1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* This file is about the automatic generation of schemes about decidable equality, created by Vincent Siles, Oct 2007 *) open CErrors open Util open Pp open Term open Constr open Vars open Termops open Declarations open Names open Globnames open Inductiveops open Tactics open Ind_tables open Misctypes open Proofview.Notations module RelDecl = Context.Rel.Declaration (**********************************************************************) (* Generic synthesis of boolean equality *) let quick_chop n l = let rec kick_last = function | t::[] -> [] | t::q -> t::(kick_last q) | [] -> failwith "kick_last" and aux = function | (0,l') -> l' | (n,h::t) -> aux (n-1,t) | _ -> failwith "quick_chop" in if n > (List.length l) then failwith "quick_chop args" else kick_last (aux (n,l) ) let deconstruct_type t = let l,r = decompose_prod t in (List.rev_map snd l)@[r] exception EqNotFound of inductive * inductive exception EqUnknown of string exception UndefinedCst of string exception InductiveWithProduct exception InductiveWithSort exception ParameterWithoutEquality of global_reference exception NonSingletonProp of inductive exception DecidabilityMutualNotSupported exception NoDecidabilityCoInductive let constr_of_global g = lazy (Universes.constr_of_global g) (* Some pre declaration of constant we are going to use *) let bb = constr_of_global Coqlib.glob_bool let andb_prop = fun _ -> Universes.constr_of_global (Coqlib.build_bool_type()).Coqlib.andb_prop let andb_true_intro = fun _ -> Universes.constr_of_global (Coqlib.build_bool_type()).Coqlib.andb_true_intro let tt = constr_of_global Coqlib.glob_true let ff = constr_of_global Coqlib.glob_false let eq = constr_of_global Coqlib.glob_eq let sumbool () = Universes.constr_of_global (Coqlib.build_coq_sumbool ()) let andb = fun _ -> Universes.constr_of_global (Coqlib.build_bool_type()).Coqlib.andb let induct_on c = induction false None c None None let destruct_on c = destruct false None c None None let destruct_on_using c id = destruct false None c (Some (Loc.tag @@ IntroOrPattern [[Loc.tag @@ IntroNaming IntroAnonymous]; [Loc.tag @@ IntroNaming (IntroIdentifier id)]])) None let destruct_on_as c l = destruct false None c (Some (Loc.tag l)) None let inj_flags = Some { Equality.keep_proof_equalities = true; (* necessary *) injection_in_context = true; (* does not matter here *) Equality.injection_pattern_l2r_order = true; (* does not matter here *) } let my_discr_tac = Equality.discr_tac false None let my_inj_tac x = Equality.inj inj_flags None false None (EConstr.mkVar x,NoBindings) (* reconstruct the inductive with the correct de Bruijn indexes *) let mkFullInd (ind,u) n = let mib = Global.lookup_mind (fst ind) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in (* params context divided *) let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in if nparrec > 0 then mkApp (mkIndU (ind,u), Array.of_list(Context.Rel.to_extended_list mkRel (nparrec+n) lnamesparrec)) else mkIndU (ind,u) let check_bool_is_defined () = try let _ = Global.type_of_global_in_context (Global.env ()) Coqlib.glob_bool in () with e when CErrors.noncritical e -> raise (UndefinedCst "bool") let beq_scheme_kind_aux = ref (fun _ -> failwith "Undefined") let build_beq_scheme mode kn = check_bool_is_defined (); (* fetching global env *) let env = Global.env() in (* fetching the mutual inductive body *) let mib = Global.lookup_mind kn in (* number of inductives in the mutual *) let nb_ind = Array.length mib.mind_packets in (* number of params in the type *) let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in (* params context divided *) let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in (* predef coq's boolean type *) (* rec name *) let rec_name i =(Id.to_string (Array.get mib.mind_packets i).mind_typename)^ "_eqrec" in (* construct the "fun A B ... N, eqA eqB eqC ... N => fixpoint" part *) let create_input c = let myArrow u v = mkArrow u (lift 1 v) and eqName = function | Name s -> Id.of_string ("eq_"^(Id.to_string s)) | Anonymous -> Id.of_string "eq_A" in let ext_rel_list = Context.Rel.to_extended_list mkRel 0 lnamesparrec in let lift_cnt = ref 0 in let eqs_typ = List.map (fun aa -> let a = lift !lift_cnt aa in incr lift_cnt; myArrow a (myArrow a (Lazy.force bb)) ) ext_rel_list in let eq_input = List.fold_left2 ( fun a b decl -> (* mkLambda(n,b,a) ) *) (* here I leave the Naming thingy so that the type of the function is more readable for the user *) mkNamedLambda (eqName (RelDecl.get_name decl)) b a ) c (List.rev eqs_typ) lnamesparrec in List.fold_left (fun a decl ->(* mkLambda(n,t,a)) eq_input rel_list *) (* Same here , hoping the auto renaming will do something good ;) *) mkNamedLambda (match RelDecl.get_name decl with Name s -> s | Anonymous -> Id.of_string "A") (RelDecl.get_type decl) a) eq_input lnamesparrec in let make_one_eq cur = let u = Univ.Instance.empty in let ind = (kn,cur),u (* FIXME *) in (* current inductive we are working on *) let cur_packet = mib.mind_packets.(snd (fst ind)) in (* Inductive toto : [rettyp] := *) let rettyp = Inductive.type_of_inductive env ((mib,cur_packet),u) in (* split rettyp in a list without the non rec params and the last -> e.g. Inductive vec (A:Set) : nat -> Set := ... will do [nat] *) let rettyp_l = quick_chop nparrec (deconstruct_type rettyp) in (* give a type A, this function tries to find the equality on A declared previously *) (* nlist = the number of args (A , B , ... ) eqA = the de Bruijn index of the first eq param ndx = how much to translate due to the 2nd Case *) let compute_A_equality rel_list nlist eqA ndx t = let lifti = ndx in let sigma = Evd.empty (** FIXME *) in let rec aux c = let (c,a) = Reductionops.whd_betaiota_stack Evd.empty c in match EConstr.kind sigma c with | Rel x -> mkRel (x-nlist+ndx), Safe_typing.empty_private_constants | Var x -> let eid = Id.of_string ("eq_"^(Id.to_string x)) in let () = try ignore (Environ.lookup_named eid env) with Not_found -> raise (ParameterWithoutEquality (VarRef x)) in mkVar eid, Safe_typing.empty_private_constants | Cast (x,_,_) -> aux (EConstr.applist (x,a)) | App _ -> assert false | Ind ((kn',i as ind'),u) (*FIXME: universes *) -> if MutInd.equal kn kn' then mkRel(eqA-nlist-i+nb_ind-1), Safe_typing.empty_private_constants else begin try let eq, eff = let c, eff = find_scheme ~mode (!beq_scheme_kind_aux()) (kn',i) in mkConst c, eff in let eqa, eff = let eqa, effs = List.split (List.map aux a) in Array.of_list eqa, List.fold_left Safe_typing.concat_private eff (List.rev effs) in let args = Array.append (Array.of_list (List.map (fun x -> lift lifti (EConstr.Unsafe.to_constr x)) a)) eqa in if Int.equal (Array.length args) 0 then eq, eff else mkApp (eq, args), eff with Not_found -> raise(EqNotFound (ind', fst ind)) end | Sort _ -> raise InductiveWithSort | Prod _ -> raise InductiveWithProduct | Lambda _-> raise (EqUnknown "abstraction") | LetIn _ -> raise (EqUnknown "let-in") | Const (kn, u) -> let u = EConstr.EInstance.kind sigma u in (match Environ.constant_opt_value_in env (kn, u) with | None -> raise (ParameterWithoutEquality (ConstRef kn)) | Some c -> aux (EConstr.applist (EConstr.of_constr c,a))) | Proj _ -> raise (EqUnknown "projection") | Construct _ -> raise (EqUnknown "constructor") | Case _ -> raise (EqUnknown "match") | CoFix _ -> raise (EqUnknown "cofix") | Fix _ -> raise (EqUnknown "fix") | Meta _ -> raise (EqUnknown "meta-variable") | Evar _ -> raise (EqUnknown "existential variable") in aux t in (* construct the predicate for the Case part*) let do_predicate rel_list n = List.fold_left (fun a b -> mkLambda(Anonymous,b,a)) (mkLambda (Anonymous, mkFullInd ind (n+3+(List.length rettyp_l)+nb_ind-1), (Lazy.force bb))) (List.rev rettyp_l) in (* make_one_eq *) (* do the [| C1 ... => match Y with ... end ... Cn => match Y with ... end |] part *) let ci = make_case_info env (fst ind) MatchStyle in let constrs n = get_constructors env (make_ind_family (ind, Context.Rel.to_extended_list mkRel (n+nb_ind-1) mib.mind_params_ctxt)) in let constrsi = constrs (3+nparrec) in let n = Array.length constrsi in let ar = Array.make n (Lazy.force ff) in let eff = ref Safe_typing.empty_private_constants in for i=0 to n-1 do let nb_cstr_args = List.length constrsi.(i).cs_args in let ar2 = Array.make n (Lazy.force ff) in let constrsj = constrs (3+nparrec+nb_cstr_args) in for j=0 to n-1 do if Int.equal i j then ar2.(j) <- let cc = (match nb_cstr_args with | 0 -> Lazy.force tt | _ -> let eqs = Array.make nb_cstr_args (Lazy.force tt) in for ndx = 0 to nb_cstr_args-1 do let cc = RelDecl.get_type (List.nth constrsi.(i).cs_args ndx) in let eqA, eff' = compute_A_equality rel_list nparrec (nparrec+3+2*nb_cstr_args) (nb_cstr_args+ndx+1) (EConstr.of_constr cc) in eff := Safe_typing.concat_private eff' !eff; Array.set eqs ndx (mkApp (eqA, [|mkRel (ndx+1+nb_cstr_args);mkRel (ndx+1)|] )) done; Array.fold_left (fun a b -> mkApp (andb(),[|b;a|])) (eqs.(0)) (Array.sub eqs 1 (nb_cstr_args - 1)) ) in (List.fold_left (fun a decl -> mkLambda (RelDecl.get_name decl, RelDecl.get_type decl, a)) cc (constrsj.(j).cs_args) ) else ar2.(j) <- (List.fold_left (fun a decl -> mkLambda (RelDecl.get_name decl, RelDecl.get_type decl, a)) (Lazy.force ff) (constrsj.(j).cs_args) ) done; ar.(i) <- (List.fold_left (fun a decl -> mkLambda (RelDecl.get_name decl, RelDecl.get_type decl, a)) (mkCase (ci,do_predicate rel_list nb_cstr_args, mkVar (Id.of_string "Y") ,ar2)) (constrsi.(i).cs_args)) done; mkNamedLambda (Id.of_string "X") (mkFullInd ind (nb_ind-1+1)) ( mkNamedLambda (Id.of_string "Y") (mkFullInd ind (nb_ind-1+2)) ( mkCase (ci, do_predicate rel_list 0,mkVar (Id.of_string "X"),ar))), !eff in (* build_beq_scheme *) let names = Array.make nb_ind Anonymous and types = Array.make nb_ind mkSet and cores = Array.make nb_ind mkSet in let eff = ref Safe_typing.empty_private_constants in let u = Univ.Instance.empty in for i=0 to (nb_ind-1) do names.(i) <- Name (Id.of_string (rec_name i)); types.(i) <- mkArrow (mkFullInd ((kn,i),u) 0) (mkArrow (mkFullInd ((kn,i),u) 1) (Lazy.force bb)); let c, eff' = make_one_eq i in cores.(i) <- c; eff := Safe_typing.concat_private eff' !eff done; (Array.init nb_ind (fun i -> let kelim = Inductive.elim_sorts (mib,mib.mind_packets.(i)) in if not (Sorts.List.mem InSet kelim) then raise (NonSingletonProp (kn,i)); if mib.mind_finite = Decl_kinds.CoFinite then raise NoDecidabilityCoInductive; let fix = mkFix (((Array.make nb_ind 0),i),(names,types,cores)) in create_input fix), Evd.make_evar_universe_context (Global.env ()) None), !eff let beq_scheme_kind = declare_mutual_scheme_object "_beq" build_beq_scheme let _ = beq_scheme_kind_aux := fun () -> beq_scheme_kind (* This function tryies to get the [inductive] between a constr the constr should be Ind i or App(Ind i,[|args|]) *) let destruct_ind sigma c = let open EConstr in try let u,v = destApp sigma c in let indc = destInd sigma u in indc,v with DestKO -> let indc = destInd sigma c in indc,[||] (* In the following, avoid is the list of names to avoid. If the args of the Inductive type are A1 ... An then avoid should be [| lb_An ... lb _A1 (resp. bl_An ... bl_A1) eq_An .... eq_A1 An ... A1 |] so from Ai we can find the the correct eq_Ai bl_ai or lb_ai *) (* used in the leib -> bool side*) let do_replace_lb mode lb_scheme_key aavoid narg p q = let open EConstr in let avoid = Array.of_list aavoid in let do_arg sigma v offset = try let x = narg*offset in let s = destVar sigma v in let n = Array.length avoid in let rec find i = if Id.equal avoid.(n-i) s then avoid.(n-i-x) else (if i<n then find (i+1) else user_err ~hdr:"AutoIndDecl.do_replace_lb" (str "Var " ++ Id.print s ++ str " seems unknown.") ) in mkVar (find 1) with e when CErrors.noncritical e -> (* if this happen then the args have to be already declared as a Parameter*) ( let mp,dir,lbl = Constant.repr3 (fst (destConst sigma v)) in mkConst (Constant.make3 mp dir (Label.make ( if Int.equal offset 1 then ("eq_"^(Label.to_string lbl)) else ((Label.to_string lbl)^"_lb") ))) ) in Proofview.Goal.enter begin fun gl -> let type_of_pq = Tacmach.New.pf_unsafe_type_of gl p in let sigma = Tacmach.New.project gl in let env = Tacmach.New.pf_env gl in let u,v = destruct_ind sigma type_of_pq in let lb_type_of_p = try let c, eff = find_scheme ~mode lb_scheme_key (fst u) (*FIXME*) in Proofview.tclUNIT (mkConst c, eff) with Not_found -> (* spiwack: the format of this error message should probably be improved. *) let err_msg = (str "Leibniz->boolean:" ++ str "You have to declare the" ++ str "decidability over " ++ Printer.pr_econstr_env env sigma type_of_pq ++ str " first.") in Tacticals.New.tclZEROMSG err_msg in lb_type_of_p >>= fun (lb_type_of_p,eff) -> Proofview.tclEVARMAP >>= fun sigma -> let lb_args = Array.append (Array.append (Array.map (fun x -> x) v) (Array.map (fun x -> do_arg sigma x 1) v)) (Array.map (fun x -> do_arg sigma x 2) v) in let app = if Array.is_empty lb_args then lb_type_of_p else mkApp (lb_type_of_p,lb_args) in Tacticals.New.tclTHENLIST [ Proofview.tclEFFECTS eff; Equality.replace p q ; apply app ; Auto.default_auto] end (* used in the bool -> leib side *) let do_replace_bl mode bl_scheme_key (ind,u as indu) aavoid narg lft rgt = let open EConstr in let avoid = Array.of_list aavoid in let do_arg sigma v offset = try let x = narg*offset in let s = destVar sigma v in let n = Array.length avoid in let rec find i = if Id.equal avoid.(n-i) s then avoid.(n-i-x) else (if i<n then find (i+1) else user_err ~hdr:"AutoIndDecl.do_replace_bl" (str "Var " ++ Id.print s ++ str " seems unknown.") ) in mkVar (find 1) with e when CErrors.noncritical e -> (* if this happen then the args have to be already declared as a Parameter*) ( let mp,dir,lbl = Constant.repr3 (fst (destConst sigma v)) in mkConst (Constant.make3 mp dir (Label.make ( if Int.equal offset 1 then ("eq_"^(Label.to_string lbl)) else ((Label.to_string lbl)^"_bl") ))) ) in let rec aux l1 l2 = match (l1,l2) with | (t1::q1,t2::q2) -> Proofview.Goal.enter begin fun gl -> let tt1 = Tacmach.New.pf_unsafe_type_of gl t1 in let sigma = Tacmach.New.project gl in let env = Tacmach.New.pf_env gl in if EConstr.eq_constr sigma t1 t2 then aux q1 q2 else ( let u,v = try destruct_ind sigma tt1 (* trick so that the good sequence is returned*) with e when CErrors.noncritical e -> indu,[||] in if eq_ind (fst u) ind then Tacticals.New.tclTHENLIST [Equality.replace t1 t2; Auto.default_auto ; aux q1 q2 ] else ( let bl_t1, eff = try let c, eff = find_scheme bl_scheme_key (fst u) (*FIXME*) in mkConst c, eff with Not_found -> (* spiwack: the format of this error message should probably be improved. *) let err_msg = (str "boolean->Leibniz:" ++ str "You have to declare the" ++ str "decidability over " ++ Printer.pr_econstr_env env sigma tt1 ++ str " first.") in user_err err_msg in let bl_args = Array.append (Array.append (Array.map (fun x -> x) v) (Array.map (fun x -> do_arg sigma x 1) v)) (Array.map (fun x -> do_arg sigma x 2) v ) in let app = if Array.is_empty bl_args then bl_t1 else mkApp (bl_t1,bl_args) in Tacticals.New.tclTHENLIST [ Proofview.tclEFFECTS eff; Equality.replace_by t1 t2 (Tacticals.New.tclTHEN (apply app) (Auto.default_auto)) ; aux q1 q2 ] ) ) end | ([],[]) -> Proofview.tclUNIT () | _ -> Tacticals.New.tclZEROMSG (str "Both side of the equality must have the same arity.") in Proofview.tclEVARMAP >>= fun sigma -> begin try Proofview.tclUNIT (destApp sigma lft) with DestKO -> Tacticals.New.tclZEROMSG (str "replace failed.") end >>= fun (ind1,ca1) -> begin try Proofview.tclUNIT (destApp sigma rgt) with DestKO -> Tacticals.New.tclZEROMSG (str "replace failed.") end >>= fun (ind2,ca2) -> begin try Proofview.tclUNIT (fst (destInd sigma ind1)) with DestKO -> begin try Proofview.tclUNIT (fst (fst (destConstruct sigma ind1))) with DestKO -> Tacticals.New.tclZEROMSG (str "The expected type is an inductive one.") end end >>= fun (sp1,i1) -> begin try Proofview.tclUNIT (fst (destInd sigma ind2)) with DestKO -> begin try Proofview.tclUNIT (fst (fst (destConstruct sigma ind2))) with DestKO -> Tacticals.New.tclZEROMSG (str "The expected type is an inductive one.") end end >>= fun (sp2,i2) -> if not (MutInd.equal sp1 sp2) || not (Int.equal i1 i2) then Tacticals.New.tclZEROMSG (str "Eq should be on the same type") else aux (Array.to_list ca1) (Array.to_list ca2) (* create, from a list of ids [i1,i2,...,in] the list [(in,eq_in,in_bl,in_al),,...,(i1,eq_i1,i1_bl_i1_al )] *) let list_id l = List.fold_left ( fun a decl -> let s' = match RelDecl.get_name decl with Name s -> Id.to_string s | Anonymous -> "A" in (Id.of_string s',Id.of_string ("eq_"^s'), Id.of_string (s'^"_bl"), Id.of_string (s'^"_lb")) ::a ) [] l (* build the right eq_I A B.. N eq_A .. eq_N *) let eqI ind l = let list_id = list_id l in let eA = Array.of_list((List.map (fun (s,_,_,_) -> mkVar s) list_id)@ (List.map (fun (_,seq,_,_)-> mkVar seq) list_id )) and e, eff = try let c, eff = find_scheme beq_scheme_kind ind in mkConst c, eff with Not_found -> user_err ~hdr:"AutoIndDecl.eqI" (str "The boolean equality on " ++ MutInd.print (fst ind) ++ str " is needed."); in (if Array.equal Constr.equal eA [||] then e else mkApp(e,eA)), eff (**********************************************************************) (* Boolean->Leibniz *) open Namegen let compute_bl_goal ind lnamesparrec nparrec = let eqI, eff = eqI ind lnamesparrec in let list_id = list_id lnamesparrec in let avoid = List.fold_right (Nameops.Name.fold_right (fun id l -> Id.Set.add id l)) (List.map RelDecl.get_name lnamesparrec) Id.Set.empty in let create_input c = let x = next_ident_away (Id.of_string "x") avoid and y = next_ident_away (Id.of_string "y") avoid in let bl_typ = List.map (fun (s,seq,_,_) -> mkNamedProd x (mkVar s) ( mkNamedProd y (mkVar s) ( mkArrow ( mkApp(Lazy.force eq,[|(Lazy.force bb);mkApp(mkVar seq,[|mkVar x;mkVar y|]);(Lazy.force tt)|])) ( mkApp(Lazy.force eq,[|mkVar s;mkVar x;mkVar y|])) )) ) list_id in let bl_input = List.fold_left2 ( fun a (s,_,sbl,_) b -> mkNamedProd sbl b a ) c (List.rev list_id) (List.rev bl_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(Anonymous,mkVar s,mkProd(Anonymous,mkVar s,(Lazy.force bb))) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd seq b a ) bl_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a decl -> mkNamedProd (match RelDecl.get_name decl with Name s -> s | Anonymous -> next_ident_away (Id.of_string "A") avoid) (RelDecl.get_type decl) a) eq_input lnamesparrec in let n = next_ident_away (Id.of_string "x") avoid and m = next_ident_away (Id.of_string "y") avoid in let u = Univ.Instance.empty in create_input ( mkNamedProd n (mkFullInd (ind,u) nparrec) ( mkNamedProd m (mkFullInd (ind,u) (nparrec+1)) ( mkArrow (mkApp(Lazy.force eq,[|(Lazy.force bb);mkApp(eqI,[|mkVar n;mkVar m|]);(Lazy.force tt)|])) (mkApp(Lazy.force eq,[|mkFullInd (ind,u) (nparrec+3);mkVar n;mkVar m|])) ))), eff let compute_bl_tact mode bl_scheme_key ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let avoid = ref [] in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_ ) -> seq) list_id ) @ ( List.map (fun (_,_,sbl,_ ) -> sbl) list_id ) in let fresh_id s gl = let fresh = fresh_id_in_env (Id.Set.of_list !avoid) s (Proofview.Goal.env gl) in avoid := fresh::(!avoid); fresh in Proofview.Goal.enter begin fun gl -> let fresh_first_intros = List.map (fun id -> fresh_id id gl) first_intros in let freshn = fresh_id (Id.of_string "x") gl in let freshm = fresh_id (Id.of_string "y") gl in let freshz = fresh_id (Id.of_string "Z") gl in (* try with *) Tacticals.New.tclTHENLIST [ intros_using fresh_first_intros; intro_using freshn ; induct_on (EConstr.mkVar freshn); intro_using freshm; destruct_on (EConstr.mkVar freshm); intro_using freshz; intros; Tacticals.New.tclTRY ( Tacticals.New.tclORELSE reflexivity my_discr_tac ); simpl_in_hyp (freshz,Locus.InHyp); (* repeat ( apply andb_prop in z;let z1:= fresh "Z" in destruct z as [z1 z]). *) Tacticals.New.tclREPEAT ( Tacticals.New.tclTHENLIST [ Simple.apply_in freshz (EConstr.of_constr (andb_prop())); Proofview.Goal.enter begin fun gl -> let fresht = fresh_id (Id.of_string "Z") gl in destruct_on_as (EConstr.mkVar freshz) (IntroOrPattern [[Loc.tag @@ IntroNaming (IntroIdentifier fresht); Loc.tag @@ IntroNaming (IntroIdentifier freshz)]]) end ]); (* Ci a1 ... an = Ci b1 ... bn replace bi with ai; auto || replace bi with ai by apply typeofbi_prod ; auto *) Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in match EConstr.kind sigma concl with | App (c,ca) -> ( match EConstr.kind sigma c with | Ind (indeq, u) -> if eq_gr (IndRef indeq) Coqlib.glob_eq then Tacticals.New.tclTHEN (do_replace_bl mode bl_scheme_key ind (!avoid) nparrec (ca.(2)) (ca.(1))) Auto.default_auto else Tacticals.New.tclZEROMSG (str "Failure while solving Boolean->Leibniz.") | _ -> Tacticals.New.tclZEROMSG (str" Failure while solving Boolean->Leibniz.") ) | _ -> Tacticals.New.tclZEROMSG (str "Failure while solving Boolean->Leibniz.") end ] end let bl_scheme_kind_aux = ref (fun _ -> failwith "Undefined") let side_effect_of_mode = function | Declare.UserAutomaticRequest -> false | Declare.InternalTacticRequest -> true | Declare.UserIndividualRequest -> false let make_bl_scheme mode mind = let mib = Global.lookup_mind mind in if not (Int.equal (Array.length mib.mind_packets) 1) then user_err (str "Automatic building of boolean->Leibniz lemmas not supported"); let ind = (mind,0) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in let lnonparrec,lnamesparrec = (* TODO subst *) context_chop (nparams-nparrec) mib.mind_params_ctxt in let bl_goal, eff = compute_bl_goal ind lnamesparrec nparrec in let ctx = Evd.make_evar_universe_context (Global.env ()) None in let side_eff = side_effect_of_mode mode in let bl_goal = EConstr.of_constr bl_goal in let (ans, _, ctx) = Pfedit.build_by_tactic ~side_eff (Global.env()) ctx bl_goal (compute_bl_tact mode (!bl_scheme_kind_aux()) (ind, EConstr.EInstance.empty) lnamesparrec nparrec) in ([|ans|], ctx), eff let bl_scheme_kind = declare_mutual_scheme_object "_dec_bl" make_bl_scheme let _ = bl_scheme_kind_aux := fun () -> bl_scheme_kind (**********************************************************************) (* Leibniz->Boolean *) let compute_lb_goal ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let eq = Lazy.force eq and tt = Lazy.force tt and bb = Lazy.force bb in let avoid = List.fold_right (Nameops.Name.fold_right (fun id l -> Id.Set.add id l)) (List.map RelDecl.get_name lnamesparrec) Id.Set.empty in let eqI, eff = eqI ind lnamesparrec in let create_input c = let x = next_ident_away (Id.of_string "x") avoid and y = next_ident_away (Id.of_string "y") avoid in let lb_typ = List.map (fun (s,seq,_,_) -> mkNamedProd x (mkVar s) ( mkNamedProd y (mkVar s) ( mkArrow ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) )) ) list_id in let lb_input = List.fold_left2 ( fun a (s,_,_,slb) b -> mkNamedProd slb b a ) c (List.rev list_id) (List.rev lb_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(Anonymous,mkVar s,mkProd(Anonymous,mkVar s,bb)) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd seq b a ) lb_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a decl -> mkNamedProd (match (RelDecl.get_name decl) with Name s -> s | Anonymous -> Id.of_string "A") (RelDecl.get_type decl) a) eq_input lnamesparrec in let n = next_ident_away (Id.of_string "x") avoid and m = next_ident_away (Id.of_string "y") avoid in let u = Univ.Instance.empty in create_input ( mkNamedProd n (mkFullInd (ind,u) nparrec) ( mkNamedProd m (mkFullInd (ind,u) (nparrec+1)) ( mkArrow (mkApp(eq,[|mkFullInd (ind,u) (nparrec+2);mkVar n;mkVar m|])) (mkApp(eq,[|bb;mkApp(eqI,[|mkVar n;mkVar m|]);tt|])) ))), eff let compute_lb_tact mode lb_scheme_key ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let avoid = ref [] in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_) -> seq) list_id ) @ ( List.map (fun (_,_,_,slb) -> slb) list_id ) in let fresh_id s gl = let fresh = fresh_id_in_env (Id.Set.of_list !avoid) s (Proofview.Goal.env gl) in avoid := fresh::(!avoid); fresh in Proofview.Goal.enter begin fun gl -> let fresh_first_intros = List.map (fun id -> fresh_id id gl) first_intros in let freshn = fresh_id (Id.of_string "x") gl in let freshm = fresh_id (Id.of_string "y") gl in let freshz = fresh_id (Id.of_string "Z") gl in (* try with *) Tacticals.New.tclTHENLIST [ intros_using fresh_first_intros; intro_using freshn ; induct_on (EConstr.mkVar freshn); intro_using freshm; destruct_on (EConstr.mkVar freshm); intro_using freshz; intros; Tacticals.New.tclTRY ( Tacticals.New.tclORELSE reflexivity my_discr_tac ); my_inj_tac freshz; intros; simpl_in_concl; Auto.default_auto; Tacticals.New.tclREPEAT ( Tacticals.New.tclTHENLIST [apply (EConstr.of_constr (andb_true_intro())); simplest_split ;Auto.default_auto ] ); Proofview.Goal.enter begin fun gls -> let concl = Proofview.Goal.concl gls in let sigma = Tacmach.New.project gl in (* assume the goal to be eq (eq_type ...) = true *) match EConstr.kind sigma concl with | App(c,ca) -> (match (EConstr.kind sigma ca.(1)) with | App(c',ca') -> let n = Array.length ca' in do_replace_lb mode lb_scheme_key (!avoid) nparrec ca'.(n-2) ca'.(n-1) | _ -> Tacticals.New.tclZEROMSG (str "Failure while solving Leibniz->Boolean.") ) | _ -> Tacticals.New.tclZEROMSG (str "Failure while solving Leibniz->Boolean.") end ] end let lb_scheme_kind_aux = ref (fun () -> failwith "Undefined") let make_lb_scheme mode mind = let mib = Global.lookup_mind mind in if not (Int.equal (Array.length mib.mind_packets) 1) then user_err (str "Automatic building of Leibniz->boolean lemmas not supported"); let ind = (mind,0) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in let lb_goal, eff = compute_lb_goal ind lnamesparrec nparrec in let ctx = Evd.make_evar_universe_context (Global.env ()) None in let side_eff = side_effect_of_mode mode in let lb_goal = EConstr.of_constr lb_goal in let (ans, _, ctx) = Pfedit.build_by_tactic ~side_eff (Global.env()) ctx lb_goal (compute_lb_tact mode (!lb_scheme_kind_aux()) ind lnamesparrec nparrec) in ([|ans|], ctx), eff let lb_scheme_kind = declare_mutual_scheme_object "_dec_lb" make_lb_scheme let _ = lb_scheme_kind_aux := fun () -> lb_scheme_kind (**********************************************************************) (* Decidable equality *) let check_not_is_defined () = try ignore (Coqlib.build_coq_not ()) with e when CErrors.noncritical e -> raise (UndefinedCst "not") (* {n=m}+{n<>m} part *) let compute_dec_goal ind lnamesparrec nparrec = check_not_is_defined (); let eq = Lazy.force eq and tt = Lazy.force tt and bb = Lazy.force bb in let list_id = list_id lnamesparrec in let avoid = List.fold_right (Nameops.Name.fold_right (fun id l -> Id.Set.add id l)) (List.map RelDecl.get_name lnamesparrec) Id.Set.empty in let create_input c = let x = next_ident_away (Id.of_string "x") avoid and y = next_ident_away (Id.of_string "y") avoid in let lb_typ = List.map (fun (s,seq,_,_) -> mkNamedProd x (mkVar s) ( mkNamedProd y (mkVar s) ( mkArrow ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) )) ) list_id in let bl_typ = List.map (fun (s,seq,_,_) -> mkNamedProd x (mkVar s) ( mkNamedProd y (mkVar s) ( mkArrow ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) )) ) list_id in let lb_input = List.fold_left2 ( fun a (s,_,_,slb) b -> mkNamedProd slb b a ) c (List.rev list_id) (List.rev lb_typ) in let bl_input = List.fold_left2 ( fun a (s,_,sbl,_) b -> mkNamedProd sbl b a ) lb_input (List.rev list_id) (List.rev bl_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(Anonymous,mkVar s,mkProd(Anonymous,mkVar s,bb)) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd seq b a ) bl_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a decl -> mkNamedProd (match RelDecl.get_name decl with Name s -> s | Anonymous -> Id.of_string "A") (RelDecl.get_type decl) a) eq_input lnamesparrec in let n = next_ident_away (Id.of_string "x") avoid and m = next_ident_away (Id.of_string "y") avoid in let eqnm = mkApp(eq,[|mkFullInd ind (2*nparrec+2);mkVar n;mkVar m|]) in create_input ( mkNamedProd n (mkFullInd ind (2*nparrec)) ( mkNamedProd m (mkFullInd ind (2*nparrec+1)) ( mkApp(sumbool(),[|eqnm;mkApp (Universes.constr_of_global @@ Coqlib.build_coq_not(),[|eqnm|])|]) ) ) ) let compute_dec_tact ind lnamesparrec nparrec = let eq = Lazy.force eq and tt = Lazy.force tt and ff = Lazy.force ff and bb = Lazy.force bb in let list_id = list_id lnamesparrec in let eqI, eff = eqI ind lnamesparrec in let avoid = ref [] in let eqtrue x = mkApp(eq,[|bb;x;tt|]) in let eqfalse x = mkApp(eq,[|bb;x;ff|]) in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_) -> seq) list_id ) @ ( List.map (fun (_,_,sbl,_) -> sbl) list_id ) @ ( List.map (fun (_,_,_,slb) -> slb) list_id ) in let fresh_id s gl = let fresh = fresh_id_in_env (Id.Set.of_list !avoid) s (Proofview.Goal.env gl) in avoid := fresh::(!avoid); fresh in Proofview.Goal.enter begin fun gl -> let fresh_first_intros = List.map (fun id -> fresh_id id gl) first_intros in let freshn = fresh_id (Id.of_string "x") gl in let freshm = fresh_id (Id.of_string "y") gl in let freshH = fresh_id (Id.of_string "H") gl in let eqbnm = mkApp(eqI,[|mkVar freshn;mkVar freshm|]) in let arfresh = Array.of_list fresh_first_intros in let xargs = Array.sub arfresh 0 (2*nparrec) in begin try let c, eff = find_scheme bl_scheme_kind ind in Proofview.tclUNIT (mkConst c,eff) with Not_found -> Tacticals.New.tclZEROMSG (str "Error during the decidability part, boolean to leibniz equality is required.") end >>= fun (blI,eff') -> begin try let c, eff = find_scheme lb_scheme_kind ind in Proofview.tclUNIT (mkConst c,eff) with Not_found -> Tacticals.New.tclZEROMSG (str "Error during the decidability part, leibniz to boolean equality is required.") end >>= fun (lbI,eff'') -> let eff = (Safe_typing.concat_private eff'' (Safe_typing.concat_private eff' eff)) in Tacticals.New.tclTHENLIST [ Proofview.tclEFFECTS eff; intros_using fresh_first_intros; intros_using [freshn;freshm]; (*we do this so we don't have to prove the same goal twice *) assert_by (Name freshH) (EConstr.of_constr ( mkApp(sumbool(),[|eqtrue eqbnm; eqfalse eqbnm|]) )) (Tacticals.New.tclTHEN (destruct_on (EConstr.of_constr eqbnm)) Auto.default_auto); Proofview.Goal.enter begin fun gl -> let freshH2 = fresh_id (Id.of_string "H") gl in Tacticals.New.tclTHENS (destruct_on_using (EConstr.mkVar freshH) freshH2) [ (* left *) Tacticals.New.tclTHENLIST [ simplest_left; apply (EConstr.of_constr (mkApp(blI,Array.map(fun x->mkVar x) xargs))); Auto.default_auto ] ; (*right *) Proofview.Goal.enter begin fun gl -> let freshH3 = fresh_id (Id.of_string "H") gl in Tacticals.New.tclTHENLIST [ simplest_right ; unfold_constr (Lazy.force Coqlib.coq_not_ref); intro; Equality.subst_all (); assert_by (Name freshH3) (EConstr.of_constr (mkApp(eq,[|bb;mkApp(eqI,[|mkVar freshm;mkVar freshm|]);tt|]))) (Tacticals.New.tclTHENLIST [ apply (EConstr.of_constr (mkApp(lbI,Array.map (fun x->mkVar x) xargs))); Auto.default_auto ]); Equality.general_rewrite_bindings_in true Locus.AllOccurrences true false (List.hd !avoid) ((EConstr.mkVar (List.hd (List.tl !avoid))), NoBindings ) true; my_discr_tac ] end ] end ] end let make_eq_decidability mode mind = let mib = Global.lookup_mind mind in if not (Int.equal (Array.length mib.mind_packets) 1) then raise DecidabilityMutualNotSupported; let ind = (mind,0) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in let u = Univ.Instance.empty in let ctx = Evd.make_evar_universe_context (Global.env ()) None in let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in let side_eff = side_effect_of_mode mode in let (ans, _, ctx) = Pfedit.build_by_tactic ~side_eff (Global.env()) ctx (EConstr.of_constr (compute_dec_goal (ind,u) lnamesparrec nparrec)) (compute_dec_tact ind lnamesparrec nparrec) in ([|ans|], ctx), Safe_typing.empty_private_constants let eq_dec_scheme_kind = declare_mutual_scheme_object "_eq_dec" make_eq_decidability (* The eq_dec_scheme proofs depend on the equality and discr tactics but the inj tactics, that comes with discr, depends on the eq_dec_scheme... *) let _ = Equality.set_eq_dec_scheme_kind eq_dec_scheme_kind