1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Author: Benjamin Grégoire as part of the bytecode-based virtual reduction
   machine, Oct 2004 *)
(* Extension: Arnaud Spiwack (support for native arithmetic), May 2005 *)

open Util
open Names
open Cbytecodes
open Cemitcodes
open Constr
open Declarations
open Pre_env


(* Compilation of variables + computing free variables                    *)

(* The virtual machine doesn't distinguish closures and their environment *)

(* Representation of function environments :                              *)
(*        [clos_t | code | fv1 | fv2 | ... | fvn ]                        *)
(*                ^                                                       *)
(*  The offset for accessing free variables is 1 (we must skip the code   *)
(*  pointer).                                                             *)
(*  While compiling, free variables are stored in [in_env] in order       *)
(*  opposite to machine representation, so we can add new free variables  *)
(*  easily (i.e. without changing the position of previous variables)     *)
(* Function arguments are on the stack in the same order as the           *)
(* application :  f arg1 ... argn                                         *)
(*   - the stack is then :                                                *)
(*        arg1 : ... argn : extra args : return addr : ...                *)
(* In the function body [arg1] is represented by de Bruijn [n], and       *)
(* [argn] by de Bruijn [1]                                                *)

(* Representation of environments of mutual fixpoints :                  *)
(* [t1|C1| ... |tc|Cc| ... |t(nbr)|C(nbr)| fv1 | fv2 | .... | fvn | type] *)
(*                ^<----------offset--------->                            *)
(* type = [Ct1 | .... | Ctn]                                              *)
(* Ci is the code pointer of the i-th body                                *)
(* At runtime, a fixpoint environment (which is the same as the fixpoint  *)
(* itself) is a pointer to the field holding its code pointer.            *)
(* In each fixpoint body, de Bruijn [nbr] represents the first fixpoint   *)
(* and de Bruijn [1] the last one.                                        *)
(* Access to these variables is performed by the [Koffsetclosure n]       *)
(* instruction that shifts the environment pointer of [n] fields.         *)

(* This allows representing mutual fixpoints in just one block.           *)
(* [Ct1 | ... | Ctn] is an array holding code pointers of the fixpoint    *)
(* types. They are used in conversion tests (which requires that          *)
(* fixpoint types must be convertible). Their environment is the one of   *)
(* the last fixpoint :                                                    *)
(* [t1|C1| ... |tc|Cc| ... |t(nbr)|C(nbr)| fv1 | fv2 | .... | fvn | type] *)
(*                                ^                                       *)

(* Representation of mutual cofix :                                       *)
(*  a1 =   [A_t | accumulate | [Cfx_t | fcofix1 ] ]                       *)
(*                ...                                                     *)
(*  anbr = [A_t | accumulate | [Cfx_t | fcofixnbr ] ]                     *)
(*                                                                        *)
(*  fcofix1 = [clos_t   | code1   | a1 |...| anbr | fv1 |...| fvn | type] *)
(*                      ^                                                 *)
(*                ...                                                     *)
(*  fcofixnbr = [clos_t | codenbr | a1 |...| anbr | fv1 |...| fvn | type] *)
(*                      ^                                                 *)
(* The [ai] blocks are functions that accumulate their arguments:         *)
(*           ai arg1  argp --->                                           *)
(*    ai' = [A_t | accumulate | [Cfx_t | fcofixi] | arg1 | ... | argp ]   *)
(* If such a block is matched against, we have to force evaluation,       *)
(* function [fcofixi] is then applied to [ai'] [arg1] ... [argp]          *)
(* Once evaluation is completed [ai'] is updated with the result:         *)
(*  ai' <--                                                               *)
(*   [A_t | accumulate | [Cfxe_t |fcofixi|result] | arg1 | ... | argp ]   *)
(* This representation is nice because the application of the cofix is    *)
(* evaluated only once (it simulates a lazy evaluation)                   *)
(* Moreover, when cofix don't have arguments, it is possible to create    *)
(* a cycle, e.g.:                                                         *)
(*   cofix one := cons 1 one                                              *)
(*   a1 = [A_t | accumulate | [Cfx_t|fcofix1] ]                           *)
(*   fcofix1 = [clos_t | code | a1]                                       *)
(* The result of evaluating [a1] is [cons_t | 1 | a1].                    *)
(* When [a1] is updated :                                                 *)
(*  a1 = [A_t | accumulate | [Cfxe_t | fcofix1 | [cons_t | 1 | a1]] ]     *)
(* The cycle is created ...                                               *)
(*                                                                        *)
(* In Cfxe_t accumulators, we need to store [fcofixi] for testing         *)
(* conversion of cofixpoints (which is intentional).                      *)

module Config = struct
  let stack_threshold = 256 (* see byterun/coq_memory.h *)
  let stack_safety_margin = 15
end

type argument = ArgConstr of Constr.t | ArgUniv of Univ.Level.t

let empty_fv = { size= 0;  fv_rev = []; fv_fwd = FvMap.empty }
let push_fv d e = {
  size = e.size + 1;
  fv_rev = d :: e.fv_rev;
  fv_fwd = FvMap.add d e.size e.fv_fwd;
}

let fv r = !(r.in_env)

let empty_comp_env ?(univs=0) ()=
  { nb_uni_stack = univs;
    nb_stack = 0;
    in_stack = [];
    nb_rec = 0;
    pos_rec = [];
    offset = 0;
    in_env = ref empty_fv
  }

(* Maximal stack size reached during the current function body. Used to
   reallocate the stack if we lack space. *)
let max_stack_size = ref 0

let set_max_stack_size stack_size =
  if stack_size > !max_stack_size then
    max_stack_size := stack_size

let ensure_stack_capacity f x =
  let old = !max_stack_size in
  max_stack_size := 0;
  let code = f x in
  let used_safe =
    !max_stack_size + Config.stack_safety_margin
  in
  max_stack_size := old;
  if used_safe > Config.stack_threshold then
    Kensurestackcapacity used_safe :: code
  else code

(*i Creation functions for comp_env *)

let rec add_param n sz l =
  if Int.equal n 0 then l else add_param (n - 1) sz (n+sz::l)

let comp_env_fun ?(univs=0) arity =
  { nb_uni_stack = univs ;
    nb_stack = arity;
    in_stack = add_param arity 0 [];
    nb_rec = 0;
    pos_rec = [];
    offset = 1;
    in_env = ref empty_fv
  }


let comp_env_fix_type  rfv =
  { nb_uni_stack = 0;
    nb_stack = 0;
    in_stack = [];
    nb_rec = 0;
    pos_rec = [];
    offset = 1;
    in_env = rfv
  }

let comp_env_fix ndef curr_pos arity rfv =
   let prec = ref [] in
   for i = ndef downto 1 do
     prec := Koffsetclosure (2 * (ndef - curr_pos - i)) :: !prec
   done;
   { nb_uni_stack = 0;
     nb_stack = arity;
     in_stack = add_param arity 0 [];
     nb_rec = ndef;
     pos_rec = !prec;
     offset = 2 * (ndef - curr_pos - 1)+1;
     in_env = rfv
   }

let comp_env_cofix_type ndef rfv =
  { nb_uni_stack = 0;
    nb_stack = 0;
    in_stack = [];
    nb_rec = 0;
    pos_rec = [];
    offset = 1+ndef;
    in_env = rfv
  }

let comp_env_cofix ndef arity rfv =
   let prec = ref [] in
   for i = 1 to ndef do
     prec := Kenvacc i :: !prec
   done;
   { nb_uni_stack = 0;
     nb_stack = arity;
     in_stack = add_param arity 0 [];
     nb_rec = ndef;
     pos_rec = !prec;
     offset = ndef+1;
     in_env = rfv
   }

(* [push_param ] add function parameters on the stack *)
let push_param n sz r =
  { r with
    nb_stack = r.nb_stack + n;
    in_stack = add_param n sz r.in_stack }

(* [push_local sz r] add a new variable on the stack at position [sz] *)
let push_local sz r =
  { r with
    nb_stack = r.nb_stack + 1;
    in_stack = (sz + 1) :: r.in_stack }

(*i Compilation of variables *)
let find_at fv env = FvMap.find fv env.fv_fwd

let pos_named id r =
  let env = !(r.in_env) in
  let cid = FVnamed id in
  try Kenvacc(r.offset + find_at cid env)
  with Not_found ->
    let pos = env.size in
    r.in_env := push_fv cid env;
    Kenvacc (r.offset + pos)

let pos_rel i r sz =
  if i <= r.nb_stack then
    Kacc(sz - (List.nth r.in_stack (i-1)))
  else
    let i = i - r.nb_stack in
    if i <= r.nb_rec then
      try List.nth r.pos_rec (i-1)
      with (Failure _|Invalid_argument _) -> assert false
    else
      let i = i - r.nb_rec in
      let db = FVrel(i) in
      let env = !(r.in_env) in
      try Kenvacc(r.offset + find_at db env)
      with Not_found ->
        let pos = env.size in
        r.in_env := push_fv db env;
        Kenvacc(r.offset + pos)

let pos_universe_var i r sz =
  if i < r.nb_uni_stack then
    Kacc (sz - r.nb_stack - (r.nb_uni_stack - i))
  else
    let env = !(r.in_env) in
    let db = FVuniv_var i in
    try Kenvacc (r.offset + find_at db env)
    with Not_found ->
      let pos = env.size in
      r.in_env := push_fv db env;
      Kenvacc(r.offset + pos)

(*i  Examination of the continuation *)

(* Discard all instructions up to the next label.                        *)
(* This function is to be applied to the continuation before adding a    *)
(* non-terminating instruction (branch, raise, return, appterm)          *)
(* in front of it.                                                       *)

let discard_dead_code cont = cont
(*function
    [] -> []
  | (Klabel _ | Krestart ) :: _ as cont -> cont
  | _ :: cont -> discard_dead_code cont
*)

(* Return a label to the beginning of the given continuation.            *)
(*   If the sequence starts with a branch, use the target of that branch *)
(*   as the label, thus avoiding a jump to a jump.                       *)

let label_code = function
  | Klabel lbl :: _ as cont -> (lbl, cont)
  | Kbranch lbl :: _ as cont -> (lbl, cont)
  | cont -> let lbl = Label.create() in (lbl, Klabel lbl :: cont)

(* Return a branch to the continuation. That is, an instruction that,
   when executed, branches to the continuation or performs what the
   continuation performs. We avoid generating branches to returns. *)
(* spiwack: make_branch was only used once. Changed it back to the ZAM
      one to match the appropriate semantics (old one avoided the
      introduction of an unconditional branch operation, which seemed
      appropriate for the 31-bit integers' code). As a memory, I leave
      the former version in this comment.
let make_branch cont =
  match cont with
  | (Kreturn _ as return) :: cont' -> return, cont'
  | Klabel lbl as b :: _ -> b, cont
  | _ -> let b = Klabel(Label.create()) in b,b::cont
*)

let rec make_branch_2 lbl n cont =
  function
    Kreturn m :: _ -> (Kreturn (n + m), cont)
  | Klabel _ :: c  -> make_branch_2 lbl n cont c
  | Kpop m :: c    -> make_branch_2 lbl (n + m) cont c
  | _              ->
      match lbl with
        Some lbl -> (Kbranch lbl, cont)
      | None     -> let lbl = Label.create() in (Kbranch lbl, Klabel lbl :: cont)

let make_branch cont =
  match cont with
    (Kbranch _ as branch) :: _ -> (branch, cont)
  | (Kreturn _ as return) :: _ -> (return, cont)
  | Klabel lbl :: _ -> make_branch_2 (Some lbl) 0 cont cont
  | _ ->  make_branch_2 (None) 0 cont cont

(* Check if we're in tailcall position *)

let rec is_tailcall = function
  | Kreturn k :: _ -> Some k
  | Klabel _ :: c -> is_tailcall c
  | _ -> None

(* Extention of the continuation *)

(* Add a Kpop n instruction in front of a continuation *)
let rec add_pop n = function
  | Kpop m :: cont -> add_pop (n+m) cont
  | Kreturn m:: cont -> Kreturn (n+m) ::cont
  | cont -> if Int.equal n 0 then cont else Kpop n :: cont

let add_grab arity lbl cont =
  if Int.equal arity 1 then Klabel lbl :: cont
  else Krestart :: Klabel lbl :: Kgrab (arity - 1) :: cont

let add_grabrec rec_arg arity lbl cont =
  if Int.equal arity 1 && rec_arg < arity then
    Klabel lbl :: Kgrabrec 0 :: Krestart :: cont
  else
    Krestart :: Klabel lbl :: Kgrabrec rec_arg ::
    Krestart :: Kgrab (arity - 1) :: cont

(* continuation of a cofix *)

let cont_cofix arity =
    (* accu = res                                                         *)
    (* stk  = ai::args::ra::...                                           *)
    (* ai   = [At|accumulate|[Cfx_t|fcofix]|args]                         *)
  [ Kpush;
    Kpush;        (*                 stk = res::res::ai::args::ra::...    *)
    Kacc 2;
    Kfield 1;
    Kfield 0;
    Kmakeblock(2, cofix_evaluated_tag);
    Kpush;        (*  stk = [Cfxe_t|fcofix|res]::res::ai::args::ra::...*)
    Kacc 2;
    Ksetfield 1;  (*   ai = [At|accumulate|[Cfxe_t|fcofix|res]|args]      *)
                  (*  stk = res::ai::args::ra::...                        *)
    Kacc 0;       (* accu = res                                           *)
    Kreturn (arity+2) ]


(*i Global environment *)

let global_env = ref empty_env

let set_global_env env = global_env := env


(* Code of closures *)
let fun_code = ref []

let init_fun_code () = fun_code := []

(* Compilation of constructors and inductive types *)


(* Limitation due to OCaml's representation of non-constant
  constructors: limited to 245 + 1 (0 tag) cases. *)

exception TooLargeInductive of Id.t

let max_nb_const = 0x1000000 
let max_nb_block = 0x1000000 + last_variant_tag - 1

let str_max_constructors = 
  Format.sprintf 
    " which has more than %i constant constructors or more than %i non-constant constructors" max_nb_const max_nb_block

let check_compilable ib = 
  
  if not (ib.mind_nb_args <= max_nb_block && ib.mind_nb_constant <= max_nb_const) then 
    raise (TooLargeInductive ib.mind_typename)

(* Inv: arity > 0 *)

let const_bn tag args = 
  if tag < last_variant_tag then Const_bn(tag, args)
  else
    Const_bn(last_variant_tag, Array.append [|Const_b0 (tag - last_variant_tag) |] args)

(*
If [tag] hits the OCaml limitation for non constant constructors, we switch to
another representation for the remaining constructors:
[last_variant_tag|tag - last_variant_tag|args]

We subtract last_variant_tag for efficiency of match interpretation.
 *)

let nest_block tag arity cont =
  Kconst (Const_b0 (tag - last_variant_tag)) ::
    Kmakeblock(arity+1, last_variant_tag) :: cont

let code_makeblock ~stack_size ~arity ~tag cont = 
  if tag < last_variant_tag then
    Kmakeblock(arity, tag) :: cont
  else begin
    set_max_stack_size (stack_size + 1);
    Kpush :: nest_block tag arity cont
  end

(* [code_construct] compiles an abstracted constructor dropping parameters and
   updates [fun_code] *)
(* Inv : nparam + arity > 0 *)
let code_construct tag nparams arity cont =
  let f_cont =
      add_pop nparams
      (if Int.equal arity 0 then
        [Kconst (Const_b0 tag); Kreturn 0]
       else if tag < last_variant_tag then
         [Kacc 0; Kpop 1; Kmakeblock(arity, tag); Kreturn 0]
       else
         nest_block tag arity [Kreturn 0])
    in
    let lbl = Label.create() in
    (* No need to grow the stack here, as the function does not push stuff. *)
    fun_code := [Ksequence (add_grab (nparams+arity) lbl f_cont,!fun_code)];
    Kclosure(lbl,0) :: cont

let get_strcst = function
  | Bstrconst sc -> sc
  | _ -> raise Not_found

let rec str_const c =
  match kind c with
  | Sort s -> Bstrconst (Const_sorts s)
  | Cast(c,_,_) -> str_const c
  | App(f,args) ->
      begin
        match kind f with
        | Construct(((kn,j),i),u) -> 
            begin
            let oib = lookup_mind kn !global_env in
            let oip = oib.mind_packets.(j) in
            let () = check_compilable oip in
            let tag,arity = oip.mind_reloc_tbl.(i-1) in
            let nparams = oib.mind_nparams in
            if Int.equal (nparams + arity) (Array.length args) then
              (* spiwack: *)
              (* 1/ tries to compile the constructor in an optimal way,
                    it is supposed to work only if the arguments are
                    all fully constructed, fails with Cbytecodes.NotClosed.
                    it can also raise Not_found when there is no special
                    treatment for this constructor
                    for instance: tries to to compile an integer of the
                        form I31 D1 D2 ... D31 to [D1D2...D31] as
                        a processor number (a caml number actually) *)
              try
                try
                  Bstrconst (Retroknowledge.get_vm_constant_static_info
                                              (!global_env).retroknowledge
                                              f args)
                with NotClosed ->
                  (* 2/ if the arguments are not all closed (this is
                        expectingly (and it is currently the case) the only
                        reason why this exception is raised) tries to
                        give a clever, run-time behavior to the constructor.
                        Raises Not_found if there is no special treatment
                        for this integer.
                        this is done in a lazy fashion, using the constructor
                        Bspecial because it needs to know the continuation
                        and such, which can't be done at this time.
                        for instance, for int31: if one of the digit is
                            not closed, it's not impossible that the number
                            gets fully instanciated at run-time, thus to ensure
                            uniqueness of the representation in the vm
                            it is necessary to try and build a caml integer
                            during the execution *)
                  let rargs = Array.sub args nparams arity in
                  let b_args = Array.map str_const rargs in
                  Bspecial ((Retroknowledge.get_vm_constant_dynamic_info
                                           (!global_env).retroknowledge
                                           f),
                           b_args)
              with Not_found ->
                (* 3/ if no special behavior is available, then the compiler
                      falls back to the normal behavior *)
                if Int.equal arity 0 then Bstrconst(Const_b0 tag)
                else
                  let rargs = Array.sub args nparams arity in
                  let b_args = Array.map str_const rargs in
                  try
                    let sc_args = Array.map get_strcst b_args in
                    Bstrconst(const_bn tag sc_args)
                  with Not_found ->
                    Bmakeblock(tag,b_args)
            else
              let b_args = Array.map str_const args in
             (* spiwack: tries first to apply the run-time compilation
                behavior of the constructor, as in 2/ above *)
              try
                Bspecial ((Retroknowledge.get_vm_constant_dynamic_info
                                           (!global_env).retroknowledge
                                           f),
                         b_args)
              with Not_found ->
                Bconstruct_app(tag, nparams, arity, b_args)
              end
        | _ -> Bconstr c
      end
  | Ind (ind,u) when Univ.Instance.is_empty u ->
    Bstrconst (Const_ind ind)
  | Construct (((kn,j),i),_) ->
      begin
      (* spiwack: tries first to apply the run-time compilation
           behavior of the constructor, as in 2/ above *)
      try
        Bspecial ((Retroknowledge.get_vm_constant_dynamic_info
                                           (!global_env).retroknowledge
                                           c),
                         [| |])
      with Not_found ->
        let oib = lookup_mind kn !global_env in
        let oip = oib.mind_packets.(j) in
        let () = check_compilable oip in
        let num,arity = oip.mind_reloc_tbl.(i-1) in
        let nparams = oib.mind_nparams in
        if Int.equal (nparams + arity) 0 then Bstrconst(Const_b0 num)
        else Bconstruct_app(num,nparams,arity,[||])
      end
  | _ -> Bconstr c

(* compiling application *)
let comp_args comp_expr reloc args sz cont =
  let nargs_m_1 = Array.length args - 1 in
  let c = ref (comp_expr reloc args.(0) (sz + nargs_m_1) cont) in
  for i = 1 to nargs_m_1 do
    c := comp_expr reloc args.(i) (sz + nargs_m_1 - i) (Kpush :: !c)
  done;
  !c

(* Precondition: args not empty *)
let comp_app comp_fun comp_arg reloc f args sz cont =
  let nargs = Array.length args in
  match is_tailcall cont with
  | Some k ->
      comp_args comp_arg reloc args sz
        (Kpush ::
         comp_fun reloc f (sz + nargs)
           (Kappterm(nargs, k + nargs) :: (discard_dead_code cont)))
  | None ->
      if nargs < 4 then
        comp_args comp_arg reloc args sz
          (Kpush :: (comp_fun reloc f (sz+nargs) (Kapply nargs :: cont)))
      else
        let lbl,cont1 = label_code cont in
        Kpush_retaddr lbl ::
        (comp_args comp_arg reloc args (sz + 3)
           (Kpush :: (comp_fun reloc f (sz+3+nargs) (Kapply nargs :: cont1))))

(* Compiling free variables *)

let compile_fv_elem reloc fv sz cont =
  match fv with
  | FVrel i -> pos_rel i reloc sz :: cont
  | FVnamed id -> pos_named id reloc :: cont
  | FVuniv_var i -> pos_universe_var i reloc sz :: cont

let rec compile_fv reloc l sz cont =
  match l with
  | [] -> cont
  | [fvn] -> set_max_stack_size (sz + 1); compile_fv_elem reloc fvn sz cont
  | fvn :: tl ->
      compile_fv_elem reloc fvn sz
        (Kpush :: compile_fv reloc tl (sz + 1) cont)


(* Compiling constants *)

let rec get_alias env kn =
  let cb = lookup_constant kn env in
  let tps = cb.const_body_code in
    match tps with
    | None -> kn
    | Some tps ->
       (match Cemitcodes.force tps with
        | BCalias kn' -> get_alias env kn'
        | _ -> kn)

(* sz is the size of the local stack *)
let rec compile_constr reloc c sz cont =
  set_max_stack_size sz;
  match kind c with
  | Meta _ -> invalid_arg "Cbytegen.compile_constr : Meta"
  | Evar _ -> invalid_arg "Cbytegen.compile_constr : Evar"
  | Proj (p,c) ->
     let kn = Projection.constant p in
     let cb = lookup_constant kn !global_env in
     let pb = Option.get cb.const_proj in
     let n = pb.proj_arg in
     compile_constr reloc c sz (Kproj (n,kn) :: cont)

  | Cast(c,_,_) -> compile_constr reloc c sz cont

  | Rel i -> pos_rel i reloc sz :: cont
  | Var id -> pos_named id reloc :: cont
  | Const (kn,u) -> compile_const reloc kn u [||] sz cont
  | Ind (ind,u) ->
     let bcst = Bstrconst (Const_ind ind) in
    if Univ.Instance.is_empty u then
      compile_str_cst reloc bcst sz cont
    else
      comp_app compile_str_cst compile_universe reloc
           bcst
           (Univ.Instance.to_array u)
           sz
           cont
  | Sort (Sorts.Prop _) | Construct _ ->
      compile_str_cst reloc (str_const c) sz cont
  | Sort (Sorts.Type u) ->
     (* We separate global and local universes in [u]. The former will be part
        of the structured constant, while the later (if any) will be applied as
        arguments. *)
     let open Univ in begin
      let levels = Universe.levels u in
      let global_levels =
        LSet.filter (fun x -> Level.var_index x = None) levels
      in
      let local_levels =
        List.map_filter (fun x -> Level.var_index x)
          (LSet.elements levels)
      in
      (* We assume that [Universe.type0m] is a neutral element for [Universe.sup] *)
      let uglob =
        LSet.fold (fun lvl u -> Universe.sup u (Universe.make lvl)) global_levels Universe.type0m
      in
      if local_levels = [] then
        compile_str_cst reloc (Bstrconst (Const_sorts (Sorts.Type uglob))) sz cont
      else
        let compile_get_univ reloc idx sz cont =
          set_max_stack_size sz;
          compile_fv_elem reloc (FVuniv_var idx) sz cont
        in
        comp_app compile_str_cst compile_get_univ reloc
          (Bstrconst (Const_type u)) (Array.of_list local_levels) sz cont
    end
  | LetIn(_,xb,_,body) ->
      compile_constr reloc xb sz
        (Kpush ::
        (compile_constr (push_local sz reloc) body (sz+1) (add_pop 1 cont)))
  | Prod(id,dom,codom) ->
      let cont1 =
        Kpush :: compile_constr reloc dom (sz+1) (Kmakeprod :: cont) in
      compile_constr reloc (mkLambda(id,dom,codom)) sz cont1
  | Lambda _ ->
      let params, body = Term.decompose_lam c in
      let arity = List.length params in
      let r_fun = comp_env_fun arity in
      let lbl_fun = Label.create() in
      let cont_fun =
        ensure_stack_capacity (compile_constr r_fun body arity) [Kreturn arity]
      in
      fun_code := [Ksequence(add_grab arity lbl_fun cont_fun,!fun_code)];
      let fv = fv r_fun in
      compile_fv reloc fv.fv_rev sz (Kclosure(lbl_fun,fv.size) :: cont)

  | App(f,args) ->
      begin
        match kind f with
        | Construct _ -> compile_str_cst reloc (str_const c) sz cont
        | Const (kn,u) -> compile_const reloc kn u args sz cont
        | _ -> comp_app compile_constr compile_constr reloc f args sz cont
      end
  | Fix ((rec_args,init),(_,type_bodies,rec_bodies)) ->
      let ndef = Array.length type_bodies in
      let rfv = ref empty_fv in
      let lbl_types = Array.make ndef Label.no in
      let lbl_bodies = Array.make ndef Label.no in
      (* Compilation des types *)
      let env_type = comp_env_fix_type rfv in
      for i = 0 to ndef - 1 do
        let fcode =
          ensure_stack_capacity (compile_constr env_type type_bodies.(i) 0) [Kstop]
        in
        let lbl,fcode = label_code fcode in
        lbl_types.(i) <- lbl;
        fun_code := [Ksequence(fcode,!fun_code)]
      done;
      (* Compiling bodies *)
      for i = 0 to ndef - 1 do
        let params,body = Term.decompose_lam rec_bodies.(i) in
        let arity = List.length params in
        let env_body = comp_env_fix ndef i arity rfv in
        let cont1 =
          ensure_stack_capacity (compile_constr env_body body arity) [Kreturn arity]
        in
        let lbl = Label.create () in
        lbl_bodies.(i) <- lbl;
        let fcode =  add_grabrec rec_args.(i) arity lbl cont1 in
        fun_code := [Ksequence(fcode,!fun_code)]
      done;
      let fv = !rfv in
      compile_fv reloc fv.fv_rev sz
        (Kclosurerec(fv.size,init,lbl_types,lbl_bodies) :: cont)

  | CoFix(init,(_,type_bodies,rec_bodies)) ->
      let ndef = Array.length type_bodies in
      let lbl_types = Array.make ndef Label.no in
      let lbl_bodies = Array.make ndef Label.no in
      (* Compiling types *)
      let rfv = ref empty_fv in
      let env_type = comp_env_cofix_type ndef rfv in
      for i = 0 to ndef - 1 do
        let fcode =
          ensure_stack_capacity (compile_constr env_type type_bodies.(i) 0) [Kstop]
        in
        let lbl,fcode = label_code fcode in
        lbl_types.(i) <- lbl;
        fun_code := [Ksequence(fcode,!fun_code)]
      done;
      (* Compiling bodies *)
      for i = 0 to ndef - 1 do
        let params,body = Term.decompose_lam rec_bodies.(i) in
        let arity = List.length params in
        let env_body = comp_env_cofix ndef arity rfv in
        let lbl = Label.create () in
        let comp arity =
          (* 4 stack slots are needed to update the cofix when forced *)
          set_max_stack_size (arity + 4);
          compile_constr env_body body (arity+1) (cont_cofix arity)
        in
        let cont = ensure_stack_capacity comp arity in
        lbl_bodies.(i) <- lbl;
        fun_code := [Ksequence(add_grab (arity+1) lbl cont,!fun_code)];
      done;
      let fv = !rfv in
      set_max_stack_size (sz + fv.size + ndef + 2);
      compile_fv reloc fv.fv_rev sz
        (Kclosurecofix(fv.size, init, lbl_types, lbl_bodies) :: cont)

  | Case(ci,t,a,branchs) ->
      let ind = ci.ci_ind in
      let mib = lookup_mind (fst ind) !global_env in
      let oib = mib.mind_packets.(snd ind) in
      let () = check_compilable oib in
      let tbl = oib.mind_reloc_tbl in
      let lbl_consts = Array.make oib.mind_nb_constant Label.no in
      let nallblock = oib.mind_nb_args + 1 in (* +1 : accumulate *)
      let nblock = min nallblock (last_variant_tag + 1) in
      let lbl_blocks = Array.make nblock Label.no in
      let neblock = max 0 (nallblock - last_variant_tag) in
      let lbl_eblocks = Array.make neblock Label.no in 
      let branch1,cont = make_branch cont in
      (* Compiling return type *)
      let fcode =
        ensure_stack_capacity (compile_constr reloc t sz) [Kpop sz; Kstop]
      in
      let lbl_typ,fcode = label_code fcode in
      fun_code := [Ksequence(fcode,!fun_code)];
      (* Compiling branches *)
      let lbl_sw = Label.create () in
      let sz_b,branch,is_tailcall =
        match branch1 with
        | Kreturn k ->
          assert (Int.equal k sz) ;
          sz, branch1, true
        | _ -> sz+3, Kjump, false
      in

      let c = ref cont in
      (* Perform the extra match if needed (too many block constructors) *)
      if neblock <> 0 then begin
        let lbl_b, code_b = 
          label_code (
            Kpush :: Kfield 0 :: Kswitch(lbl_eblocks, [||]) :: !c) in
        lbl_blocks.(last_variant_tag) <- lbl_b;
        c := code_b
      end;  
      
      (* Compiling regular constructor branches *)
      for i = 0 to Array.length tbl - 1 do
        let tag, arity = tbl.(i) in
        if Int.equal arity 0 then
          let lbl_b,code_b =
            label_code(compile_constr reloc branchs.(i) sz_b (branch :: !c)) in
          lbl_consts.(tag) <- lbl_b;
          c := code_b
        else
          let args, body = Term.decompose_lam branchs.(i) in
          let nargs = List.length args in
         
          let code_b =  
            if Int.equal nargs arity then
              compile_constr (push_param arity sz_b reloc)
                body (sz_b+arity) (add_pop arity (branch :: !c))
            else
              let sz_appterm = if is_tailcall then sz_b + arity else arity in
              compile_constr reloc branchs.(i) (sz_b+arity)
                (Kappterm(arity,sz_appterm) :: !c) in
          let code_b = 
            if tag < last_variant_tag then begin
                set_max_stack_size (sz_b + arity);
                Kpushfields arity :: code_b
              end
            else begin
                set_max_stack_size (sz_b + arity + 1);
                Kacc 0::Kpop 1::Kpushfields(arity+1)::Kpop 1::code_b
              end
          in
          let lbl_b,code_b = label_code code_b in
          if tag < last_variant_tag then lbl_blocks.(tag) <- lbl_b
          else lbl_eblocks.(tag - last_variant_tag) <- lbl_b;
          c := code_b
      done;

      let annot =
        {ci = ci; rtbl = tbl; tailcall = is_tailcall;
         max_stack_size = !max_stack_size - sz}
      in

     (* Compiling branch for accumulators *)
      let lbl_accu, code_accu =
        set_max_stack_size (sz+3);
        label_code(Kmakeswitchblock(lbl_typ,lbl_sw,annot,sz) :: branch :: !c)
      in
      lbl_blocks.(0) <- lbl_accu;

      c := Klabel lbl_sw :: Kswitch(lbl_consts,lbl_blocks) :: code_accu;
      let code_sw =
         match branch1 with
        (* spiwack : branch1 can't be a lbl anymore it's a Branch instead
        | Klabel lbl -> Kpush_retaddr lbl ::  !c *)
        | Kbranch lbl -> Kpush_retaddr lbl ::  !c
        | _ -> !c
      in
      compile_constr reloc a sz
      (try
        let entry = mkInd ind in
        Retroknowledge.get_vm_before_match_info (!global_env).retroknowledge
                                               entry code_sw
      with Not_found ->
        code_sw)

and compile_str_cst reloc sc sz cont =
  set_max_stack_size sz;
  match sc with
  | Bconstr c -> compile_constr reloc c sz cont
  | Bstrconst sc -> Kconst sc :: cont
  | Bmakeblock(tag,args) ->
      let arity = Array.length args in
      let cont = code_makeblock ~stack_size:(sz+arity-1) ~arity ~tag cont in
      comp_args compile_str_cst reloc args sz cont
  | Bconstruct_app(tag,nparams,arity,args) ->
      if Int.equal (Array.length args) 0 then
        code_construct tag nparams arity cont
      else
        comp_app
          (fun _ _ _ cont -> code_construct tag nparams arity cont)
          compile_str_cst reloc () args sz cont
  | Bspecial (comp_fx, args) -> comp_fx reloc args sz cont


(* spiwack : compilation of constants with their arguments.
   Makes a special treatment with 31-bit integer addition *)
and compile_get_global reloc (kn,u) sz cont =
  set_max_stack_size sz;
  let kn = get_alias !global_env kn in
  if Univ.Instance.is_empty u then
    Kgetglobal kn :: cont
  else
    comp_app (fun _ _ _ cont -> Kgetglobal kn :: cont)
      compile_universe reloc () (Univ.Instance.to_array u) sz cont

and compile_universe reloc uni sz cont =
  set_max_stack_size sz;
  match Univ.Level.var_index uni with
  | None -> Kconst (Const_univ_level uni) :: cont
  | Some idx -> pos_universe_var idx reloc sz :: cont

and compile_const reloc kn u args sz cont =
  set_max_stack_size sz;
  let nargs = Array.length args in
  (* spiwack: checks if there is a specific way to compile the constant
              if there is not, Not_found is raised, and the function
              falls back on its normal behavior *)
  try
    Retroknowledge.get_vm_compiling_info (!global_env).retroknowledge
                  (mkConstU (kn,u)) reloc args sz cont
  with Not_found ->
    if Int.equal nargs 0 then
      compile_get_global reloc (kn,u) sz cont
    else
      if Univ.Instance.is_empty u then
        (* normal compilation *)
        comp_app (fun _ _ sz cont ->
            compile_get_global reloc (kn,u) sz cont)
          compile_constr reloc () args sz cont
      else
        let compile_arg reloc constr_or_uni sz cont =
          match constr_or_uni with
          | ArgConstr cst -> compile_constr reloc cst sz cont
          | ArgUniv uni -> compile_universe reloc uni sz cont
        in
        let u = Univ.Instance.to_array u in
        let lu = Array.length u in
        let all =
          Array.init (lu + Array.length args) 
            (fun i -> if i < lu then ArgUniv u.(i) else ArgConstr args.(i-lu))
        in
        comp_app (fun _ _ _ cont -> Kgetglobal kn :: cont)
          compile_arg reloc () all sz cont

let is_univ_copy max u =
  let u = Univ.Instance.to_array u in
  if Array.length u = max then
    Array.fold_left_i (fun i acc u ->
        if acc then
          match Univ.Level.var_index u with
          | None -> false
          | Some l -> l = i
        else false) true u
  else
    false

let dump_bytecodes init code fvs =
  let open Pp in
    (str "code =" ++ fnl () ++
     pp_bytecodes init ++ fnl () ++
     pp_bytecodes code ++ fnl () ++
     str "fv = " ++
     prlist_with_sep (fun () -> str "; ") pp_fv_elem fvs ++
     fnl ())

let compile fail_on_error ?universes:(universes=0) env c =
  set_global_env env;
  init_fun_code ();
  Label.reset_label_counter ();
  let cont = [Kstop] in
  try
    let reloc, init_code =
      if Int.equal universes 0 then
        let reloc = empty_comp_env () in
        reloc, ensure_stack_capacity (compile_constr reloc c 0) cont
      else
        (* We are going to generate a lambda, but merge the universe closure
         * with the function closure if it exists.
         *)
        let reloc = empty_comp_env () in
        let arity , body =
          match kind c with
          | Lambda _ ->
            let params, body = Term.decompose_lam c in
            List.length params , body
          | _ -> 0 , c
        in
        let full_arity = arity + universes in
        let r_fun = comp_env_fun ~univs:universes arity in
        let lbl_fun = Label.create () in
        let cont_fun =
          ensure_stack_capacity (compile_constr r_fun body full_arity)
                         [Kreturn full_arity]
        in
        fun_code := [Ksequence(add_grab full_arity lbl_fun cont_fun,!fun_code)];
        let fv = fv r_fun in
        let init_code =
          ensure_stack_capacity (compile_fv reloc fv.fv_rev 0)
                         (Kclosure(lbl_fun,fv.size) :: cont)
        in
        reloc, init_code
    in
    let fv = List.rev (!(reloc.in_env).fv_rev) in
    (if !Flags.dump_bytecode then
      Feedback.msg_debug (dump_bytecodes init_code !fun_code fv)) ;
    Some (init_code,!fun_code, Array.of_list fv)
  with TooLargeInductive tname ->
    let fn = if fail_on_error then CErrors.user_err ?loc:None ~hdr:"compile" else
               (fun x -> Feedback.msg_warning x) in
      (Pp.(fn
           (str "Cannot compile code for virtual machine as it uses inductive " ++
            Id.print tname ++ str str_max_constructors));
       None)

let compile_constant_body fail_on_error env univs = function
  | Undef _ | OpaqueDef _ -> Some BCconstant
  | Def sb ->
      let body = Mod_subst.force_constr sb in
      let instance_size =
        match univs with
        | Monomorphic_const _ -> 0
        | Polymorphic_const univ -> Univ.AUContext.size univ
      in
      match kind body with
        | Const (kn',u) when is_univ_copy instance_size u ->
            (* we use the canonical name of the constant*)
            let con= Constant.make1 (Constant.canonical kn') in
              Some (BCalias (get_alias env con))
        | _ ->
            let res = compile fail_on_error ~universes:instance_size env body in
              Option.map (fun x -> BCdefined (to_memory x)) res

(* Shortcut of the previous function used during module strengthening *)

let compile_alias kn = BCalias (Constant.make1 (Constant.canonical kn))

(* spiwack: additional function which allow different part of compilation of the
      31-bit integers *)

let make_areconst n else_lbl cont =
  if n <= 0 then
    cont
  else
    Kareconst (n, else_lbl)::cont


(* try to compile int31 as a const_b0. Succeed if all the arguments are closed
   fails otherwise by raising NotClosed*)
let compile_structured_int31 fc args =
  if not fc then raise Not_found else
  Const_b0
    (Array.fold_left
       (fun temp_i -> fun t -> match kind t with
          | Construct ((_,d),_) -> 2*temp_i+d-1
          | _ -> raise NotClosed)
       0 args
    )

(* this function is used for the compilation of the constructor of
   the int31, it is used when it appears not fully applied, or
   applied to at least one non-closed digit *)
let dynamic_int31_compilation fc reloc args sz cont =
  if not fc then raise Not_found else
    let nargs = Array.length args in
      if Int.equal nargs 31 then
        let (escape,labeled_cont) = make_branch cont in
        let else_lbl = Label.create() in
          comp_args compile_str_cst reloc args sz
            ( Kisconst else_lbl::Kareconst(30,else_lbl)::Kcompint31::escape::Klabel else_lbl::Kmakeblock(31, 1)::labeled_cont)
      else
        let code_construct cont = (* spiwack: variant of the global code_construct
                                     which handles dynamic compilation of
                                     integers *)
          let f_cont =
            let else_lbl = Label.create () in
              [Kacc 0; Kpop 1; Kisconst else_lbl; Kareconst(30,else_lbl);
               Kcompint31; Kreturn 0; Klabel else_lbl; Kmakeblock(31, 1); Kreturn 0]
          in
          let lbl = Label.create() in
            fun_code := [Ksequence (add_grab 31 lbl f_cont,!fun_code)];
            Kclosure(lbl,0) :: cont
        in
          if Int.equal nargs 0 then
            code_construct cont
          else
            comp_app (fun _ _ _ cont -> code_construct cont)
              compile_str_cst reloc () args sz cont

(*(* template compilation for 2ary operation, it probably possible
   to make a generic such function with arity abstracted *)
let op2_compilation op =
  let code_construct normal cont =  (*kn cont =*)
     let f_cont =
         let else_lbl = Label.create () in
         Kareconst(2, else_lbl):: Kacc 0:: Kpop 1::
          op:: Kreturn 0:: Klabel else_lbl::
         (* works as comp_app with nargs = 2 and tailcall cont [Kreturn 0]*)
          (*Kgetglobal (get_alias !global_env kn):: *)
          normal::
          Kappterm(2, 2):: [] (* = discard_dead_code [Kreturn 0] *)
     in
     let lbl = Label.create () in
     fun_code := [Ksequence (add_grab 2 lbl f_cont, !fun_code)];
     Kclosure(lbl, 0)::cont
  in
  fun normal fc _ reloc args sz cont ->
  if not fc then raise Not_found else
  let nargs = Array.length args in
  if nargs=2 then (*if it is a fully applied addition*)
    let (escape, labeled_cont) = make_branch cont in
    let else_lbl = Label.create () in
      comp_args compile_constr reloc args sz
        (Kisconst else_lbl::(make_areconst 1  else_lbl
           (*Kaddint31::escape::Klabel else_lbl::Kpush::*)
           (op::escape::Klabel else_lbl::Kpush::
           (* works as comp_app with nargs = 2 and non-tailcall cont*)
           (*Kgetglobal (get_alias !global_env kn):: *)
           normal::
           Kapply 2::labeled_cont)))
  else if nargs=0 then
    code_construct normal cont
  else
    comp_app (fun _ _ _ cont -> code_construct normal cont)
      compile_constr reloc () args sz cont *)

(*template for n-ary operation, invariant: n>=1,
  the operations does the following :
  1/ checks if all the arguments are constants (i.e. non-block values)
  2/ if they are, uses the "op" instruction to execute
  3/ if at least one is not, branches to the normal behavior:
      Kgetglobal (get_alias !global_env kn) *)
let op_compilation n op =
  let code_construct reloc kn sz cont =
     let f_cont =
         let else_lbl = Label.create () in
         Kareconst(n, else_lbl):: Kacc 0:: Kpop 1::
          op:: Kreturn 0:: Klabel else_lbl::
         (* works as comp_app with nargs = n and tailcall cont [Kreturn 0]*)
          compile_get_global reloc kn sz (
            Kappterm(n, n):: []) (* = discard_dead_code [Kreturn 0] *)
     in
     let lbl = Label.create () in
     fun_code := [Ksequence (add_grab n lbl f_cont, !fun_code)];
     Kclosure(lbl, 0)::cont
  in
  fun kn fc reloc args sz cont ->
  if not fc then raise Not_found else
  let nargs = Array.length args in
  if Int.equal nargs n then (*if it is a fully applied addition*)
    let (escape, labeled_cont) = make_branch cont in
    let else_lbl = Label.create () in
      comp_args compile_constr reloc args sz
        (Kisconst else_lbl::(make_areconst (n-1) else_lbl
           (*Kaddint31::escape::Klabel else_lbl::Kpush::*)
           (op::escape::Klabel else_lbl::Kpush::
           (* works as comp_app with nargs = n and non-tailcall cont*)
           compile_get_global reloc kn sz (Kapply n::labeled_cont))))
  else if Int.equal nargs 0 then
    code_construct reloc kn sz cont
  else
    comp_app (fun reloc _ sz cont -> code_construct reloc kn sz cont)
      compile_constr reloc () args sz cont

let int31_escape_before_match fc cont =
  if not fc then
    raise Not_found
  else
    let escape_lbl, labeled_cont = label_code cont in
      (Kisconst escape_lbl)::Kdecompint31::labeled_cont