e,e1,e2) -> if Int.List.mem e relie_on then depend (e1.id::e2::relie_on) (act::accu) l else depend relie_on accu l | NOT_EXACT_DIVIDE (e,_) -> depend (e.id::relie_on) (act::accu) l | CONTRADICTION (e1,e2) -> depend (e1.id::e2.id::relie_on) (act::accu) l | CONSTANT_NOT_NUL (e,_) -> depend (e::relie_on) (act::accu) l | CONSTANT_NEG (e,_) -> depend (e::relie_on) (act::accu) l | CONSTANT_NUL e -> depend (e::relie_on) (act::accu) l | NEGATE_CONTRADICT (e1,e2,_) -> depend (e1.id::e2.id::relie_on) (act::accu) l | SPLIT_INEQ _ -> failwith "depend" end | [] -> relie_on, accu let negation (eqs,ineqs) = let diseq,_ = List.partition (fun e -> e.kind = DISE) ineqs in let normal = function | ({body=f::_} as e) when f.c <? zero -> negate_eq e, INVERTED | e -> e,NORMAL in let table = Hashtbl.create 7 in List.iter (fun e -> let {body=ne;constant=c} ,kind = normal e in Hashtbl.add table (ne,c) (kind,e)) diseq; List.iter (fun e -> assert (e.kind = EQUA); let {body=ne;constant=c},kind = normal e in try let (kind',e') = Hashtbl.find table (ne,c) in add_event (NEGATE_CONTRADICT (e,e',kind=kind')); raise UNSOLVABLE with Not_found -> ()) eqs exception FULL_SOLUTION of action list * int list let simplify_strong ((new_eq_id,new_var_id,print_var) as new_ids) system = clear_history (); List.iter (fun e -> add_event (HYP e)) system; (* Initial simplification phase *) let rec loop1a system = negation system; let sys_ineq = banerjee new_ids system in loop1b sys_ineq and loop1b sys_ineq = let dise,ine = List.partition (fun e -> e.kind = DISE) sys_ineq in let simp_eq,simp_ineq = redundancy_elimination new_eq_id ine in if simp_eq = [] then dise @ simp_ineq else loop1a (simp_eq,dise @ simp_ineq) in let rec loop2 system = try let expanded = fourier_motzkin new_ids false system in loop2 (loop1b expanded) with SOLVED_SYSTEM -> if !debug then display_system print_var system; system in let rec explode_diseq = function | (de::diseq,ineqs,expl_map) -> let id1 = new_eq_id () and id2 = new_eq_id () in let e1 = {id = id1; kind=INEQ; body = de.body; constant = de.constant -one} in let e2 = {id = id2; kind=INEQ; body = map_eq_linear neg de.body; constant = neg de.constant - one} in let new_sys = List.map (fun (what,sys) -> ((de.id,id1,true)::what, e1::sys)) ineqs @ List.map (fun (what,sys) -> ((de.id,id2,false)::what,e2::sys)) ineqs in explode_diseq (diseq,new_sys,(de.id,(de,id1,id2))::expl_map) | ([],ineqs,expl_map) -> ineqs,expl_map in try let system = Util.List.map_append normalize system in let eqs,ineqs = List.partition (fun e -> e.kind=EQUA) system in let dise,ine = List.partition (fun e -> e.kind = DISE) ineqs in let simp_eq,simp_ineq = redundancy_elimination new_eq_id ine in let system = (eqs @ simp_eq,simp_ineq @ dise) in let system' = loop1a system in let diseq,ineq = List.partition (fun e -> e.kind = DISE) system' in let first_segment = history () in let sys_exploded,explode_map = explode_diseq (diseq,[[],ineq],[]) in let all_solutions = List.map (fun (decomp,sys) -> clear_history (); try let _ = loop2 sys in raise NO_CONTRADICTION with UNSOLVABLE -> let relie_on,path = depend [] [] (history ()) in let dc,_ = List.partition (fun (_,id,_) -> Int.List.mem id relie_on) decomp in let red = List.map (fun (x,_,_) -> x) dc in (red,relie_on,decomp,path)) sys_exploded in let max_count sys = let tbl = Hashtbl.create 7 in let augment x = try incr (Hashtbl.find tbl x) with Not_found -> Hashtbl.add tbl x (ref 1) in let eq = ref (-1) and c = ref 0 in List.iter (function | ([],r_on,_,path) -> raise (FULL_SOLUTION (path,r_on)) | (l,_,_,_) -> List.iter augment l) sys; Hashtbl.iter (fun x v -> if !v > !c then begin eq := x; c := !v end) tbl; !eq in let rec solve systems = try let id = max_count systems in let rec sign = function | ((id',_,b)::l) -> if id=id' then b else sign l | [] -> failwith "solve" in let s1,s2 = List.partition (fun (_,_,decomp,_) -> sign decomp) systems in let remove_int (dep,ro,dc,pa) = (Util.List.except Int.equal id dep,ro,dc,pa) in let s1' = List.map remove_int s1 in let s2' = List.map remove_int s2 in let (r1,relie1) = solve s1' and (r2,relie2) = solve s2' in let (eq,id1,id2) = Int.List.assoc id explode_map in [SPLIT_INEQ(eq,(id1,r1),(id2, r2))], eq.id :: Util.List.union Int.equal relie1 relie2 with FULL_SOLUTION (x0,x1) -> (x0,x1) in let act,relie_on = solve all_solutions in snd(depend relie_on act first_segment) with UNSOLVABLE -> snd (depend [] [] (history ())) end