1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)

(* Defining grammar rules with "xx" in it automatically declares keywords too,
 * we thus save the lexer to restore it at the end of the file *)
let frozen_lexer = CLexer.get_keyword_state () ;;

(*i camlp4use: "pa_extend.cmo" i*)
(*i camlp4deps: "grammar/grammar.cma" i*)

open Ltac_plugin
open Names
open Pp
open Genarg
open Stdarg
open Term
module CoqConstr = Constr
open CoqConstr
open Pcoq
open Pcoq.Constr
open Vars
open Libnames
open Tactics
open Tacticals
open Termops
open Recordops
open Tacmach
open Glob_term
open Util
open Evd
open Tacexpr
open Tacinterp
open Pretyping
open Ppconstr
open Printer
open Globnames
open Misctypes
open Decl_kinds
open Evar_kinds
open Constrexpr
open Constrexpr_ops

DECLARE PLUGIN "ssrmatching_plugin"

let errorstrm = CErrors.user_err ~hdr:"ssrmatching"
let loc_error loc msg = CErrors.user_err ?loc ~hdr:msg (str msg)
let ppnl = Feedback.msg_info

(* 0 cost pp function. Active only if env variable SSRDEBUG is set *)
(* or if SsrDebug is Set                                                  *)
let pp_ref = ref (fun _ -> ())
let ssr_pp s = Feedback.msg_debug (str"SSR: "++Lazy.force s)
let _ =
  try ignore(Sys.getenv "SSRMATCHINGDEBUG"); pp_ref := ssr_pp
  with Not_found -> ()
let debug b =
  if b then pp_ref := ssr_pp else pp_ref := fun _ -> ()
let _ =
  Goptions.declare_bool_option
    { Goptions.optname  = "ssrmatching debugging";
      Goptions.optkey   = ["Debug";"SsrMatching"];
      Goptions.optdepr  = false;
      Goptions.optread  = (fun _ -> !pp_ref == ssr_pp);
      Goptions.optwrite = debug }
let pp s = !pp_ref s

(** Utils {{{ *****************************************************************)
let env_size env = List.length (Environ.named_context env)
let safeDestApp c =
  match kind c with App (f, a) -> f, a | _ -> c, [| |]
(* Toplevel constr must be globalized twice ! *)
let glob_constr ist genv = function
  | _, Some ce ->
    let vars = Id.Map.fold (fun x _ accu -> Id.Set.add x accu) ist.lfun Id.Set.empty in
    let ltacvars = { Constrintern.empty_ltac_sign with Constrintern.ltac_vars = vars } in
    Constrintern.intern_gen WithoutTypeConstraint ~ltacvars:ltacvars genv ce
  | rc, None -> rc

(* Term printing utilities functions for deciding bracketing.  *)
let pr_paren prx x = hov 1 (str "(" ++ prx x ++ str ")")
(* String lexing utilities *)
let skip_wschars s =
  let rec loop i = match s.[i] with '\n'..' ' -> loop (i + 1) | _ -> i in loop
(* We also guard characters that might interfere with the ssreflect   *)
(* tactic syntax.                                                     *)
let guard_term ch1 s i = match s.[i] with
  | '(' -> false
  | '{' | '/' | '=' -> true
  | _ -> ch1 = '('
(* The call 'guard s i' should return true if the contents of s *)
(* starting at i need bracketing to avoid ambiguities.          *)
let pr_guarded guard prc c =
  let s = Pp.string_of_ppcmds (prc c) ^ "$" in
  if guard s (skip_wschars s 0) then pr_paren prc c else prc c
(* More sensible names for constr printers *)
let prl_glob_constr c = pr_lglob_constr_env (Global.env ()) c
let pr_glob_constr c = pr_glob_constr_env (Global.env ()) c
let prl_constr_expr = pr_lconstr_expr
let pr_constr_expr = pr_constr_expr
let prl_glob_constr_and_expr = function
  | _, Some c -> prl_constr_expr c
  | c, None -> prl_glob_constr c
let pr_glob_constr_and_expr = function
  | _, Some c -> pr_constr_expr c
  | c, None -> pr_glob_constr c
let pr_term (k, c) = pr_guarded (guard_term k) pr_glob_constr_and_expr c
let prl_term (k, c) = pr_guarded (guard_term k) prl_glob_constr_and_expr c

(** Adding a new uninterpreted generic argument type *)
let add_genarg tag pr =
  let wit = Genarg.make0 tag in
  let tag = Geninterp.Val.create tag in
  let glob ist x = (ist, x) in
  let subst _ x = x in
  let interp ist x = Ftactic.return (Geninterp.Val.Dyn (tag, x)) in
  let gen_pr _ _ _ = pr in
  let () = Genintern.register_intern0 wit glob in
  let () = Genintern.register_subst0 wit subst in
  let () = Geninterp.register_interp0 wit interp in
  let () = Geninterp.register_val0 wit (Some (Geninterp.Val.Base tag)) in
  Pptactic.declare_extra_genarg_pprule wit gen_pr gen_pr gen_pr;
  wit

(** Constructors for cast type *)
let dC t = CastConv t
(** Constructors for constr_expr *)
let isCVar   = function { CAst.v = CRef (Ident _, _) } -> true | _ -> false
let destCVar = function { CAst.v = CRef (Ident (_, id), _) } -> id | _ ->
  CErrors.anomaly (str"not a CRef.")
let isGLambda c = match DAst.get c with GLambda (Name _, _, _, _) -> true | _ -> false
let destGLambda c = match DAst.get c with GLambda (Name id, _, _, c) -> (id, c)
  | _ -> CErrors.anomaly (str "not a GLambda")
let isGHole c = match DAst.get c with GHole _ -> true | _ -> false
let mkCHole ~loc = CAst.make ?loc @@ CHole (None, IntroAnonymous, None)
let mkCLambda ?loc name ty t = CAst.make ?loc @@
   CLambdaN ([[Loc.tag ?loc name], Default Explicit, ty], t)
let mkCLetIn ?loc name bo t = CAst.make ?loc @@
   CLetIn ((Loc.tag ?loc name), bo, None, t)
let mkCCast ?loc t ty = CAst.make ?loc @@ CCast (t, dC ty)
(** Constructors for rawconstr *)
let mkRHole = DAst.make @@ GHole (InternalHole, IntroAnonymous, None)
let mkRApp f args = if args = [] then f else DAst.make @@ GApp (f, args)
let mkRCast rc rt =  DAst.make @@ GCast (rc, dC rt)
let mkRLambda n s t = DAst.make @@ GLambda (n, Explicit, s, t)

(* ssrterm conbinators *)
let combineCG t1 t2 f g = match t1, t2 with
 | (x, (t1, None)), (_, (t2, None)) -> x, (g t1 t2, None)
 | (x, (_, Some t1)), (_, (_, Some t2)) -> x, (mkRHole, Some (f t1 t2))
 | _, (_, (_, None)) -> CErrors.anomaly (str"have: mixed C-G constr.")
 | _ -> CErrors.anomaly (str"have: mixed G-C constr.")
let loc_ofCG = function
 | (_, (s, None)) -> Glob_ops.loc_of_glob_constr s
 | (_, (_, Some s)) -> Constrexpr_ops.constr_loc s

let mk_term k c = k, (mkRHole, Some c)
let mk_lterm = mk_term ' '

let pf_type_of gl t = let sigma, ty = pf_type_of gl t in re_sig (sig_it gl)  sigma, ty

let nf_evar sigma c =
  EConstr.Unsafe.to_constr (Evarutil.nf_evar sigma (EConstr.of_constr c))

(* }}} *)

(** Profiling {{{ *************************************************************)
type profiler = { 
  profile : 'a 'b. ('a -> 'b) -> 'a -> 'b;
  reset : unit -> unit;
  print : unit -> unit }
let profile_now = ref false
let something_profiled = ref false
let profilers = ref []
let add_profiler f = profilers := f :: !profilers;;
let profile b =
  profile_now := b;
  if b then List.iter (fun f -> f.reset ()) !profilers;
  if not b then List.iter (fun f -> f.print ()) !profilers
;;
let _ =
  Goptions.declare_bool_option
    { Goptions.optname  = "ssrmatching profiling";
      Goptions.optkey   = ["SsrMatchingProfiling"];
      Goptions.optread  = (fun _ -> !profile_now);
      Goptions.optdepr  = false;
      Goptions.optwrite = profile }
let () =
  let prof_total = 
    let init = ref 0.0 in { 
    profile = (fun f x -> assert false);
    reset = (fun () -> init := Unix.gettimeofday ());
    print = (fun () -> if !something_profiled then
        prerr_endline 
           (Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f"
           "total" 0 (Unix.gettimeofday() -. !init) 0.0 0.0)) } in
  let prof_legenda = {
    profile = (fun f x -> assert false);
    reset = (fun () -> ());
    print = (fun () -> if !something_profiled then begin
        prerr_endline 
           (Printf.sprintf "!! %39s ---------- --------- --------- ---------" 
           (String.make 39 '-'));
        prerr_endline 
           (Printf.sprintf "!! %-39s %10s %9s %9s %9s" 
           "function" "#calls" "total" "max" "average") end) } in
  add_profiler prof_legenda;
  add_profiler prof_total
;;

let mk_profiler s =
  let total, calls, max = ref 0.0, ref 0, ref 0.0 in
  let reset () = total := 0.0; calls := 0; max := 0.0 in
  let profile f x =
    if not !profile_now then f x else
    let before = Unix.gettimeofday () in
    try
      incr calls;
      let res = f x in
      let after = Unix.gettimeofday () in
      let delta = after -. before in
      total := !total +. delta;
      if delta > !max then max := delta;
      res
    with exc ->
      let after = Unix.gettimeofday () in
      let delta = after -. before in
      total := !total +. delta;
      if delta > !max then max := delta;
      raise exc in
  let print () =
     if !calls <> 0 then begin
       something_profiled := true;
       prerr_endline
         (Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f" 
         s !calls !total !max (!total /. (float_of_int !calls))) end in
  let prof = { profile = profile; reset = reset; print = print } in
  add_profiler prof;
  prof
;;
(* }}} *)

exception NoProgress

(** Unification procedures.                                *)

(* To enforce the rigidity of the rooted match we always split  *)
(* top applications, so the unification procedures operate on   *)
(* arrays of patterns and terms.                                *)
(* We perform three kinds of unification:                       *)
(*  EQ: exact conversion check                                  *)
(*  FO: first-order unification of evars, without conversion    *)
(*  HO: higher-order unification with conversion                *)
(* The subterm unification strategy is to find the first FO     *)
(* match, if possible, and the first HO match otherwise, then   *)
(* compute all the occurrences that are EQ matches for the      *)
(* relevant subterm.                                            *)
(*   Additional twists:                                         *)
(*    - If FO/HO fails then we attempt to fill evars using      *)
(*      typeclasses before raising an outright error. We also   *)
(*      fill typeclasses even after a successful match, since   *)
(*      beta-reduction and canonical instances may leave        *)
(*      undefined evars.                                        *)
(*    - We do postchecks to rule out matches that are not       *)
(*      closed or that assign to a global evar; these can be    *)
(*      disabled for rewrite or dependent family matches.       *)
(*    - We do a full FO scan before turning to HO, as the FO    *)
(*      comparison can be much faster than the HO one.          *)

let unif_EQ env sigma p c =
  let evars = existential_opt_value sigma, Evd.universes sigma in 
  try let _ = Reduction.conv env p ~evars c in true with _ -> false

let unif_EQ_args env sigma pa a =
  let n = Array.length pa in
  let rec loop i = (i = n) || unif_EQ env sigma pa.(i) a.(i) && loop (i + 1) in
  loop 0

let prof_unif_eq_args = mk_profiler "unif_EQ_args";;
let unif_EQ_args env sigma pa a =
  prof_unif_eq_args.profile (unif_EQ_args env sigma pa) a 
;;

let unif_HO env ise p c = Evarconv.the_conv_x env p c ise

let unif_HO_args env ise0 pa i ca =
  let n = Array.length pa in
  let rec loop ise j =
    if j = n then ise else loop (unif_HO env ise (EConstr.of_constr pa.(j)) (EConstr.of_constr ca.(i + j))) (j + 1) in
  loop ise0 0

(* FO unification should boil down to calling w_unify with no_delta, but  *)
(* alas things are not so simple: w_unify does partial type-checking,     *)
(* which breaks down when the no-delta flag is on (as the Coq type system *)
(* requires full convertibility. The workaround here is to convert all    *)
(* evars into metas, since 8.2 does not TC metas. This means some lossage *)
(* for HO evars, though hopefully Miller patterns can pick up some of     *)
(* those cases, and HO matching will mop up the rest.                     *)
let flags_FO =
  let flags =
    { (Unification.default_no_delta_unify_flags ()).Unification.core_unify_flags
      with
        Unification.modulo_conv_on_closed_terms = None;
        Unification.modulo_eta = true;
        Unification.modulo_betaiota = true;
        Unification.modulo_delta_types = full_transparent_state}
  in
  { Unification.core_unify_flags = flags;
    Unification.merge_unify_flags = flags;
    Unification.subterm_unify_flags = flags;
    Unification.allow_K_in_toplevel_higher_order_unification = false;
    Unification.resolve_evars =
      (Unification.default_no_delta_unify_flags ()).Unification.resolve_evars
  }
let unif_FO env ise p c =
  Unification.w_unify env ise Reduction.CONV ~flags:flags_FO (EConstr.of_constr p) (EConstr.of_constr c)

(* Perform evar substitution in main term and prune substitution. *)
let nf_open_term sigma0 ise c =
  let c = EConstr.Unsafe.to_constr c in
  let s = ise and s' = ref sigma0 in
  let rec nf c' = match kind c' with
  | Evar ex ->
    begin try nf (existential_value s ex) with _ ->
    let k, a = ex in let a' = Array.map nf a in
    if not (Evd.mem !s' k) then
      s' := Evd.add !s' k (Evarutil.nf_evar_info s (Evd.find s k));
    mkEvar (k, a')
    end
  | _ -> map nf c' in
  let copy_def k evi () =
    if evar_body evi != Evd.Evar_empty then () else
    match Evd.evar_body (Evd.find s k) with
    | Evar_defined c' -> s' := Evd.define k (nf c') !s'
    | _ -> () in
  let c' = nf c in let _ = Evd.fold copy_def sigma0 () in
  !s', Evd.evar_universe_context s, EConstr.of_constr c'

let unif_end env sigma0 ise0 pt ok =
  let ise = Evarconv.solve_unif_constraints_with_heuristics env ise0 in
  let s, uc, t = nf_open_term sigma0 ise pt in
  let ise1 = create_evar_defs s in
  let ise1 = Evd.set_universe_context ise1 uc in
  let ise2 = Typeclasses.resolve_typeclasses ~fail:true env ise1 in
  if not (ok ise) then raise NoProgress else
  if ise2 == ise1 then (s, uc, t)
  else
    let s, uc', t = nf_open_term sigma0 ise2 t in
    s, Evd.union_evar_universe_context uc uc', t

let unify_HO env sigma0 t1 t2 =
  let sigma = unif_HO env sigma0 t1 t2 in
  let sigma, uc, _ = unif_end env sigma0 sigma t2 (fun _ -> true) in
  Evd.set_universe_context sigma uc

let pf_unify_HO gl t1 t2 =
  let env, sigma0, si = pf_env gl, project gl, sig_it gl in
  let sigma = unify_HO env sigma0 t1 t2 in
  re_sig si sigma

(* This is what the definition of iter_constr should be... *)
let iter_constr_LR f c = match kind c with
  | Evar (k, a) -> Array.iter f a
  | Cast (cc, _, t) -> f cc; f t  
  | Prod (_, t, b) | Lambda (_, t, b)  -> f t; f b
  | LetIn (_, v, t, b) -> f v; f t; f b
  | App (cf, a) -> f cf; Array.iter f a
  | Case (_, p, v, b) -> f v; f p; Array.iter f b
  | Fix (_, (_, t, b)) | CoFix (_, (_, t, b)) ->
    for i = 0 to Array.length t - 1 do f t.(i); f b.(i) done
  | Proj(_,a) -> f a
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _ | Construct _) -> ()

(* The comparison used to determine which subterms matches is KEYED        *)
(* CONVERSION. This looks for convertible terms that either have the same  *)
(* same head constant as pat if pat is an application (after beta-iota),   *)
(* or start with the same constr constructor (esp. for LetIn); this is     *)
(* disregarded if the head term is let x := ... in x, and casts are always *)
(* ignored and removed).                                                   *)
(* Record projections get special treatment: in addition to the projection *)
(* constant itself, ssreflect also recognizes head constants of canonical  *)
(* projections.                                                            *)

exception NoMatch
type ssrdir = L2R | R2L
let pr_dir_side = function L2R -> str "LHS" | R2L -> str "RHS"
let inv_dir = function L2R -> R2L | R2L -> L2R


type pattern_class =
  | KpatFixed
  | KpatConst
  | KpatEvar of Evar.t
  | KpatLet
  | KpatLam
  | KpatRigid
  | KpatFlex
  | KpatProj of Constant.t

type tpattern = {
  up_k : pattern_class;
  up_FO : constr;
  up_f : constr;
  up_a : constr array;
  up_t : constr;                      (* equation proof term or matched term *)
  up_dir : ssrdir;                    (* direction of the rule *)
  up_ok : constr -> evar_map -> bool; (* progress test for rewrite *)
  }

let all_ok _ _ = true

let proj_nparams c =
  try 1 + Recordops.find_projection_nparams (ConstRef c) with _ -> 0

let isRigid c = match kind c with
  | Prod _ | Sort _ | Lambda _ | Case _ | Fix _ | CoFix _ -> true
  | _ -> false

let hole_var = mkVar (Id.of_string "_")
let pr_constr_pat c0 =
  let rec wipe_evar c =
    if isEvar c then hole_var else map wipe_evar c in
  let sigma, env = Pfedit.get_current_context () in
  pr_constr_env env sigma (wipe_evar c0)

(* Turn (new) evars into metas *)
let evars_for_FO ~hack env sigma0 (ise0:evar_map) c0 =
  let ise = ref ise0 in
  let sigma = ref ise0 in
  let nenv = env_size env + if hack then 1 else 0 in
  let rec put c = match kind c with
  | Evar (k, a as ex) ->
    begin try put (existential_value !sigma ex)
    with NotInstantiatedEvar ->
    if Evd.mem sigma0 k then map put c else
    let evi = Evd.find !sigma k in
    let dc = List.firstn (max 0 (Array.length a - nenv)) (evar_filtered_context evi) in
    let abs_dc (d, c) = function
    | Context.Named.Declaration.LocalDef (x, b, t) ->
        d, mkNamedLetIn x (put b) (put t) c
    | Context.Named.Declaration.LocalAssum (x, t) ->
        mkVar x :: d, mkNamedProd x (put t) c in
    let a, t =
      Context.Named.fold_inside abs_dc ~init:([], (put evi.evar_concl)) dc in
    let m = Evarutil.new_meta () in
    ise := meta_declare m t !ise;
    sigma := Evd.define k (applistc (mkMeta m) a) !sigma;
    put (existential_value !sigma ex)
    end
  | _ -> map put c in
  let c1 = put c0 in !ise, c1

(* Compile a match pattern from a term; t is the term to fill. *)
(* p_origin can be passed to obtain a better error message     *)
let mk_tpattern ?p_origin ?(hack=false) env sigma0 (ise, t) ok dir p =
  let k, f, a =
    let f, a = Reductionops.whd_betaiota_stack ise (EConstr.of_constr p) in
    let f = EConstr.Unsafe.to_constr f in
    let a = List.map EConstr.Unsafe.to_constr a in
    match kind f with
    | Const (p,_) ->
      let np = proj_nparams p in
      if np = 0 || np > List.length a then KpatConst, f, a else
      let a1, a2 = List.chop np a in KpatProj p, (applistc f a1), a2
    | Proj (p,arg) -> KpatProj (Projection.constant p), f, a
    | Var _ | Ind _ | Construct _ -> KpatFixed, f, a
    | Evar (k, _) ->
      if Evd.mem sigma0 k then KpatEvar k, f, a else
      if a <> [] then KpatFlex, f, a else 
      (match p_origin with None -> CErrors.user_err Pp.(str "indeterminate pattern")
      | Some (dir, rule) ->
        errorstrm (str "indeterminate " ++ pr_dir_side dir
          ++ str " in " ++ pr_constr_pat rule))
    | LetIn (_, v, _, b) ->
      if b <> mkRel 1 then KpatLet, f, a else KpatFlex, v, a
    | Lambda _ -> KpatLam, f, a
    | _ -> KpatRigid, f, a in
  let aa = Array.of_list a in
  let ise', p' = evars_for_FO ~hack env sigma0 ise (mkApp (f, aa)) in
  ise',
  { up_k = k; up_FO = p'; up_f = f; 
    up_a = aa; up_ok = ok; up_dir = dir; up_t = t}

(* Specialize a pattern after a successful match: assign a precise head *)
(* kind and arity for Proj and Flex patterns.                           *)
let ungen_upat lhs (sigma, uc, t) u =
  let f, a = safeDestApp lhs in
  let k = match kind f with
  | Var _ | Ind _ | Construct _ -> KpatFixed
  | Const _ -> KpatConst
  | Evar (k, _) -> if is_defined sigma k then raise NoMatch else KpatEvar k
  | LetIn _ -> KpatLet
  | Lambda _ -> KpatLam
  | _ -> KpatRigid in
  sigma, uc, {u with up_k = k; up_FO = lhs; up_f = f; up_a = a; up_t = t}

let nb_cs_proj_args pc f u =
  let na k =
    List.length (snd (lookup_canonical_conversion (ConstRef pc, k))).o_TCOMPS in
  let nargs_of_proj t = match kind t with
      | App(_,args) -> Array.length args
      | Proj _ -> 0 (* if splay_app calls expand_projection, this has to be
                       the number of arguments including the projected *)
      | _ -> assert false in
  try match kind f with
  | Prod _ -> na Prod_cs
  | Sort s -> na (Sort_cs (Sorts.family s))
  | Const (c',_) when Constant.equal c' pc -> nargs_of_proj u.up_f 
  | Proj (c',_) when Constant.equal (Projection.constant c') pc -> nargs_of_proj u.up_f
  | Var _ | Ind _ | Construct _ | Const _ -> na (Const_cs (global_of_constr f))
  | _ -> -1
  with Not_found -> -1

let isEvar_k k f =
  match kind f with Evar (k', _) -> k = k' | _ -> false

let nb_args c =
  match kind c with App (_, a) -> Array.length a | _ -> 0

let mkSubArg i a = if i = Array.length a then a else Array.sub a 0 i
let mkSubApp f i a = if i = 0 then f else mkApp (f, mkSubArg i a)

let splay_app ise =
  let rec loop c a = match kind c with
  | App (f, a') -> loop f (Array.append a' a)
  | Cast (c', _, _) -> loop c' a
  | Evar ex ->
    (try loop (existential_value ise ex) a with _ -> c, a)
  | _ -> c, a in
  fun c -> match kind c with
  | App (f, a) -> loop f a
  | Cast _ | Evar _ -> loop c [| |]
  | _ -> c, [| |]

let filter_upat i0 f n u fpats =
  let na = Array.length u.up_a in
  if n < na then fpats else
  let np = match u.up_k with
  | KpatConst when equal u.up_f f -> na
  | KpatFixed when equal u.up_f f -> na 
  | KpatEvar k when isEvar_k k f -> na
  | KpatLet when isLetIn f -> na
  | KpatLam when isLambda f -> na
  | KpatRigid when isRigid f -> na
  | KpatFlex -> na
  | KpatProj pc ->
    let np = na + nb_cs_proj_args pc f u in if n < np then -1 else np
  | _ -> -1 in
  if np < na then fpats else
  let () = if !i0 < np then i0 := n in (u, np) :: fpats

let eq_prim_proj c t = match kind t with
  | Proj(p,_) -> Constant.equal (Projection.constant p) c
  | _ -> false

let filter_upat_FO i0 f n u fpats =
  let np = nb_args u.up_FO in
  if n < np then fpats else
  let ok = match u.up_k with
  | KpatConst -> equal u.up_f f 
  | KpatFixed -> equal u.up_f f 
  | KpatEvar k -> isEvar_k k f
  | KpatLet -> isLetIn f
  | KpatLam -> isLambda f
  | KpatRigid -> isRigid f
  | KpatProj pc -> equal f (mkConst pc) || eq_prim_proj pc f
  | KpatFlex -> i0 := n; true in
  if ok then begin if !i0 < np then i0 := np; (u, np) :: fpats end else fpats

exception FoundUnif of (evar_map * UState.t * tpattern)
(* Note: we don't update env as we descend into the term, as the primitive *)
(* unification procedure always rejects subterms with bound variables.     *)

let dont_impact_evars_in cl =
  let evs_in_cl = Evd.evars_of_term cl in
  fun sigma -> Evar.Set.for_all (fun k ->
    try let _ = Evd.find_undefined sigma k in true
    with Not_found -> false) evs_in_cl

(* We are forced to duplicate code between the FO/HO matching because we    *)
(* have to work around several kludges in unify.ml:                         *)
(*  - w_unify drops into second-order unification when the pattern is an    *)
(*    application whose head is a meta.                                     *)
(*  - w_unify tries to unify types without subsumption when the pattern     *)
(*    head is an evar or meta (e.g., it fails on ?1 = nat when ?1 : Type).  *)
(*  - w_unify expands let-in (zeta conversion) eagerly, whereas we want to  *)
(*    match a head let rigidly.                                             *)
let match_upats_FO upats env sigma0 ise orig_c =
  let dont_impact_evars = dont_impact_evars_in orig_c in
  let rec loop c =
    let f, a = splay_app ise c in let i0 = ref (-1) in
    let fpats =
      List.fold_right (filter_upat_FO i0 f (Array.length a)) upats [] in
    while !i0 >= 0 do
      let i = !i0 in i0 := -1;
      let c' = mkSubApp f i a in
      let one_match (u, np) =
         let skip =
           if i <= np then i < np else
           if u.up_k == KpatFlex then begin i0 := i - 1; false end else
           begin if !i0 < np then i0 := np; true end in
         if skip || not (closed0 c') then () else try
           let _ = match u.up_k with
           | KpatFlex ->
             let kludge v = mkLambda (Anonymous, mkProp, v) in
             unif_FO env ise (kludge u.up_FO) (kludge c')
           | KpatLet ->
             let kludge vla =
               let vl, a = safeDestApp vla in
               let x, v, t, b = destLetIn vl in
               mkApp (mkLambda (x, t, b), Array.cons v a) in
             unif_FO env ise (kludge u.up_FO) (kludge c')
           | _ -> unif_FO env ise u.up_FO c' in
           let ise' = (* Unify again using HO to assign evars *)
             let p = mkApp (u.up_f, u.up_a) in
             try unif_HO env ise (EConstr.of_constr p) (EConstr.of_constr c') with e when CErrors.noncritical e -> raise NoMatch in
           let lhs = mkSubApp f i a in
           let pt' = unif_end env sigma0 ise' (EConstr.of_constr u.up_t) (u.up_ok lhs) in
           let pt' = pi1 pt', pi2 pt', EConstr.Unsafe.to_constr (pi3 pt') in
           raise (FoundUnif (ungen_upat lhs pt' u))
       with FoundUnif (s,_,_) as sig_u when dont_impact_evars s -> raise sig_u
       | Not_found -> CErrors.anomaly (str"incomplete ise in match_upats_FO.")
       | e when CErrors.noncritical e -> () in
    List.iter one_match fpats
  done;
  iter_constr_LR loop f; Array.iter loop a in
  try loop orig_c with Invalid_argument _ -> CErrors.anomaly (str"IN FO.")

let prof_FO = mk_profiler "match_upats_FO";;
let match_upats_FO upats env sigma0 ise c =
  prof_FO.profile (match_upats_FO upats env sigma0) ise c
;;


let match_upats_HO ~on_instance upats env sigma0 ise c =
 let dont_impact_evars = dont_impact_evars_in c in
 let it_did_match = ref false in
 let failed_because_of_TC = ref false in
 let rec aux upats env sigma0 ise c =
  let f, a = splay_app ise c in let i0 = ref (-1) in
  let fpats = List.fold_right (filter_upat i0 f (Array.length a)) upats [] in
  while !i0 >= 0 do
    let i = !i0 in i0 := -1;
    let one_match (u, np) =
      let skip =
        if i <= np then i < np else
        if u.up_k == KpatFlex then begin i0 := i - 1; false end else
        begin if !i0 < np then i0 := np; true end in
      if skip then () else try
        let ise' = match u.up_k with
        | KpatFixed | KpatConst -> ise
        | KpatEvar _ ->
          let _, pka = destEvar u.up_f and _, ka = destEvar f in
          unif_HO_args env ise pka 0 ka
        | KpatLet ->
          let x, v, t, b = destLetIn f in
          let _, pv, _, pb = destLetIn u.up_f in
          let ise' = unif_HO env ise (EConstr.of_constr pv) (EConstr.of_constr v) in
          unif_HO
            (Environ.push_rel (Context.Rel.Declaration.LocalAssum(x, t)) env)
            ise' (EConstr.of_constr pb) (EConstr.of_constr b)
        | KpatFlex | KpatProj _ ->
          unif_HO env ise (EConstr.of_constr u.up_f) (EConstr.of_constr(mkSubApp f (i - Array.length u.up_a) a))
        | _ -> unif_HO env ise (EConstr.of_constr u.up_f) (EConstr.of_constr f) in
        let ise'' = unif_HO_args env ise' u.up_a (i - Array.length u.up_a) a in
        let lhs = mkSubApp f i a in
        let pt' = unif_end env sigma0 ise'' (EConstr.of_constr u.up_t) (u.up_ok lhs) in
        let pt' = pi1 pt', pi2 pt', EConstr.Unsafe.to_constr (pi3 pt') in
        on_instance (ungen_upat lhs pt' u)
      with FoundUnif (s,_,_) as sig_u when dont_impact_evars s -> raise sig_u
      | NoProgress -> it_did_match := true
      | Pretype_errors.PretypeError
         (_,_,Pretype_errors.UnsatisfiableConstraints _) ->
          failed_because_of_TC:=true
      | e when CErrors.noncritical e -> () in
    List.iter one_match fpats
  done;
  iter_constr_LR (aux upats env sigma0 ise) f;
  Array.iter (aux upats env sigma0 ise) a
 in
 aux upats env sigma0 ise c;
 if !it_did_match then raise NoProgress;
 !failed_because_of_TC

let prof_HO = mk_profiler "match_upats_HO";;
let match_upats_HO ~on_instance upats env sigma0 ise c =
  prof_HO.profile (match_upats_HO ~on_instance upats env sigma0) ise c
;;


let fixed_upat = function
| {up_k = KpatFlex | KpatEvar _ | KpatProj _} -> false 
| {up_t = t} -> not (occur_existential Evd.empty (EConstr.of_constr t)) (** FIXME *)

let do_once r f = match !r with Some _ -> () | None -> r := Some (f ())

let assert_done r = 
  match !r with Some x -> x | None -> CErrors.anomaly (str"do_once never called.")

let assert_done_multires r = 
  match !r with
  | None -> CErrors.anomaly (str"do_once never called.")
  | Some (n, xs) ->
      r := Some (n+1,xs);
      try List.nth xs n with Failure _ -> raise NoMatch

type subst = Environ.env -> constr -> constr -> int -> constr
type find_P = 
  Environ.env -> constr -> int ->
  k:subst ->
     constr
type conclude = unit ->
  constr * ssrdir * (Evd.evar_map * UState.t * constr)

(* upats_origin makes a better error message only            *)
let mk_tpattern_matcher ?(all_instances=false)
  ?(raise_NoMatch=false) ?upats_origin sigma0 occ (ise, upats)
=
  let nocc = ref 0 and skip_occ = ref false in
  let use_occ, occ_list = match occ with
  | Some (true, ol) -> ol = [], ol
  | Some (false, ol) -> ol <> [], ol
  | None -> false, [] in
  let max_occ = List.fold_right max occ_list 0 in
  let subst_occ =
    let occ_set = Array.make max_occ (not use_occ) in
    let _ = List.iter (fun i -> occ_set.(i - 1) <- use_occ) occ_list in
    let _ = if max_occ = 0 then skip_occ := use_occ in
    fun () -> incr nocc;
    if !nocc = max_occ then skip_occ := use_occ;
    if !nocc <= max_occ then occ_set.(!nocc - 1) else not use_occ in
  let upat_that_matched = ref None in
  let match_EQ env sigma u = 
    match u.up_k with
    | KpatLet ->
      let x, pv, t, pb = destLetIn u.up_f in
      let env' =
        Environ.push_rel (Context.Rel.Declaration.LocalAssum(x, t)) env in
      let match_let f = match kind f with
      | LetIn (_, v, _, b) -> unif_EQ env sigma pv v && unif_EQ env' sigma pb b
      | _ -> false in match_let
    | KpatFixed -> equal u.up_f
    | KpatConst -> equal u.up_f
    | KpatLam -> fun c ->
       (match kind c with
       | Lambda _ -> unif_EQ env sigma u.up_f c
       | _ -> false)
    | _ -> unif_EQ env sigma u.up_f in
let p2t p = mkApp(p.up_f,p.up_a) in 
let source () = match upats_origin, upats with
  | None, [p] -> 
      (if fixed_upat p then str"term " else str"partial term ") ++ 
      pr_constr_pat (p2t p) ++ spc()
  | Some (dir,rule), [p] -> str"The " ++ pr_dir_side dir ++ str" of " ++ 
      pr_constr_pat rule ++ fnl() ++ ws 4 ++ pr_constr_pat (p2t p) ++ fnl()
  | Some (dir,rule), _ -> str"The " ++ pr_dir_side dir ++ str" of " ++ 
      pr_constr_pat rule ++ spc()
  | _, [] | None, _::_::_ ->
      CErrors.anomaly (str"mk_tpattern_matcher with no upats_origin.") in
let on_instance, instances =
  let instances = ref [] in
  (fun x ->
    if all_instances then instances := !instances @ [x]
    else raise (FoundUnif x)),
  (fun () -> !instances) in
let rec uniquize = function
  | [] -> []
  | (sigma,_,{ up_f = f; up_a = a; up_t = t } as x) :: xs ->
    let t = nf_evar sigma t in
    let f = nf_evar sigma f in
    let a = Array.map (nf_evar sigma) a in
    let neq (sigma1,_,{ up_f = f1; up_a = a1; up_t = t1 }) =
      let t1 = nf_evar sigma1 t1 in
      let f1 = nf_evar sigma1 f1 in
      let a1 = Array.map (nf_evar sigma1) a1 in
      not (equal t t1 &&
           equal f f1 && CArray.for_all2 equal a a1) in
    x :: uniquize (List.filter neq xs) in

((fun env c h ~k -> 
  do_once upat_that_matched (fun () -> 
    let failed_because_of_TC = ref false in
    try
      if not all_instances then match_upats_FO upats env sigma0 ise c;
      failed_because_of_TC:=match_upats_HO ~on_instance upats env sigma0 ise c;
      raise NoMatch
    with FoundUnif sigma_u -> 0,[sigma_u]
    | (NoMatch|NoProgress) when all_instances && instances () <> [] ->
      0, uniquize (instances ())
    | NoMatch when (not raise_NoMatch) ->
      if !failed_because_of_TC then
        errorstrm (source ()++strbrk"matches but type classes inference fails")
      else
        errorstrm (source () ++ str "does not match any subterm of the goal")
    | NoProgress when (not raise_NoMatch) ->
        let dir = match upats_origin with Some (d,_) -> d | _ ->
          CErrors.anomaly (str"mk_tpattern_matcher with no upats_origin.") in
        errorstrm (str"all matches of "++source()++
          str"are equal to the " ++ pr_dir_side (inv_dir dir))
    | NoProgress -> raise NoMatch);
  let sigma, _, ({up_f = pf; up_a = pa} as u) =
    if all_instances then assert_done_multires upat_that_matched
    else List.hd (snd(assert_done upat_that_matched)) in
(*   pp(lazy(str"sigma@tmatch=" ++ pr_evar_map None sigma)); *)
  if !skip_occ then ((*ignore(k env u.up_t 0);*) c) else
  let match_EQ = match_EQ env sigma u in
  let pn = Array.length pa in
  let rec subst_loop (env,h as acc) c' =
    if !skip_occ then c' else
    let f, a = splay_app sigma c' in
    if Array.length a >= pn && match_EQ f && unif_EQ_args env sigma pa a then
      let a1, a2 = Array.chop (Array.length pa) a in
      let fa1 = mkApp (f, a1) in
      let f' = if subst_occ () then k env u.up_t fa1 h else fa1 in
      mkApp (f', Array.map_left (subst_loop acc) a2)
    else
      (* TASSI: clear letin values to avoid unfolding *)
      let inc_h rd (env,h') =
        let ctx_item =
          match rd with
          | Context.Rel.Declaration.LocalAssum _ as x -> x
          | Context.Rel.Declaration.LocalDef (x,_,y) ->
              Context.Rel.Declaration.LocalAssum(x,y) in
        EConstr.push_rel ctx_item env, h' + 1 in
      let self acc c = EConstr.of_constr (subst_loop acc (EConstr.Unsafe.to_constr c)) in
      let f = EConstr.of_constr f in
      let f' = map_constr_with_binders_left_to_right sigma inc_h self acc f in
      let f' = EConstr.Unsafe.to_constr f' in
      mkApp (f', Array.map_left (subst_loop acc) a) in
  subst_loop (env,h) c) : find_P),
((fun () ->
  let sigma, uc, ({up_f = pf; up_a = pa} as u) =
    match !upat_that_matched with
    | Some (_,x) -> List.hd x | None when raise_NoMatch -> raise NoMatch
    | None -> CErrors.anomaly (str"companion function never called.") in
  let p' = mkApp (pf, pa) in
  if max_occ <= !nocc then p', u.up_dir, (sigma, uc, u.up_t)
  else errorstrm (str"Only " ++ int !nocc ++ str" < " ++ int max_occ ++
        str(String.plural !nocc " occurence") ++ match upats_origin with
        | None -> str" of" ++ spc() ++ pr_constr_pat p'
        | Some (dir,rule) -> str" of the " ++ pr_dir_side dir ++ fnl() ++
            ws 4 ++ pr_constr_pat p' ++ fnl () ++ 
            str"of " ++ pr_constr_pat rule)) : conclude)

type ('ident, 'term) ssrpattern = 
  | T of 'term
  | In_T of 'term
  | X_In_T of 'ident * 'term     
  | In_X_In_T of 'ident * 'term     
  | E_In_X_In_T of 'term * 'ident * 'term     
  | E_As_X_In_T of 'term * 'ident * 'term     
        
let pr_pattern = function
  | T t -> prl_term t
  | In_T t -> str "in " ++ prl_term t
  | X_In_T (x,t) -> prl_term x ++ str " in " ++ prl_term t
  | In_X_In_T (x,t) -> str "in " ++ prl_term x ++ str " in " ++ prl_term t
  | E_In_X_In_T (e,x,t) ->
      prl_term e ++ str " in " ++ prl_term x ++ str " in " ++ prl_term t
  | E_As_X_In_T (e,x,t) ->
      prl_term e ++ str " as " ++ prl_term x ++ str " in " ++ prl_term t

let pr_pattern_w_ids = function
  | T t -> prl_term t
  | In_T t -> str "in " ++ prl_term t
  | X_In_T (x,t) -> pr_id x ++ str " in " ++ prl_term t
  | In_X_In_T (x,t) -> str "in " ++ pr_id x ++ str " in " ++ prl_term t
  | E_In_X_In_T (e,x,t) ->
      prl_term e ++ str " in " ++ pr_id x ++ str " in " ++ prl_term t
  | E_As_X_In_T (e,x,t) ->
      prl_term e ++ str " as " ++ pr_id x ++ str " in " ++ prl_term t

let pr_pattern_aux pr_constr = function
  | T t -> pr_constr t
  | In_T t -> str "in " ++ pr_constr t
  | X_In_T (x,t) -> pr_constr x ++ str " in " ++ pr_constr t
  | In_X_In_T (x,t) -> str "in " ++ pr_constr x ++ str " in " ++ pr_constr t
  | E_In_X_In_T (e,x,t) ->
      pr_constr e ++ str " in " ++ pr_constr x ++ str " in " ++ pr_constr t
  | E_As_X_In_T (e,x,t) ->
      pr_constr e ++ str " as " ++ pr_constr x ++ str " in " ++ pr_constr t
let pp_pattern (sigma, p) =
  pr_pattern_aux (fun t -> pr_constr_pat (EConstr.Unsafe.to_constr (pi3 (nf_open_term sigma sigma (EConstr.of_constr t))))) p
let pr_cpattern = pr_term
let pr_rpattern _ _ _ = pr_pattern

let wit_rpatternty = add_genarg "rpatternty" pr_pattern

let glob_ssrterm gs = function
  | k, (_, Some c) -> k,
      let x = Tacintern.intern_constr gs c in
      fst x, Some c
  | ct -> ct

(* This piece of code asserts the following notations are reserved *)
(* Reserved Notation "( a 'in' b )"        (at level 0).           *)
(* Reserved Notation "( a 'as' b )"        (at level 0).           *)
(* Reserved Notation "( a 'in' b 'in' c )" (at level 0).           *)
(* Reserved Notation "( a 'as' b 'in' c )" (at level 0).           *)
let glob_cpattern gs p =
  pp(lazy(str"globbing pattern: " ++ pr_term p));
  let glob x = snd (glob_ssrterm gs (mk_lterm x)) in
  let encode k s l =
    let name = Name (Id.of_string ("_ssrpat_" ^ s)) in
    k, (mkRCast mkRHole (mkRLambda name mkRHole (mkRApp mkRHole l)), None) in
  let bind_in t1 t2 =
    let mkCHole = mkCHole ~loc:None in let n = Name (destCVar t1) in
    fst (glob (mkCCast mkCHole (mkCLambda n mkCHole t2))) in
  let check_var t2 = if not (isCVar t2) then
    loc_error (constr_loc t2) "Only identifiers are allowed here" in
  match p with
  | _, (_, None) as x -> x
  | k, (v, Some t) as orig ->
     if k = 'x' then glob_ssrterm gs ('(', (v, Some t)) else
     match t.CAst.v with
     | CNotation("( _ in _ )", ([t1; t2], [], [])) ->
         (try match glob t1, glob t2 with
         | (r1, None), (r2, None) -> encode k "In" [r1;r2]
         | (r1, Some _), (r2, Some _) when isCVar t1 ->
             encode k "In" [r1; r2; bind_in t1 t2]
         | (r1, Some _), (r2, Some _) -> encode k "In" [r1; r2]
         | _ -> CErrors.anomaly (str"where are we?.")
         with _ when isCVar t1 -> encode k "In" [bind_in t1 t2])
     | CNotation("( _ in _ in _ )", ([t1; t2; t3], [], [])) ->
         check_var t2; encode k "In" [fst (glob t1); bind_in t2 t3]
     | CNotation("( _ as _ )", ([t1; t2], [], [])) ->
         encode k "As" [fst (glob t1); fst (glob t2)]
     | CNotation("( _ as _ in _ )", ([t1; t2; t3], [], [])) ->
         check_var t2; encode k "As" [fst (glob t1); bind_in t2 t3]
     | _ -> glob_ssrterm gs orig
;;

let glob_rpattern s p =
  match p with
  | T t -> T (glob_cpattern s t)
  | In_T t -> In_T (glob_ssrterm s t)
  | X_In_T(x,t) -> X_In_T (x,glob_ssrterm s t)
  | In_X_In_T(x,t) -> In_X_In_T (x,glob_ssrterm s t)
  | E_In_X_In_T(e,x,t) -> E_In_X_In_T (glob_ssrterm s e,x,glob_ssrterm s t)
  | E_As_X_In_T(e,x,t) -> E_As_X_In_T (glob_ssrterm s e,x,glob_ssrterm s t)

let subst_ssrterm s (k, c) = k, Tacsubst.subst_glob_constr_and_expr s c

let subst_rpattern s = function
  | T t -> T (subst_ssrterm s t)
  | In_T t -> In_T (subst_ssrterm s t)
  | X_In_T(x,t) -> X_In_T (x,subst_ssrterm s t)
  | In_X_In_T(x,t) -> In_X_In_T (x,subst_ssrterm s t)
  | E_In_X_In_T(e,x,t) -> E_In_X_In_T (subst_ssrterm s e,x,subst_ssrterm s t)
  | E_As_X_In_T(e,x,t) -> E_As_X_In_T (subst_ssrterm s e,x,subst_ssrterm s t)

ARGUMENT EXTEND rpattern
  TYPED AS rpatternty
  PRINTED BY pr_rpattern
  GLOBALIZED BY glob_rpattern
  SUBSTITUTED BY subst_rpattern
  | [ lconstr(c) ] -> [ T (mk_lterm c) ]
  | [ "in" lconstr(c) ] -> [ In_T (mk_lterm c) ]
  | [ lconstr(x) "in" lconstr(c) ] -> 
    [ X_In_T (mk_lterm x, mk_lterm c) ]
  | [ "in" lconstr(x) "in" lconstr(c) ] -> 
    [ In_X_In_T (mk_lterm x, mk_lterm c) ]
  | [ lconstr(e) "in" lconstr(x) "in" lconstr(c) ] -> 
    [ E_In_X_In_T (mk_lterm e, mk_lterm x, mk_lterm c) ]
  | [ lconstr(e) "as" lconstr(x) "in" lconstr(c) ] -> 
    [ E_As_X_In_T (mk_lterm e, mk_lterm x, mk_lterm c) ]
END



type cpattern = char * glob_constr_and_expr
let tag_of_cpattern = fst
let loc_of_cpattern = loc_ofCG
let cpattern_of_term t = t
type occ = (bool * int list) option

type rpattern = (cpattern, cpattern) ssrpattern
let pr_rpattern = pr_pattern

type pattern = Evd.evar_map * (constr, constr) ssrpattern

let id_of_cpattern (_, (c1, c2)) = let open CAst in match DAst.get c1, c2 with
  | _, Some { v = CRef (Ident (_, x), _) } -> Some x
  | _, Some { v = CAppExpl ((_, Ident (_, x), _), []) } -> Some x
  | GRef (VarRef x, _), None -> Some x
  | _ -> None
let id_of_Cterm t = match id_of_cpattern t with
  | Some x -> x
  | None -> loc_error (loc_of_cpattern t) "Only identifiers are allowed here"

let of_ftactic ftac gl =
  let r = ref None in
  let tac = Ftactic.run ftac (fun ans -> r := Some ans; Proofview.tclUNIT ()) in
  let tac = Proofview.V82.of_tactic tac in
  let { sigma = sigma } = tac gl in
  let ans = match !r with
  | None -> assert false (** If the tactic failed we should not reach this point *)
  | Some ans -> ans
  in
  (sigma, ans)

let interp_wit wit ist gl x = 
  let globarg = in_gen (glbwit wit) x in
  let arg = interp_genarg ist globarg in
  let (sigma, arg) = of_ftactic arg gl in
  sigma, Value.cast (topwit wit) arg
let interp_open_constr ist gl gc =
  interp_wit wit_open_constr ist gl gc
let pf_intern_term ist gl (_, c) = glob_constr ist (pf_env gl) c
let interp_term ist gl (_, c) = on_snd EConstr.Unsafe.to_constr (interp_open_constr ist gl c)
let pr_ssrterm _ _ _ = pr_term
let input_ssrtermkind strm = match stream_nth 0 strm with
  | Tok.KEYWORD "(" -> '('
  | Tok.KEYWORD "@" -> '@'
  | _ -> ' '
let ssrtermkind = Pcoq.Gram.Entry.of_parser "ssrtermkind" input_ssrtermkind

let interp_ssrterm _ gl t = Tacmach.project gl, t

ARGUMENT EXTEND cpattern
     PRINTED BY pr_ssrterm
     INTERPRETED BY interp_ssrterm
     GLOBALIZED BY glob_cpattern SUBSTITUTED BY subst_ssrterm
     RAW_PRINTED BY pr_ssrterm
     GLOB_PRINTED BY pr_ssrterm
| [ "Qed" constr(c) ] -> [ mk_lterm c ]
END

GEXTEND Gram
  GLOBAL: cpattern;
  cpattern: [[ k = ssrtermkind; c = constr ->
    let pattern = mk_term k c in
    if loc_ofCG pattern <> Some !@loc && k = '(' then mk_term 'x' c else pattern ]];
END

ARGUMENT EXTEND lcpattern
     TYPED AS cpattern
     PRINTED BY pr_ssrterm
     INTERPRETED BY interp_ssrterm
     GLOBALIZED BY glob_cpattern SUBSTITUTED BY subst_ssrterm
     RAW_PRINTED BY pr_ssrterm
     GLOB_PRINTED BY pr_ssrterm
| [ "Qed" lconstr(c) ] -> [ mk_lterm c ]
END

GEXTEND Gram
  GLOBAL: lcpattern;
  lcpattern: [[ k = ssrtermkind; c = lconstr ->
    let pattern = mk_term k c in
    if loc_ofCG pattern <> Some !@loc && k = '(' then mk_term 'x' c else pattern ]];
END

let thin id sigma goal =
  let ids = Id.Set.singleton id in
  let env = Goal.V82.env sigma goal in
  let cl = Goal.V82.concl sigma goal in
  let evdref = ref (Evd.clear_metas sigma) in
  let ans =
    try Some (Evarutil.clear_hyps_in_evi env evdref (Environ.named_context_val env) cl ids)
    with Evarutil.ClearDependencyError _ -> None
  in
  match ans with
  | None -> sigma
  | Some (hyps, concl) ->
    let sigma = !evdref in
    let (gl,ev,sigma) = Goal.V82.mk_goal sigma hyps concl (Goal.V82.extra sigma goal) in
    let sigma = Goal.V82.partial_solution_to sigma goal gl ev in
    sigma

let pr_ist { lfun= lfun } =
  prlist_with_sep spc
    (fun (id, Geninterp.Val.Dyn(ty,_)) ->
        pr_id id ++ str":" ++ Geninterp.Val.pr ty) (Id.Map.bindings lfun)

let interp_pattern ?wit_ssrpatternarg ist gl red redty =
  pp(lazy(str"interpreting: " ++ pr_pattern red));
  pp(lazy(str" in ist: " ++ pr_ist ist));
  let xInT x y = X_In_T(x,y) and inXInT x y = In_X_In_T(x,y) in
  let inT x = In_T x and eInXInT e x t = E_In_X_In_T(e,x,t) in
  let eAsXInT e x t = E_As_X_In_T(e,x,t) in
  let mkG ?(k=' ') x = k,(x,None) in
  let decode ist t ?reccall f g =
    try match DAst.get (pf_intern_term ist gl t) with
    | GCast(t,CastConv c) when isGHole t && isGLambda c->
      let (x, c) = destGLambda c in
      f x (' ',(c,None))
    | GVar id
      when Id.Map.mem id ist.lfun &&
           not(Option.is_empty reccall) &&
           not(Option.is_empty wit_ssrpatternarg) ->
        let v = Id.Map.find id ist.lfun in
        Option.get reccall
          (Value.cast (topwit (Option.get wit_ssrpatternarg)) v)
    | it -> g t with e when CErrors.noncritical e -> g t in
  let decodeG t f g = decode ist (mkG t) f g in
  let bad_enc id _ = CErrors.anomaly (str"bad encoding for pattern "++str id++str".") in
  let cleanup_XinE h x rp sigma =
    let h_k = match kind h with Evar (k,_) -> k | _ -> assert false in
    let to_clean, update = (* handle rename if x is already used *)
      let ctx = pf_hyps gl in
      let len = Context.Named.length ctx in
      let name = ref None in
      try ignore(Context.Named.lookup x ctx); (name, fun k ->
        if !name = None then
        let nctx = Evd.evar_context (Evd.find sigma k) in
        let nlen = Context.Named.length nctx in
        if nlen > len then begin
          name := Some (Context.Named.Declaration.get_id (List.nth nctx (nlen - len - 1)))
        end)
      with Not_found -> ref (Some x), fun _ -> () in
    let sigma0 = project gl in
    let new_evars =
      let rec aux acc t = match kind t with
      | Evar (k,_) ->
          if k = h_k || List.mem k acc || Evd.mem sigma0 k then acc else
          (update k; k::acc)
      | _ -> CoqConstr.fold aux acc t in 
      aux [] (nf_evar sigma rp) in
    let sigma = 
      List.fold_left (fun sigma e ->
        if Evd.is_defined sigma e then sigma else (* clear may be recursive *)
        if Option.is_empty !to_clean then sigma else
        let name = Option.get !to_clean in
        pp(lazy(pr_id name));
        thin name sigma e)
      sigma new_evars in
    sigma in
  let red = let rec decode_red (ist,red) = match red with
    | T(k,(t,None)) ->
      begin match DAst.get t with
      | GCast (c,CastConv t)
        when isGHole c &&
          let (id, t) = destGLambda t in
          let id = Id.to_string id in let len = String.length id in
        (len > 8 && String.sub id 0 8 = "_ssrpat_") ->
        let (id, t) = destGLambda t in
        let id = Id.to_string id in let len = String.length id in
        (match String.sub id 8 (len - 8), DAst.get t with
        | "In", GApp( _, [t]) -> decodeG t xInT (fun x -> T x)
        | "In", GApp( _, [e; t]) -> decodeG t (eInXInT (mkG e)) (bad_enc id)
        | "In", GApp( _, [e; t; e_in_t]) ->
            decodeG t (eInXInT (mkG e))
              (fun _ -> decodeG e_in_t xInT (fun _ -> assert false))
        | "As", GApp(_, [e; t]) -> decodeG t (eAsXInT (mkG e)) (bad_enc id)
        | _ -> bad_enc id ())
      | _ ->
        decode ist ~reccall:decode_red (k, (t, None)) xInT (fun x -> T x)
      end
    | T t -> decode ist ~reccall:decode_red t xInT (fun x -> T x)
    | In_T t -> decode ist t inXInT inT
    | X_In_T (e,t) -> decode ist t (eInXInT e) (fun x -> xInT (id_of_Cterm e) x)
    | In_X_In_T (e,t) -> inXInT (id_of_Cterm e) t
    | E_In_X_In_T (e,x,rp) -> eInXInT e (id_of_Cterm x) rp
    | E_As_X_In_T (e,x,rp) -> eAsXInT e (id_of_Cterm x) rp in
    decode_red (ist,red) in
  pp(lazy(str"decoded as: " ++ pr_pattern_w_ids red));
  let red = match redty with None -> red | Some ty -> let ty = ' ', ty in
  match red with
  | T t -> T (combineCG t ty (mkCCast ?loc:(loc_ofCG t)) mkRCast)
  | X_In_T (x,t) ->
      let ty = pf_intern_term ist gl ty in
      E_As_X_In_T (mkG (mkRCast mkRHole ty), x, t)
  | E_In_X_In_T (e,x,t) ->
      let ty = mkG (pf_intern_term ist gl ty) in
      E_In_X_In_T (combineCG e ty (mkCCast ?loc:(loc_ofCG t)) mkRCast, x, t)
  | E_As_X_In_T (e,x,t) ->
      let ty = mkG (pf_intern_term ist gl ty) in
      E_As_X_In_T (combineCG e ty (mkCCast ?loc:(loc_ofCG t)) mkRCast, x, t)
  | red -> red in
  pp(lazy(str"typed as: " ++ pr_pattern_w_ids red));
  let mkXLetIn ?loc x (a,(g,c)) = match c with
  | Some b -> a,(g,Some (mkCLetIn ?loc x (mkCHole ~loc) b))
  | None -> a,(DAst.make ?loc @@ GLetIn (x, DAst.make ?loc @@ GHole (BinderType x, IntroAnonymous, None), None, g), None) in
  match red with
  | T t -> let sigma, t = interp_term ist gl t in sigma, T t
  | In_T t -> let sigma, t = interp_term ist gl t in sigma, In_T t
  | X_In_T (x, rp) | In_X_In_T (x, rp) ->
    let mk x p = match red with X_In_T _ -> X_In_T(x,p) | _ -> In_X_In_T(x,p) in
    let rp = mkXLetIn (Name x) rp in
    let sigma, rp = interp_term ist gl rp in
    let _, h, _, rp = destLetIn rp in
    let sigma = cleanup_XinE h x rp sigma in
    let rp = subst1 h (nf_evar sigma rp) in
    sigma, mk h rp
  | E_In_X_In_T(e, x, rp) | E_As_X_In_T (e, x, rp) ->
    let mk e x p =
      match red with E_In_X_In_T _ ->E_In_X_In_T(e,x,p)|_->E_As_X_In_T(e,x,p) in
    let rp = mkXLetIn (Name x) rp in
    let sigma, rp = interp_term ist gl rp in
    let _, h, _, rp = destLetIn rp in
    let sigma = cleanup_XinE h x rp sigma in
    let rp = subst1 h (nf_evar sigma rp) in
    let sigma, e = interp_term ist (re_sig (sig_it gl) sigma) e in
    sigma, mk e h rp
;;
let interp_cpattern ist gl red redty = interp_pattern ist gl (T red) redty;;
let interp_rpattern ~wit_ssrpatternarg ist gl red = interp_pattern ~wit_ssrpatternarg ist gl red None;;

let id_of_pattern = function
  | _, T t -> (match kind t with Var id -> Some id | _ -> None)
  | _ -> None

(* The full occurrence set *)
let noindex = Some(false,[])

(* calls do_subst on every sub-term identified by (pattern,occ) *)
let eval_pattern ?raise_NoMatch env0 sigma0 concl0 pattern occ do_subst =
  let fs sigma x = nf_evar sigma x in
  let pop_evar sigma e p =
    let { Evd.evar_body = e_body } as e_def = Evd.find sigma e in
    let e_body = match e_body with Evar_defined c -> c
    | _ -> errorstrm (str "Matching the pattern " ++ pr_constr_env env0 sigma0 p ++
          str " did not instantiate ?" ++ int (Evar.repr e) ++ spc () ++
          str "Does the variable bound by the \"in\" construct occur "++
          str "in the pattern?") in
    let sigma = 
      Evd.add (Evd.remove sigma e) e {e_def with Evd.evar_body = Evar_empty} in
    sigma, e_body in
  let ex_value hole =
    match kind hole with Evar (e,_) -> e | _ -> assert false in
  let mk_upat_for ?hack env sigma0 (sigma, t) ?(p=t) ok =
    let sigma,pat= mk_tpattern ?hack env sigma0 (sigma,p) ok L2R (fs sigma t) in
    sigma, [pat] in
  match pattern with
  | None -> do_subst env0 concl0 concl0 1
  | Some (sigma, (T rp | In_T rp)) -> 
    let rp = fs sigma rp in
    let ise = create_evar_defs sigma in
    let occ = match pattern with Some (_, T _) -> occ | _ -> noindex in
    let rp = mk_upat_for env0 sigma0 (ise, rp) all_ok in
    let find_T, end_T = mk_tpattern_matcher ?raise_NoMatch sigma0 occ rp in
    let concl = find_T env0 concl0 1 ~k:do_subst in
    let _ = end_T () in
    concl
  | Some (sigma, (X_In_T (hole, p) | In_X_In_T (hole, p))) ->
    let p = fs sigma p in
    let occ = match pattern with Some (_, X_In_T _) -> occ | _ -> noindex in
    let ex = ex_value hole in
    let rp = mk_upat_for ~hack:true env0 sigma0 (sigma, p) all_ok in
    let find_T, end_T = mk_tpattern_matcher sigma0 noindex rp in
    (* we start from sigma, so hole is considered a rigid head *)
    let holep = mk_upat_for env0 sigma (sigma, hole) all_ok in
    let find_X, end_X = mk_tpattern_matcher ?raise_NoMatch sigma occ holep in
    let concl = find_T env0 concl0 1 ~k:(fun env c _ h ->
      let p_sigma = unify_HO env (create_evar_defs sigma) (EConstr.of_constr c) (EConstr.of_constr p) in
      let sigma, e_body = pop_evar p_sigma ex p in
      fs p_sigma (find_X env (fs sigma p) h 
        ~k:(fun env _ -> do_subst env e_body))) in
    let _ = end_X () in let _ = end_T () in 
    concl
  | Some (sigma, E_In_X_In_T (e, hole, p)) ->
    let p, e = fs sigma p, fs sigma e in
    let ex = ex_value hole in
    let rp = mk_upat_for ~hack:true env0 sigma0 (sigma, p) all_ok in
    let find_T, end_T = mk_tpattern_matcher sigma0 noindex rp in
    let holep = mk_upat_for env0 sigma (sigma, hole) all_ok in
    let find_X, end_X = mk_tpattern_matcher sigma noindex holep in
    let re = mk_upat_for env0 sigma0 (sigma, e) all_ok in
    let find_E, end_E = mk_tpattern_matcher ?raise_NoMatch sigma0 occ re in
    let concl = find_T env0 concl0 1 ~k:(fun env c _ h ->
      let p_sigma = unify_HO env (create_evar_defs sigma) (EConstr.of_constr c) (EConstr.of_constr p) in
      let sigma, e_body = pop_evar p_sigma ex p in
      fs p_sigma (find_X env (fs sigma p) h ~k:(fun env c _ h ->
        find_E env e_body h ~k:do_subst))) in
    let _ = end_E () in let _ = end_X () in let _ = end_T () in
    concl
  | Some (sigma, E_As_X_In_T (e, hole, p)) ->
    let p, e = fs sigma p, fs sigma e in
    let ex = ex_value hole in
    let rp = 
      let e_sigma = unify_HO env0 sigma (EConstr.of_constr hole) (EConstr.of_constr e) in
      e_sigma, fs e_sigma p in
    let rp = mk_upat_for ~hack:true env0 sigma0 rp all_ok in
    let find_TE, end_TE = mk_tpattern_matcher sigma0 noindex rp in
    let holep = mk_upat_for env0 sigma (sigma, hole) all_ok in
    let find_X, end_X = mk_tpattern_matcher sigma occ holep in
    let concl = find_TE env0 concl0 1 ~k:(fun env c _ h ->
      let p_sigma = unify_HO env (create_evar_defs sigma) (EConstr.of_constr c) (EConstr.of_constr p) in
      let sigma, e_body = pop_evar p_sigma ex p in
      fs p_sigma (find_X env (fs sigma p) h ~k:(fun env c _ h ->
        let e_sigma = unify_HO env sigma (EConstr.of_constr e_body) (EConstr.of_constr e) in
        let e_body = fs e_sigma e in
        do_subst env e_body e_body h))) in
    let _ = end_X () in let _ = end_TE () in
    concl
;;

let redex_of_pattern ?(resolve_typeclasses=false) env (sigma, p) =
  let e = match p with
  | In_T _ | In_X_In_T _ -> CErrors.anomaly (str"pattern without redex.")
  | T e | X_In_T (e, _) | E_As_X_In_T (e, _, _) | E_In_X_In_T (e, _, _) -> e in
  let sigma =
    if not resolve_typeclasses then sigma
    else Typeclasses.resolve_typeclasses ~fail:false env sigma in
  nf_evar sigma e, Evd.evar_universe_context sigma

let fill_occ_pattern ?raise_NoMatch env sigma cl pat occ h =
  let do_make_rel, occ =
    if occ = Some(true,[]) then false, Some(false,[1]) else true, occ in
  let find_R, conclude =
    let r = ref None in
    (fun env c _ h' ->
       do_once r (fun () -> c, Evd.empty_evar_universe_context);
       if do_make_rel then mkRel (h'+h-1) else c),
    (fun _ -> if !r = None then redex_of_pattern env pat else assert_done r) in
  let cl = eval_pattern ?raise_NoMatch env sigma cl (Some pat) occ find_R in
  let e = conclude cl in
  e, cl
;;

(* clenup interface for external use *)
let mk_tpattern ?p_origin env sigma0 sigma_t f dir c = 
  mk_tpattern ?p_origin env sigma0 sigma_t f dir c
;;

let pf_fill_occ env concl occ sigma0 p (sigma, t) ok h =
 let p = EConstr.Unsafe.to_constr p in
 let concl = EConstr.Unsafe.to_constr concl in
 let ise = create_evar_defs sigma in
 let ise, u = mk_tpattern env sigma0 (ise,EConstr.Unsafe.to_constr t) ok L2R p in
 let find_U, end_U =
   mk_tpattern_matcher ~raise_NoMatch:true sigma0 occ (ise,[u]) in
 let concl = find_U env concl h ~k:(fun _ _ _ -> mkRel) in
 let rdx, _, (sigma, uc, p) = end_U () in
 sigma, uc, EConstr.of_constr p, EConstr.of_constr concl, EConstr.of_constr rdx

let fill_occ_term env cl occ sigma0 (sigma, t) =
  try
    let sigma',uc,t',cl,_= pf_fill_occ env cl occ sigma0 t (sigma, t) all_ok 1 in
    if sigma' != sigma0 then CErrors.user_err Pp.(str "matching impacts evars")
    else cl, (Evd.merge_universe_context sigma' uc, t')
  with NoMatch -> try
    let sigma', uc, t' =
      unif_end env sigma0 (create_evar_defs sigma) t (fun _ -> true) in
    if sigma' != sigma0 then raise NoMatch
    else cl, (Evd.merge_universe_context sigma' uc, t')
  with _ ->
    errorstrm (str "partial term " ++ pr_constr_pat (EConstr.Unsafe.to_constr t)
            ++ str " does not match any subterm of the goal")

let pf_fill_occ_term gl occ t =
  let sigma0 = project gl and env = pf_env gl and concl = pf_concl gl in
  let cl,(_,t) = fill_occ_term env concl occ sigma0 t in
  cl, t

let cpattern_of_id id = ' ', (DAst.make @@ GRef (VarRef  id, None), None)

let is_wildcard ((_, (l, r)) : cpattern) : bool = match DAst.get l, r with
  | _, Some { CAst.v = CHole _ } | GHole _, None -> true
  | _ -> false

(* "ssrpattern" *)
let pr_ssrpatternarg _ _ _ (_,cpat) = pr_rpattern cpat
let pr_ssrpatternarg_glob _ _ _ cpat = pr_rpattern cpat
let interp_ssrpatternarg ist gl p = project gl, (ist, p)

ARGUMENT EXTEND ssrpatternarg
  PRINTED BY pr_ssrpatternarg
  INTERPRETED BY interp_ssrpatternarg
  GLOBALIZED BY glob_rpattern
  RAW_PRINTED BY pr_ssrpatternarg_glob
  GLOB_PRINTED BY pr_ssrpatternarg_glob
| [ rpattern(pat) ] -> [ pat ]
END
  
let pf_merge_uc uc gl =
  re_sig (sig_it gl) (Evd.merge_universe_context (project gl) uc)

let pf_unsafe_merge_uc uc gl =
  re_sig (sig_it gl) (Evd.set_universe_context (project gl) uc)

let interp_rpattern ist gl red = interp_rpattern ~wit_ssrpatternarg ist gl red

let ssrpatterntac _ist (arg_ist,arg) gl =
  let pat = interp_rpattern arg_ist gl arg in
  let sigma0 = project gl in
  let concl0 = pf_concl gl in
  let concl0 = EConstr.Unsafe.to_constr concl0 in
  let (t, uc), concl_x =
    fill_occ_pattern (Global.env()) sigma0 concl0 pat noindex 1 in
  let t = EConstr.of_constr t in
  let concl_x = EConstr.of_constr concl_x in
  let gl, tty = pf_type_of gl t in
  let concl = EConstr.mkLetIn (Name (Id.of_string "selected"), t, tty, concl_x) in
  Proofview.V82.of_tactic (convert_concl concl DEFAULTcast) gl

(* Register "ssrpattern" tactic *)
let () =
  let mltac _ ist =
    let arg =
      let v = Id.Map.find (Names.Id.of_string "pattern") ist.lfun in
      Value.cast (topwit wit_ssrpatternarg) v in
    Proofview.V82.tactic (ssrpatterntac ist arg) in
  let name = { mltac_plugin = "ssrmatching_plugin"; mltac_tactic = "ssrpattern"; } in
  let () = Tacenv.register_ml_tactic name [|mltac|] in
  let tac =
    TacFun ([Name (Id.of_string "pattern")],
      TacML (Loc.tag ({ mltac_name = name; mltac_index = 0 }, []))) in
  let obj () =
    Tacenv.register_ltac true false (Id.of_string "ssrpattern") tac in
  Mltop.declare_cache_obj obj "ssrmatching_plugin"

let ssrinstancesof ist arg gl =
  let ok rhs lhs ise = true in
(*   not (equal lhs (Evarutil.nf_evar ise rhs)) in *)
  let env, sigma, concl = pf_env gl, project gl, pf_concl gl in
  let concl = EConstr.Unsafe.to_constr concl in
  let sigma0, cpat = interp_cpattern ist gl arg None in
  let pat = match cpat with T x -> x | _ -> errorstrm (str"Not supported") in
  let etpat, tpat = mk_tpattern env sigma (sigma0,pat) (ok pat) L2R pat in
  let find, conclude =
    mk_tpattern_matcher ~all_instances:true ~raise_NoMatch:true
      sigma None (etpat,[tpat]) in
  let print env p c _ = ppnl (hov 1 (str"instance:" ++ spc() ++ pr_constr_env (pf_env gl) (gl.sigma) p ++ spc()
                                     ++ str "matches:" ++ spc() ++ pr_constr_env (pf_env gl) (gl.sigma)  c)); c in
  ppnl (str"BEGIN INSTANCES");
  try
    while true do
      ignore(find env concl 1 ~k:print)
    done; raise NoMatch
  with NoMatch -> ppnl (str"END INSTANCES"); tclIDTAC gl

TACTIC EXTEND ssrinstoftpat
| [ "ssrinstancesoftpat" cpattern(arg) ] -> [ Proofview.V82.tactic (ssrinstancesof ist arg) ]
END

(* We wipe out all the keywords generated by the grammar rules we defined. *)
(* The user is supposed to Require Import ssreflect or Require ssreflect   *)
(* and Import ssreflect.SsrSyntax to obtain these keywords and as a         *)
(* consequence the extended ssreflect grammar.                             *)
let () = CLexer.set_keyword_state frozen_lexer ;;

(* vim: set filetype=ocaml foldmethod=marker: *)