1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open CErrors open Util open Constr open Tactics open Coqlib open Num open Utile (*********************************************************************** Operations on coefficients *) let num_0 = Int 0 and num_1 = Int 1 and num_2 = Int 2 let numdom r = let r' = Ratio.normalize_ratio (ratio_of_num r) in num_of_big_int(Ratio.numerator_ratio r'), num_of_big_int(Ratio.denominator_ratio r') module BigInt = struct open Big_int type t = big_int let of_int = big_int_of_int let coef0 = of_int 0 let of_num = Num.big_int_of_num let to_num = Num.num_of_big_int let equal = eq_big_int let lt = lt_big_int let le = le_big_int let abs = abs_big_int let plus =add_big_int let mult = mult_big_int let sub = sub_big_int let opp = minus_big_int let div = div_big_int let modulo = mod_big_int let to_string = string_of_big_int let hash x = try (int_of_big_int x) with Failure _ -> 1 let puis = power_big_int_positive_int (* a et b positifs, résultat positif *) let rec pgcd a b = if equal b coef0 then a else if lt a b then pgcd b a else pgcd b (modulo a b) end (* module Ent = struct type t = Entiers.entiers let of_int = Entiers.ent_of_int let of_num x = Entiers.ent_of_string(Num.string_of_num x) let to_num x = Num.num_of_string (Entiers.string_of_ent x) let equal = Entiers.eq_ent let lt = Entiers.lt_ent let le = Entiers.le_ent let abs = Entiers.abs_ent let plus =Entiers.add_ent let mult = Entiers.mult_ent let sub = Entiers.moins_ent let opp = Entiers.opp_ent let div = Entiers.div_ent let modulo = Entiers.mod_ent let coef0 = Entiers.ent0 let coef1 = Entiers.ent1 let to_string = Entiers.string_of_ent let to_int x = Entiers.int_of_ent x let hash x =Entiers.hash_ent x let signe = Entiers.signe_ent let rec puis p n = match n with 0 -> coef1 |_ -> (mult p (puis p (n-1))) (* a et b positifs, résultat positif *) let rec pgcd a b = if equal b coef0 then a else if lt a b then pgcd b a else pgcd b (modulo a b) (* signe du pgcd = signe(a)*signe(b) si non nuls. *) let pgcd2 a b = if equal a coef0 then b else if equal b coef0 then a else let c = pgcd (abs a) (abs b) in if ((lt coef0 a)&&(lt b coef0)) ||((lt coef0 b)&&(lt a coef0)) then opp c else c end *) (* ------------------------------------------------------------------------- *) (* ------------------------------------------------------------------------- *) type vname = string type term = | Zero | Const of Num.num | Var of vname | Opp of term | Add of term * term | Sub of term * term | Mul of term * term | Pow of term * int let const n = if eq_num n num_0 then Zero else Const n let pow(p,i) = if Int.equal i 1 then p else Pow(p,i) let add = function (Zero,q) -> q | (p,Zero) -> p | (p,q) -> Add(p,q) let mul = function (Zero,_) -> Zero | (_,Zero) -> Zero | (p,Const n) when eq_num n num_1 -> p | (Const n,q) when eq_num n num_1 -> q | (p,q) -> Mul(p,q) let gen_constant msg path s = Universes.constr_of_global @@ coq_reference msg path s let tpexpr = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PExpr") let ttconst = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEc") let ttvar = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEX") let ttadd = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEadd") let ttsub = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEsub") let ttmul = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEmul") let ttopp = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEopp") let ttpow = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEpow") let datatypes = ["Init";"Datatypes"] let binnums = ["Numbers";"BinNums"] let tlist = lazy (gen_constant "CC" datatypes "list") let lnil = lazy (gen_constant "CC" datatypes "nil") let lcons = lazy (gen_constant "CC" datatypes "cons") let tz = lazy (gen_constant "CC" binnums "Z") let z0 = lazy (gen_constant "CC" binnums "Z0") let zpos = lazy (gen_constant "CC" binnums "Zpos") let zneg = lazy(gen_constant "CC" binnums "Zneg") let pxI = lazy(gen_constant "CC" binnums "xI") let pxO = lazy(gen_constant "CC" binnums "xO") let pxH = lazy(gen_constant "CC" binnums "xH") let nN0 = lazy (gen_constant "CC" binnums "N0") let nNpos = lazy(gen_constant "CC" binnums "Npos") let mkt_app name l = mkApp (Lazy.force name, Array.of_list l) let tlp () = mkt_app tlist [mkt_app tpexpr [Lazy.force tz]] let tllp () = mkt_app tlist [tlp()] let rec mkt_pos n = if n =/ num_1 then Lazy.force pxH else if mod_num n num_2 =/ num_0 then mkt_app pxO [mkt_pos (quo_num n num_2)] else mkt_app pxI [mkt_pos (quo_num n num_2)] let mkt_n n = if Num.eq_num n num_0 then Lazy.force nN0 else mkt_app nNpos [mkt_pos n] let mkt_z z = if z =/ num_0 then Lazy.force z0 else if z >/ num_0 then mkt_app zpos [mkt_pos z] else mkt_app zneg [mkt_pos ((Int 0) -/ z)] let rec mkt_term t = match t with | Zero -> mkt_term (Const num_0) | Const r -> let (n,d) = numdom r in mkt_app ttconst [Lazy.force tz; mkt_z n] | Var v -> mkt_app ttvar [Lazy.force tz; mkt_pos (num_of_string v)] | Opp t1 -> mkt_app ttopp [Lazy.force tz; mkt_term t1] | Add (t1,t2) -> mkt_app ttadd [Lazy.force tz; mkt_term t1; mkt_term t2] | Sub (t1,t2) -> mkt_app ttsub [Lazy.force tz; mkt_term t1; mkt_term t2] | Mul (t1,t2) -> mkt_app ttmul [Lazy.force tz; mkt_term t1; mkt_term t2] | Pow (t1,n) -> if Int.equal n 0 then mkt_app ttconst [Lazy.force tz; mkt_z num_1] else mkt_app ttpow [Lazy.force tz; mkt_term t1; mkt_n (num_of_int n)] let rec parse_pos p = match Constr.kind p with | App (a,[|p2|]) -> if Constr.equal a (Lazy.force pxO) then num_2 */ (parse_pos p2) else num_1 +/ (num_2 */ (parse_pos p2)) | _ -> num_1 let parse_z z = match Constr.kind z with | App (a,[|p2|]) -> if Constr.equal a (Lazy.force zpos) then parse_pos p2 else (num_0 -/ (parse_pos p2)) | _ -> num_0 let parse_n z = match Constr.kind z with | App (a,[|p2|]) -> parse_pos p2 | _ -> num_0 let rec parse_term p = match Constr.kind p with | App (a,[|_;p2|]) -> if Constr.equal a (Lazy.force ttvar) then Var (string_of_num (parse_pos p2)) else if Constr.equal a (Lazy.force ttconst) then Const (parse_z p2) else if Constr.equal a (Lazy.force ttopp) then Opp (parse_term p2) else Zero | App (a,[|_;p2;p3|]) -> if Constr.equal a (Lazy.force ttadd) then Add (parse_term p2, parse_term p3) else if Constr.equal a (Lazy.force ttsub) then Sub (parse_term p2, parse_term p3) else if Constr.equal a (Lazy.force ttmul) then Mul (parse_term p2, parse_term p3) else if Constr.equal a (Lazy.force ttpow) then Pow (parse_term p2, int_of_num (parse_n p3)) else Zero | _ -> Zero let rec parse_request lp = match Constr.kind lp with | App (_,[|_|]) -> [] | App (_,[|_;p;lp1|]) -> (parse_term p)::(parse_request lp1) |_-> assert false let set_nvars_term nvars t = let rec aux t nvars = match t with | Zero -> nvars | Const r -> nvars | Var v -> let n = int_of_string v in max nvars n | Opp t1 -> aux t1 nvars | Add (t1,t2) -> aux t2 (aux t1 nvars) | Sub (t1,t2) -> aux t2 (aux t1 nvars) | Mul (t1,t2) -> aux t2 (aux t1 nvars) | Pow (t1,n) -> aux t1 nvars in aux t nvars (*********************************************************************** Coefficients: recursive polynomials *) module Coef = BigInt (*module Coef = Ent*) module Poly = Polynom.Make(Coef) module PIdeal = Ideal.Make(Poly) open PIdeal (* term to sparse polynomial varaibles <=np are in the coefficients *) let term_pol_sparse nvars np t= let d = nvars in let rec aux t = (* info ("conversion de: "^(string_of_term t)^"\n");*) let res = match t with | Zero -> zeroP | Const r -> if Num.eq_num r num_0 then zeroP else polconst d (Poly.Pint (Coef.of_num r)) | Var v -> let v = int_of_string v in if v <= np then polconst d (Poly.x v) else gen d v | Opp t1 -> oppP (aux t1) | Add (t1,t2) -> plusP (aux t1) (aux t2) | Sub (t1,t2) -> plusP (aux t1) (oppP (aux t2)) | Mul (t1,t2) -> multP (aux t1) (aux t2) | Pow (t1,n) -> puisP (aux t1) n in (* info ("donne: "^(stringP res)^"\n");*) res in let res= aux t in res (* sparse polynomial to term *) let polrec_to_term p = let rec aux p = match p with |Poly.Pint n -> const (Coef.to_num n) |Poly.Prec (v,coefs) -> let fold i c res = add (res, mul (aux c, pow (Var (string_of_int v), i))) in Array.fold_right_i fold coefs Zero in aux p (* approximation of the Horner form used in the tactic ring *) let pol_sparse_to_term n2 p = (* info "pol_sparse_to_term ->\n";*) let p = PIdeal.repr p in let rec aux p = match p with [] -> const (num_of_string "0") | (a,m)::p1 -> let m = Ideal.Monomial.repr m in let n = (Array.length m)-1 in let (i0,e0) = List.fold_left (fun (r,d) (a,m) -> let m = Ideal.Monomial.repr m in let i0= ref 0 in for k=1 to n do if m.(k)>0 then i0:=k done; if Int.equal !i0 0 then (r,d) else if !i0 > r then (!i0, m.(!i0)) else if Int.equal !i0 r && m.(!i0)<d then (!i0, m.(!i0)) else (r,d)) (0,0) p in if Int.equal i0 0 then let mp = polrec_to_term a in if List.is_empty p1 then mp else add (mp, aux p1) else let fold (p1, p2) (a, m) = if (Ideal.Monomial.repr m).(i0) >= e0 then begin let m0 = Array.copy (Ideal.Monomial.repr m) in let () = m0.(i0) <- m0.(i0) - e0 in let m0 = Ideal.Monomial.make m0 in ((a, m0) :: p1, p2) end else (p1, (a, m) :: p2) in let (p1, p2) = List.fold_left fold ([], []) p in let vm = if Int.equal e0 1 then Var (string_of_int (i0)) else pow (Var (string_of_int (i0)),e0) in add (mul(vm, aux (List.rev p1)), aux (List.rev p2)) in (*info "-> pol_sparse_to_term\n";*) aux p (* lq = [cn+m+1 n+m ...cn+m+1 1] lci=[[cn+1 n,...,cn1 1] ... [cn+m n+m-1,...,cn+m 1]] removes intermediate polynomials not useful to compute the last one. *) let remove_zeros lci = let m = List.length lci in let u = Array.make m false in let rec utiles k = (** TODO: Find a more reasonable implementation of this traversal. *) if k >= m || u.(k) then () else let () = u.(k) <- true in let lc = List.nth lci k in let iter i c = if not (PIdeal.equal c zeroP) then utiles (i + k + 1) in List.iteri iter lc in let () = utiles 0 in let filter i l = let f j l = if m <= i + j + 1 then true else u.(i + j + 1) in if u.(i) then Some (List.filteri f l) else None in let lr = CList.map_filter_i filter lci in info (fun () -> Printf.sprintf "useless spolynomials: %i" (m-List.length lr)); info (fun () -> Printf.sprintf "useful spolynomials: %i " (List.length lr)); lr let theoremedeszeros metadata nvars lpol p = let t1 = Unix.gettimeofday() in let m = nvars in let cert = in_ideal metadata m lpol p in info (fun () -> Printf.sprintf "time: @[%10.3f@]s" (Unix.gettimeofday ()-.t1)); cert open Ideal (* Remove zero polynomials and duplicates from the list of polynomials lp Return (clp, lb) where clp is the reduced list and lb is a list of booleans that has the same size than lp and where true indicates an element that has been removed *) let clean_pol lp = let t = Hashpol.create 12 in let find p = try Hashpol.find t p with Not_found -> Hashpol.add t p true; false in let rec aux lp = match lp with | [] -> [], [] | p :: lp1 -> let clp, lb = aux lp1 in if equal p zeroP || find p then clp, true::lb else (p :: clp, false::lb) in aux lp (* Expand the list of polynomials lp putting zeros where the list of booleans lb indicates there is a missing element Warning: the expansion is relative to the end of the list in reversed order lp cannot have less elements than lb *) let expand_pol lb lp = let rec aux lb lp = match lb with | [] -> lp | true :: lb1 -> zeroP :: aux lb1 lp | false :: lb1 -> match lp with [] -> assert false | p :: lp1 -> p :: aux lb1 lp1 in List.rev (aux lb (List.rev lp)) let theoremedeszeros_termes lp = let nvars = List.fold_left set_nvars_term 0 lp in match lp with | Const (Int sugarparam)::Const (Int nparam)::lp -> ((match sugarparam with |0 -> sinfo "computation without sugar"; lexico:=false; |1 -> sinfo "computation with sugar"; lexico:=false; |2 -> sinfo "ordre lexico computation without sugar"; lexico:=true; |3 -> sinfo "ordre lexico computation with sugar"; lexico:=true; |4 -> sinfo "computation without sugar, division by pairs"; lexico:=false; |5 -> sinfo "computation with sugar, division by pairs"; lexico:=false; |6 -> sinfo "ordre lexico computation without sugar, division by pairs"; lexico:=true; |7 -> sinfo "ordre lexico computation with sugar, division by pairs"; lexico:=true; | _ -> user_err Pp.(str "nsatz: bad parameter") ); let lvar = List.init nvars (fun i -> Printf.sprintf "x%i" (i + 1)) in let lvar = ["a";"b";"c";"d";"e";"f";"g";"h";"i";"j";"k";"l";"m";"n";"o";"p";"q";"r";"s";"t";"u";"v";"w";"x";"y";"z"] @ lvar in (* pour macaulay *) let metadata = { name_var = lvar } in let lp = List.map (term_pol_sparse nvars nparam) lp in match lp with | [] -> assert false | p::lp1 -> let lpol = List.rev lp1 in (* preprocessing : we remove zero polynomials and duplicate that are not handled by in_ideal lb is kept in order to fix the certificate in the post-processing *) let lpol, lb = clean_pol lpol in let cert = theoremedeszeros metadata nvars lpol p in sinfo "cert ok"; let lc = cert.last_comb::List.rev cert.gb_comb in match remove_zeros lc with | [] -> assert false | (lq::lci) -> (* post-processing : we apply the correction for the last line *) let lq = expand_pol lb lq in (* lci commence par les nouveaux polynomes *) let m = nvars in let c = pol_sparse_to_term m (polconst m cert.coef) in let r = Pow(Zero,cert.power) in let lci = List.rev lci in (* post-processing we apply the correction for the other lines *) let lci = List.map (expand_pol lb) lci in let lci = List.map (List.map (pol_sparse_to_term m)) lci in let lq = List.map (pol_sparse_to_term m) lq in info (fun () -> Printf.sprintf "number of parameters: %i" nparam); sinfo "term computed"; (c,r,lci,lq) ) |_ -> assert false (* version avec hash-consing du certificat: let nsatz lpol = Hashtbl.clear Dansideal.hmon; Hashtbl.clear Dansideal.coefpoldep; Hashtbl.clear Dansideal.sugartbl; Hashtbl.clear Polynomesrec.hcontentP; init_constants (); let lp= parse_request lpol in let (_lp0,_p,c,r,_lci,_lq as rthz) = theoremedeszeros_termes lp in let certif = certificat_vers_polynome_creux rthz in let certif = hash_certif certif in let certif = certif_term certif in let c = mkt_term c in info "constr computed\n"; (c, certif) *) let nsatz lpol = let lp= parse_request lpol in let (c,r,lci,lq) = theoremedeszeros_termes lp in let res = [c::r::lq]@lci in let res = List.map (fun lx -> List.map mkt_term lx) res in let res = List.fold_right (fun lt r -> let ltterm = List.fold_right (fun t r -> mkt_app lcons [mkt_app tpexpr [Lazy.force tz];t;r]) lt (mkt_app lnil [mkt_app tpexpr [Lazy.force tz]]) in mkt_app lcons [tlp ();ltterm;r]) res (mkt_app lnil [tlp ()]) in sinfo "term computed"; res let return_term t = let a = mkApp(gen_constant "CC" ["Init";"Logic"] "eq_refl",[|tllp ();t|]) in let a = EConstr.of_constr a in generalize [a] let nsatz_compute t = let lpol = try nsatz t with Ideal.NotInIdeal -> user_err Pp.(str "nsatz cannot solve this problem") in return_term lpol