1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* Created by Hugo Herbelin from contents related to inductive schemes initially developed by Christine Paulin (induction schemes), Vincent Siles (decidable equality and boolean equality) and Matthieu Sozeau (combined scheme) in file command.ml, Sep 2009 *) (* This file provides entry points for manually or automatically declaring new schemes *) open Pp open CErrors open Util open Names open Declarations open Entries open Term open Constr open Inductive open Decl_kinds open Indrec open Declare open Libnames open Globnames open Goptions open Nameops open Termops open Nametab open Smartlocate open Vernacexpr open Ind_tables open Auto_ind_decl open Eqschemes open Elimschemes open Context.Rel.Declaration (* Flags governing automatic synthesis of schemes *) let elim_flag = ref true let _ = declare_bool_option { optdepr = false; optname = "automatic declaration of induction schemes"; optkey = ["Elimination";"Schemes"]; optread = (fun () -> !elim_flag) ; optwrite = (fun b -> elim_flag := b) } let bifinite_elim_flag = ref false let _ = declare_bool_option { optdepr = false; optname = "automatic declaration of induction schemes for non-recursive types"; optkey = ["Nonrecursive";"Elimination";"Schemes"]; optread = (fun () -> !bifinite_elim_flag) ; optwrite = (fun b -> bifinite_elim_flag := b) } let _ = declare_bool_option { optdepr = true; (* compatibility 2014-09-03*) optname = "automatic declaration of induction schemes for non-recursive types"; optkey = ["Record";"Elimination";"Schemes"]; optread = (fun () -> !bifinite_elim_flag) ; optwrite = (fun b -> bifinite_elim_flag := b) } let case_flag = ref false let _ = declare_bool_option { optdepr = false; optname = "automatic declaration of case analysis schemes"; optkey = ["Case";"Analysis";"Schemes"]; optread = (fun () -> !case_flag) ; optwrite = (fun b -> case_flag := b) } let eq_flag = ref false let _ = declare_bool_option { optdepr = false; optname = "automatic declaration of boolean equality"; optkey = ["Boolean";"Equality";"Schemes"]; optread = (fun () -> !eq_flag) ; optwrite = (fun b -> eq_flag := b) } let is_eq_flag () = !eq_flag let eq_dec_flag = ref false let _ = declare_bool_option { optdepr = false; optname = "automatic declaration of decidable equality"; optkey = ["Decidable";"Equality";"Schemes"]; optread = (fun () -> !eq_dec_flag) ; optwrite = (fun b -> eq_dec_flag := b) } let rewriting_flag = ref false let _ = declare_bool_option { optdepr = false; optname ="automatic declaration of rewriting schemes for equality types"; optkey = ["Rewriting";"Schemes"]; optread = (fun () -> !rewriting_flag) ; optwrite = (fun b -> rewriting_flag := b) } (* Util *) let define id internal ctx c t = let f = declare_constant ~internal in let univs = if Flags.is_universe_polymorphism () then Polymorphic_const_entry (Evd.to_universe_context ctx) else Monomorphic_const_entry (Evd.universe_context_set ctx) in let kn = f id (DefinitionEntry { const_entry_body = c; const_entry_secctx = None; const_entry_type = t; const_entry_universes = univs; const_entry_opaque = false; const_entry_inline_code = false; const_entry_feedback = None; }, Decl_kinds.IsDefinition Scheme) in definition_message id; kn (* Boolean equality *) let declare_beq_scheme_gen internal names kn = ignore (define_mutual_scheme beq_scheme_kind internal names kn) let alarm what internal msg = let debug = false in match internal with | UserAutomaticRequest | InternalTacticRequest -> (if debug then Feedback.msg_debug (hov 0 msg ++ fnl () ++ what ++ str " not defined.")); None | _ -> Some msg let try_declare_scheme what f internal names kn = try f internal names kn with e -> let e = CErrors.push e in let msg = match fst e with | ParameterWithoutEquality cst -> alarm what internal (str "Boolean equality not found for parameter " ++ Printer.pr_global cst ++ str".") | InductiveWithProduct -> alarm what internal (str "Unable to decide equality of functional arguments.") | InductiveWithSort -> alarm what internal (str "Unable to decide equality of type arguments.") | NonSingletonProp ind -> alarm what internal (str "Cannot extract computational content from proposition " ++ quote (Printer.pr_inductive (Global.env()) ind) ++ str ".") | EqNotFound (ind',ind) -> alarm what internal (str "Boolean equality on " ++ quote (Printer.pr_inductive (Global.env()) ind') ++ strbrk " is missing.") | UndefinedCst s -> alarm what internal (strbrk "Required constant " ++ str s ++ str " undefined.") | AlreadyDeclared msg -> alarm what internal (msg ++ str ".") | DecidabilityMutualNotSupported -> alarm what internal (str "Decidability lemma for mutual inductive types not supported.") | EqUnknown s -> alarm what internal (str "Found unsupported " ++ str s ++ str " while building Boolean equality.") | NoDecidabilityCoInductive -> alarm what internal (str "Scheme Equality is only for inductive types.") | e when CErrors.noncritical e -> alarm what internal (str "Unexpected error during scheme creation: " ++ CErrors.print e) | _ -> iraise e in match msg with | None -> () | Some msg -> iraise (UserError (None, msg), snd e) let beq_scheme_msg mind = let mib = Global.lookup_mind mind in (* TODO: mutual inductive case *) str "Boolean equality on " ++ pr_enum (fun ind -> quote (Printer.pr_inductive (Global.env()) ind)) (List.init (Array.length mib.mind_packets) (fun i -> (mind,i))) let declare_beq_scheme_with l kn = try_declare_scheme (beq_scheme_msg kn) declare_beq_scheme_gen UserIndividualRequest l kn let try_declare_beq_scheme kn = (* TODO: handle Fix, eventually handle proof-irrelevance; improve decidability by depending on decidability for the parameters rather than on the bl and lb properties *) try_declare_scheme (beq_scheme_msg kn) declare_beq_scheme_gen UserAutomaticRequest [] kn let declare_beq_scheme = declare_beq_scheme_with [] (* Case analysis schemes *) let declare_one_case_analysis_scheme ind = let (mib,mip) = Global.lookup_inductive ind in let kind = inductive_sort_family mip in let dep = if kind == InProp then case_scheme_kind_from_prop else if not (Inductiveops.has_dependent_elim mib) then case_scheme_kind_from_type else case_dep_scheme_kind_from_type in let kelim = elim_sorts (mib,mip) in (* in case the inductive has a type elimination, generates only one induction scheme, the other ones share the same code with the apropriate type *) if Sorts.List.mem InType kelim then ignore (define_individual_scheme dep UserAutomaticRequest None ind) (* Induction/recursion schemes *) let kinds_from_prop = [InType,rect_scheme_kind_from_prop; InProp,ind_scheme_kind_from_prop; InSet,rec_scheme_kind_from_prop] let kinds_from_type = [InType,rect_dep_scheme_kind_from_type; InProp,ind_dep_scheme_kind_from_type; InSet,rec_dep_scheme_kind_from_type] let nondep_kinds_from_type = [InType,rect_scheme_kind_from_type; InProp,ind_scheme_kind_from_type; InSet,rec_scheme_kind_from_type] let declare_one_induction_scheme ind = let (mib,mip) = Global.lookup_inductive ind in let kind = inductive_sort_family mip in let from_prop = kind == InProp in let depelim = Inductiveops.has_dependent_elim mib in let kelim = elim_sorts (mib,mip) in let elims = List.map_filter (fun (sort,kind) -> if Sorts.List.mem sort kelim then Some kind else None) (if from_prop then kinds_from_prop else if depelim then kinds_from_type else nondep_kinds_from_type) in List.iter (fun kind -> ignore (define_individual_scheme kind UserAutomaticRequest None ind)) elims let declare_induction_schemes kn = let mib = Global.lookup_mind kn in if mib.mind_finite <> Decl_kinds.CoFinite then begin for i = 0 to Array.length mib.mind_packets - 1 do declare_one_induction_scheme (kn,i); done; end (* Decidable equality *) let declare_eq_decidability_gen internal names kn = let mib = Global.lookup_mind kn in if mib.mind_finite <> Decl_kinds.CoFinite then ignore (define_mutual_scheme eq_dec_scheme_kind internal names kn) let eq_dec_scheme_msg ind = (* TODO: mutual inductive case *) str "Decidable equality on " ++ quote (Printer.pr_inductive (Global.env()) ind) let declare_eq_decidability_scheme_with l kn = try_declare_scheme (eq_dec_scheme_msg (kn,0)) declare_eq_decidability_gen UserIndividualRequest l kn let try_declare_eq_decidability kn = try_declare_scheme (eq_dec_scheme_msg (kn,0)) declare_eq_decidability_gen UserAutomaticRequest [] kn let declare_eq_decidability = declare_eq_decidability_scheme_with [] let ignore_error f x = try ignore (f x) with e when CErrors.noncritical e -> () let declare_rewriting_schemes ind = if Hipattern.is_inductive_equality ind then begin ignore (define_individual_scheme rew_r2l_scheme_kind UserAutomaticRequest None ind); ignore (define_individual_scheme rew_r2l_dep_scheme_kind UserAutomaticRequest None ind); ignore (define_individual_scheme rew_r2l_forward_dep_scheme_kind UserAutomaticRequest None ind); (* These ones expect the equality to be symmetric; the first one also *) (* needs eq *) ignore_error (define_individual_scheme rew_l2r_scheme_kind UserAutomaticRequest None) ind; ignore_error (define_individual_scheme rew_l2r_dep_scheme_kind UserAutomaticRequest None) ind; ignore_error (define_individual_scheme rew_l2r_forward_dep_scheme_kind UserAutomaticRequest None) ind end let warn_cannot_build_congruence = CWarnings.create ~name:"cannot-build-congruence" ~category:"schemes" (fun () -> strbrk "Cannot build congruence scheme because eq is not found") let declare_congr_scheme ind = if Hipattern.is_equality_type Evd.empty (EConstr.of_constr (mkInd ind)) (** FIXME *) then begin if try Coqlib.check_required_library Coqlib.logic_module_name; true with e when CErrors.noncritical e -> false then ignore (define_individual_scheme congr_scheme_kind UserAutomaticRequest None ind) else warn_cannot_build_congruence () end let declare_sym_scheme ind = if Hipattern.is_inductive_equality ind then (* Expect the equality to be symmetric *) ignore_error (define_individual_scheme sym_scheme_kind UserAutomaticRequest None) ind (* Scheme command *) let smart_global_inductive y = smart_global_inductive y let rec split_scheme l = let env = Global.env() in match l with | [] -> [],[] | (Some id,t)::q -> let l1,l2 = split_scheme q in ( match t with | InductionScheme (x,y,z) -> ((id,x,smart_global_inductive y,z)::l1),l2 | CaseScheme (x,y,z) -> ((id,x,smart_global_inductive y,z)::l1),l2 | EqualityScheme x -> l1,((Some id,smart_global_inductive x)::l2) ) (* if no name has been provided, we build one from the types of the ind requested *) | (None,t)::q -> let l1,l2 = split_scheme q in let names inds recs isdep y z = let ind = smart_global_inductive y in let sort_of_ind = inductive_sort_family (snd (lookup_mind_specif env ind)) in let suffix = ( match sort_of_ind with | InProp -> if isdep then (match z with | InProp -> inds ^ "_dep" | InSet -> recs ^ "_dep" | InType -> recs ^ "t_dep") else ( match z with | InProp -> inds | InSet -> recs | InType -> recs ^ "t" ) | _ -> if isdep then (match z with | InProp -> inds | InSet -> recs | InType -> recs ^ "t" ) else (match z with | InProp -> inds ^ "_nodep" | InSet -> recs ^ "_nodep" | InType -> recs ^ "t_nodep") ) in let newid = add_suffix (basename_of_global (IndRef ind)) suffix in let newref = Loc.tag newid in ((newref,isdep,ind,z)::l1),l2 in match t with | CaseScheme (x,y,z) -> names "_case" "_case" x y z | InductionScheme (x,y,z) -> names "_ind" "_rec" x y z | EqualityScheme x -> l1,((None,smart_global_inductive x)::l2) let do_mutual_induction_scheme lnamedepindsort = let lrecnames = List.map (fun ((_,f),_,_,_) -> f) lnamedepindsort and env0 = Global.env() in let sigma, lrecspec, _ = List.fold_right (fun (_,dep,ind,sort) (evd, l, inst) -> let evd, indu, inst = match inst with | None -> let _, ctx = Global.type_of_global_in_context env0 (IndRef ind) in let u, ctx = Universes.fresh_instance_from ctx None in let evd = Evd.from_ctx (Evd.evar_universe_context_of ctx) in evd, (ind,u), Some u | Some ui -> evd, (ind, ui), inst in (evd, (indu,dep,sort) :: l, inst)) lnamedepindsort (Evd.from_env env0,[],None) in let sigma, listdecl = Indrec.build_mutual_induction_scheme env0 sigma lrecspec in let declare decl fi lrecref = let decltype = Retyping.get_type_of env0 sigma (EConstr.of_constr decl) in let decltype = EConstr.to_constr sigma decltype in let proof_output = Future.from_val ((decl,Univ.ContextSet.empty),Safe_typing.empty_private_constants) in let cst = define fi UserIndividualRequest sigma proof_output (Some decltype) in ConstRef cst :: lrecref in let _ = List.fold_right2 declare listdecl lrecnames [] in fixpoint_message None lrecnames let get_common_underlying_mutual_inductive = function | [] -> assert false | (id,(mind,i as ind))::l as all -> match List.filter (fun (_,(mind',_)) -> not (MutInd.equal mind mind')) l with | (_,ind')::_ -> raise (RecursionSchemeError (NotMutualInScheme (ind,ind'))) | [] -> if not (List.distinct_f Int.compare (List.map snd (List.map snd all))) then user_err Pp.(str "A type occurs twice"); mind, List.map_filter (function (Some id,(_,i)) -> Some (i,snd id) | (None,_) -> None) all let do_scheme l = let ischeme,escheme = split_scheme l in (* we want 1 kind of scheme at a time so we check if the user tried to declare different schemes at once *) if not (List.is_empty ischeme) && not (List.is_empty escheme) then user_err Pp.(str "Do not declare equality and induction scheme at the same time.") else ( if not (List.is_empty ischeme) then do_mutual_induction_scheme ischeme else let mind,l = get_common_underlying_mutual_inductive escheme in declare_beq_scheme_with l mind; declare_eq_decidability_scheme_with l mind ) (**********************************************************************) (* Combined scheme *) (* Matthieu Sozeau, Dec 2006 *) let list_split_rev_at index l = let rec aux i acc = function hd :: tl when Int.equal i index -> acc, tl | hd :: tl -> aux (succ i) (hd :: acc) tl | [] -> failwith "List.split_when: Invalid argument" in aux 0 [] l let fold_left' f = function [] -> invalid_arg "fold_left'" | hd :: tl -> List.fold_left f hd tl let mk_coq_and sigma = Evarutil.new_global sigma (Coqlib.build_coq_and ()) let mk_coq_conj sigma = Evarutil.new_global sigma (Coqlib.build_coq_conj ()) let build_combined_scheme env schemes = let evdref = ref (Evd.from_env env) in let defs = List.map (fun cst -> let evd, c = Evd.fresh_constant_instance env !evdref cst in evdref := evd; (c, Typeops.type_of_constant_in env c)) schemes in let find_inductive ty = let (ctx, arity) = decompose_prod ty in let (_, last) = List.hd ctx in match Constr.kind last with | App (ind, args) -> let ind = destInd ind in let (_,spec) = Inductive.lookup_mind_specif env (fst ind) in ctx, ind, spec.mind_nrealargs | _ -> ctx, destInd last, 0 in let (c, t) = List.hd defs in let ctx, ind, nargs = find_inductive t in (* Number of clauses, including the predicates quantification *) let prods = nb_prod !evdref (EConstr.of_constr t) - (nargs + 1) in let sigma, coqand = mk_coq_and !evdref in let sigma, coqconj = mk_coq_conj sigma in let () = evdref := sigma in let relargs = rel_vect 0 prods in let concls = List.rev_map (fun (cst, t) -> mkApp(mkConstU cst, relargs), snd (decompose_prod_n prods t)) defs in let concl_bod, concl_typ = fold_left' (fun (accb, acct) (cst, x) -> mkApp (EConstr.to_constr !evdref coqconj, [| x; acct; cst; accb |]), mkApp (EConstr.to_constr !evdref coqand, [| x; acct |])) concls in let ctx, _ = list_split_rev_at prods (List.rev_map (fun (x, y) -> LocalAssum (x, y)) ctx) in let typ = List.fold_left (fun d c -> Term.mkProd_wo_LetIn c d) concl_typ ctx in let body = it_mkLambda_or_LetIn concl_bod ctx in (!evdref, body, typ) let do_combined_scheme name schemes = let csts = List.map (fun x -> let refe = Ident x in let qualid = qualid_of_reference refe in try Nametab.locate_constant (snd qualid) with Not_found -> user_err Pp.(pr_qualid (snd qualid) ++ str " is not declared.")) schemes in let sigma,body,typ = build_combined_scheme (Global.env ()) csts in let proof_output = Future.from_val ((body,Univ.ContextSet.empty),Safe_typing.empty_private_constants) in ignore (define (snd name) UserIndividualRequest sigma proof_output (Some typ)); fixpoint_message None [snd name] (**********************************************************************) let map_inductive_block f kn n = for i=0 to n-1 do f (kn,i) done let declare_default_schemes kn = let mib = Global.lookup_mind kn in let n = Array.length mib.mind_packets in if !elim_flag && (mib.mind_finite <> BiFinite || !bifinite_elim_flag) && mib.mind_typing_flags.check_guarded then declare_induction_schemes kn; if !case_flag then map_inductive_block declare_one_case_analysis_scheme kn n; if is_eq_flag() then try_declare_beq_scheme kn; if !eq_dec_flag then try_declare_eq_decidability kn; if !rewriting_flag then map_inductive_block declare_congr_scheme kn n; if !rewriting_flag then map_inductive_block declare_sym_scheme kn n; if !rewriting_flag then map_inductive_block declare_rewriting_schemes kn n