1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

open Ltac_plugin
open Pp
open Util
open Names
open Constr
open EConstr
open Vars
open CClosure
open Environ
open Libnames
open Globnames
open Glob_term
open Tacexpr
open Coqlib
open Mod_subst
open Tacinterp
open Libobject
open Printer
open Declare
open Decl_kinds
open Entries
open Misctypes
open Newring_ast
open Proofview.Notations

let error msg = CErrors.user_err Pp.(str msg)

(****************************************************************************)
(* controlled reduction *)

type protect_flag = Eval|Prot|Rec

let tag_arg tag_rec map subs i c =
  match map i with
      Eval -> mk_clos subs c
    | Prot -> mk_atom c
    | Rec -> if Int.equal i (-1) then mk_clos subs c else tag_rec c

let global_head_of_constr sigma c = 
  let f, args = decompose_app sigma c in
    try fst (Termops.global_of_constr sigma f)
    with Not_found -> CErrors.anomaly (str "global_head_of_constr.")

let global_of_constr_nofail c = 
  try global_of_constr c
  with Not_found -> VarRef (Id.of_string "dummy")

let rec mk_clos_but f_map subs t =
  let open Term in
  match f_map (global_of_constr_nofail t) with
    | Some map -> tag_arg (mk_clos_but f_map subs) map subs (-1) t
    | None ->
        (match Constr.kind t with
            App(f,args) -> mk_clos_app_but f_map subs f args 0
          | Prod _ -> mk_clos_deep (mk_clos_but f_map) subs t
          | _ -> mk_atom t)

and mk_clos_app_but f_map subs f args n =
  let open Constr in
  if n >= Array.length args then mk_atom(mkApp(f, args))
  else
    let fargs, args' = Array.chop n args in
    let f' = mkApp(f,fargs) in
    match f_map (global_of_constr_nofail f') with
    | Some map ->
       let f i t = tag_arg (mk_clos_but f_map subs) map subs i t in
       mk_red (FApp (f (-1) f', Array.mapi f args'))
    | None -> mk_atom (mkApp (f, args))

let interp_map l t =
  try Some(List.assoc_f eq_gr t l) with Not_found -> None

let protect_maps = ref String.Map.empty
let add_map s m = protect_maps := String.Map.add s m !protect_maps
let lookup_map map =
  try String.Map.find map !protect_maps
  with Not_found ->
    CErrors.user_err ~hdr:"lookup_map" (str"map "++qs map++str"not found")

let protect_red map env sigma c0 =
  let evars ev = Evarutil.safe_evar_value sigma ev in
  let c = EConstr.Unsafe.to_constr c0 in
  EConstr.of_constr (kl (create_clos_infos ~evars all env)
    (mk_clos_but (lookup_map map sigma c0) (Esubst.subs_id 0) c));;

let protect_tac map =
  Tactics.reduct_option (protect_red map,DEFAULTcast) None

let protect_tac_in map id =
  Tactics.reduct_option (protect_red map,DEFAULTcast) (Some(id, Locus.InHyp))


(****************************************************************************)

let closed_term t l =
  let open Quote_plugin in
  Proofview.tclEVARMAP >>= fun sigma ->
  let l = List.map Universes.constr_of_global l in
  let cs = List.fold_right Quote.ConstrSet.add l Quote.ConstrSet.empty in
  if Quote.closed_under sigma cs t then Proofview.tclUNIT () else Tacticals.New.tclFAIL 0 (mt())

(* TACTIC EXTEND echo
| [ "echo" constr(t) ] ->
  [ Pp.msg (Termops.print_constr t);  Tacinterp.eval_tactic (TacId []) ]
END;;*)

(*
let closed_term_ast l =
  TacFun([Some(Id.of_string"t")],
  TacAtom(Loc.ghost,TacExtend(Loc.ghost,"closed_term",
  [Genarg.in_gen Constrarg.wit_constr (mkVar(Id.of_string"t"));
   Genarg.in_gen (Genarg.wit_list Constrarg.wit_ref) l])))
*)
let closed_term_ast l =
  let tacname = {
    mltac_plugin = "newring_plugin";
    mltac_tactic = "closed_term";
  } in
  let tacname = {
    mltac_name = tacname;
    mltac_index = 0;
  } in
  let l = List.map (fun gr -> ArgArg(Loc.tag gr)) l in
  TacFun([Name(Id.of_string"t")],
  TacML(Loc.tag (tacname,
  [TacGeneric (Genarg.in_gen (Genarg.glbwit Stdarg.wit_constr) (DAst.make @@ GVar(Id.of_string"t"),None));
   TacGeneric (Genarg.in_gen (Genarg.glbwit (Genarg.wit_list Stdarg.wit_ref)) l)])))
(*
let _ = add_tacdef false ((Loc.ghost,Id.of_string"ring_closed_term"
*)

(****************************************************************************)

let ic c =
  let env = Global.env() in
  let sigma = Evd.from_env env in
  let sigma, c = Constrintern.interp_open_constr env sigma c in
  (sigma, c)

let ic_unsafe c = (*FIXME remove *)
  let env = Global.env() in
  let sigma = Evd.from_env env in
    EConstr.of_constr (fst (Constrintern.interp_constr env sigma c))

let decl_constant na univs c =
  let open Constr in
  let vars = Univops.universes_of_constr c in
  let univs = Univops.restrict_universe_context univs vars in
  let univs = Monomorphic_const_entry univs in
  mkConst(declare_constant (Id.of_string na) 
            (DefinitionEntry (definition_entry ~opaque:true ~univs c),
             IsProof Lemma))

(* Calling a global tactic *)
let ltac_call tac (args:glob_tactic_arg list) =
  TacArg(Loc.tag @@ TacCall (Loc.tag (ArgArg(Loc.tag @@ Lazy.force tac),args)))

(* Calling a locally bound tactic *)
let ltac_lcall tac args =
  TacArg(Loc.tag @@ TacCall (Loc.tag (ArgVar(Loc.tag @@ Id.of_string tac),args)))

let ltac_apply (f : Value.t) (args: Tacinterp.Value.t list) =
  let fold arg (i, vars, lfun) =
    let id = Id.of_string ("x" ^ string_of_int i) in
    let x = Reference (ArgVar (Loc.tag id)) in
    (succ i, x :: vars, Id.Map.add id arg lfun)
  in
  let (_, args, lfun) = List.fold_right fold args (0, [], Id.Map.empty) in
  let lfun = Id.Map.add (Id.of_string "F") f lfun in
  let ist = { (Tacinterp.default_ist ()) with Tacinterp.lfun = lfun; } in
  Tacinterp.eval_tactic_ist ist (ltac_lcall "F" args)

let dummy_goal env sigma =
  let (gl,_,sigma) = 
    Goal.V82.mk_goal sigma (named_context_val env) EConstr.mkProp Evd.Store.empty in
  {Evd.it = gl; Evd.sigma = sigma}

let constr_of v = match Value.to_constr v with
  | Some c -> EConstr.Unsafe.to_constr c
  | None -> failwith "Ring.exec_tactic: anomaly"

let tactic_res = ref [||]

let get_res =
  let open Tacexpr in
  let name = { mltac_plugin = "newring_plugin"; mltac_tactic = "get_res"; } in
  let entry = { mltac_name = name; mltac_index = 0 } in
  let tac args ist =
    let n = Tacinterp.Value.cast (Genarg.topwit Stdarg.wit_int) (List.hd args) in
    let init i = Id.Map.find (Id.of_string ("x" ^ string_of_int i)) ist.lfun in
    tactic_res := Array.init n init;
    Proofview.tclUNIT ()
  in
  Tacenv.register_ml_tactic name [| tac |];
  entry

let exec_tactic env evd n f args =
  let fold arg (i, vars, lfun) =
    let id = Id.of_string ("x" ^ string_of_int i) in
    let x = Reference (ArgVar (Loc.tag id)) in
    (succ i, x :: vars, Id.Map.add id (Value.of_constr arg) lfun)
  in
  let (_, args, lfun) = List.fold_right fold args (0, [], Id.Map.empty) in
  let ist = { (Tacinterp.default_ist ()) with Tacinterp.lfun = lfun; } in
  (** Build the getter *)
  let lid = List.init n (fun i -> Id.of_string("x"^string_of_int i)) in
  let n = Genarg.in_gen (Genarg.glbwit Stdarg.wit_int) n in
  let get_res = TacML (Loc.tag (get_res, [TacGeneric n])) in
  let getter = Tacexp (TacFun (List.map (fun n -> Name n) lid, get_res)) in
  (** Evaluate the whole result *)
  let gl = dummy_goal env evd in
  let gls = Proofview.V82.of_tactic (Tacinterp.eval_tactic_ist ist (ltac_call f (args@[getter]))) gl in
  let evd, nf = Evarutil.nf_evars_and_universes (Refiner.project gls) in
  let nf c = nf (constr_of c) in
  Array.map nf !tactic_res, Evd.universe_context_set evd

let stdlib_modules =
  [["Coq";"Setoids";"Setoid"];
   ["Coq";"Lists";"List"];
   ["Coq";"Init";"Datatypes"];
   ["Coq";"Init";"Logic"];
  ]

let coq_constant c =
  lazy (EConstr.of_constr (Universes.constr_of_global @@ Coqlib.gen_reference_in_modules "Ring" stdlib_modules c))
let coq_reference c =
  lazy (Coqlib.gen_reference_in_modules "Ring" stdlib_modules c)

let coq_mk_Setoid = coq_constant "Build_Setoid_Theory"
let coq_None = coq_reference "None"
let coq_Some = coq_reference "Some"
let coq_eq = coq_constant "eq"

let coq_cons = coq_reference "cons"
let coq_nil = coq_reference "nil"

let lapp f args = mkApp(Lazy.force f,args)

let plapp evd f args = 
  let fc = Evarutil.e_new_global evd (Lazy.force f) in
    mkApp(fc,args)

let dest_rel0 sigma t =
  match EConstr.kind sigma t with
  | App(f,args) when Array.length args >= 2 ->
      let rel = mkApp(f,Array.sub args 0 (Array.length args - 2)) in
      if closed0 sigma rel then
        (rel,args.(Array.length args - 2),args.(Array.length args - 1))
      else error "ring: cannot find relation (not closed)"
  | _ -> error "ring: cannot find relation"

let rec dest_rel sigma t =
  match EConstr.kind sigma t with
  | Prod(_,_,c) -> dest_rel sigma c
  | _ -> dest_rel0 sigma t

(****************************************************************************)
(* Library linking *)

let plugin_dir = "setoid_ring"

let cdir = ["Coq";plugin_dir]
let plugin_modules =
  List.map (fun d -> cdir@d)
    [["Ring_theory"];["Ring_polynom"]; ["Ring_tac"];["InitialRing"];
     ["Field_tac"]; ["Field_theory"]
    ]

let my_constant c =
  lazy (EConstr.of_constr (Universes.constr_of_global @@ Coqlib.gen_reference_in_modules "Ring" plugin_modules c))
let my_reference c =
  lazy (Coqlib.gen_reference_in_modules "Ring" plugin_modules c)

let znew_ring_path =
  DirPath.make (List.map Id.of_string ["InitialRing";plugin_dir;"Coq"])
let zltac s =
  lazy(KerName.make (ModPath.MPfile znew_ring_path) DirPath.empty (Label.make s))

let mk_cst l s = lazy (Coqlib.coq_reference "newring" l s);;
let pol_cst s = mk_cst [plugin_dir;"Ring_polynom"] s ;;

(* Ring theory *)

(* almost_ring defs *)
let coq_almost_ring_theory = my_constant "almost_ring_theory"

(* setoid and morphism utilities *)
let coq_eq_setoid = my_reference "Eqsth"
let coq_eq_morph = my_reference "Eq_ext"
let coq_eq_smorph = my_reference "Eq_s_ext"

(* ring -> almost_ring utilities *)
let coq_ring_theory = my_constant "ring_theory"
let coq_mk_reqe = my_constant "mk_reqe"

(* semi_ring -> almost_ring utilities *)
let coq_semi_ring_theory = my_constant "semi_ring_theory"
let coq_mk_seqe = my_constant "mk_seqe"

let coq_abstract = my_constant"Abstract"
let coq_comp = my_constant"Computational"
let coq_morph = my_constant"Morphism"

(* power function *)
let ltac_inv_morph_nothing = zltac"inv_morph_nothing"

(* hypothesis *)
let coq_mkhypo = my_reference "mkhypo"
let coq_hypo = my_reference "hypo"

(* Equality: do not evaluate but make recursive call on both sides *)
let map_with_eq arg_map sigma c =
  let (req,_,_) = dest_rel sigma c in
  interp_map
    ((global_head_of_constr sigma req,(function -1->Prot|_->Rec))::
    List.map (fun (c,map) -> (Lazy.force c,map)) arg_map)

let map_without_eq arg_map _ _ =
  interp_map (List.map (fun (c,map) -> (Lazy.force c,map)) arg_map)

let _ = add_map "ring"
  (map_with_eq
    [coq_cons,(function -1->Eval|2->Rec|_->Prot);
    coq_nil, (function -1->Eval|_ -> Prot);
    my_reference "IDphi", (function _->Eval);
    my_reference "gen_phiZ", (function _->Eval);
    (* Pphi_dev: evaluate polynomial and coef operations, protect
       ring operations and make recursive call on the var map *)
    pol_cst "Pphi_dev", (function -1|8|9|10|12|14->Eval|11|13->Rec|_->Prot);
    pol_cst "Pphi_pow",
          (function -1|8|9|10|13|15|17->Eval|11|16->Rec|_->Prot);
    (* PEeval: evaluate polynomial, protect ring
       operations and make recursive call on the var map *)
    pol_cst "PEeval", (function -1|10|13->Eval|8|12->Rec|_->Prot)])

(****************************************************************************)
(* Ring database *)

module Cmap = Map.Make(Constr)

let from_carrier = Summary.ref Cmap.empty ~name:"ring-tac-carrier-table"
let from_name = Summary.ref Spmap.empty ~name:"ring-tac-name-table"

let ring_for_carrier r = Cmap.find r !from_carrier

let find_ring_structure env sigma l =
  match l with
    | t::cl' ->
        let ty = Retyping.get_type_of env sigma t in
        let check c =
          let ty' = Retyping.get_type_of env sigma c in
          if not (Reductionops.is_conv env sigma ty ty') then
            CErrors.user_err ~hdr:"ring"
              (str"arguments of ring_simplify do not have all the same type")
        in
        List.iter check cl';
        (try ring_for_carrier (EConstr.to_constr sigma ty)
        with Not_found ->
          CErrors.user_err ~hdr:"ring"
            (str"cannot find a declared ring structure over"++
             spc() ++ str"\"" ++ pr_econstr_env env sigma ty ++ str"\""))
    | [] -> assert false

let add_entry (sp,_kn) e =
  from_carrier := Cmap.add e.ring_carrier e !from_carrier;
  from_name := Spmap.add sp e !from_name


let subst_th (subst,th) =
  let c' = subst_mps subst th.ring_carrier in
  let eq' = subst_mps subst th.ring_req in
  let set' = subst_mps subst th.ring_setoid in
  let ext' = subst_mps subst th.ring_ext in
  let morph' = subst_mps subst th.ring_morph in
  let th' = subst_mps subst th.ring_th in
  let thm1' = subst_mps subst th.ring_lemma1 in
  let thm2' = subst_mps subst th.ring_lemma2 in
  let tac'= Tacsubst.subst_tactic subst th.ring_cst_tac in
  let pow_tac'= Tacsubst.subst_tactic subst th.ring_pow_tac in
  let pretac'= Tacsubst.subst_tactic subst th.ring_pre_tac in
  let posttac'= Tacsubst.subst_tactic subst th.ring_post_tac in
  if c' == th.ring_carrier &&
     eq' == th.ring_req &&
     Constr.equal set' th.ring_setoid &&
     ext' == th.ring_ext &&
     morph' == th.ring_morph &&
     th' == th.ring_th &&
     thm1' == th.ring_lemma1 &&
     thm2' == th.ring_lemma2 &&
     tac' == th.ring_cst_tac &&
     pow_tac' == th.ring_pow_tac &&
     pretac' == th.ring_pre_tac &&
     posttac' == th.ring_post_tac then th
  else
    { ring_carrier = c';
      ring_req = eq';
      ring_setoid = set';
      ring_ext = ext';
      ring_morph = morph';
      ring_th = th';
      ring_cst_tac = tac';
      ring_pow_tac = pow_tac';
      ring_lemma1 = thm1';
      ring_lemma2 = thm2';
      ring_pre_tac = pretac';
      ring_post_tac = posttac' }


let theory_to_obj : ring_info -> obj =
  let cache_th (name,th) = add_entry name th in
  declare_object
    {(default_object "tactic-new-ring-theory") with
      open_function = (fun i o -> if Int.equal i 1 then cache_th o);
      cache_function = cache_th;
      subst_function = subst_th;
      classify_function = (fun x -> Substitute x)}


let setoid_of_relation env evd a r =
  try
    let evm = !evd in
    let evm, refl = Rewrite.get_reflexive_proof env evm a r in
    let evm, sym = Rewrite.get_symmetric_proof env evm a r in
    let evm, trans = Rewrite.get_transitive_proof env evm a r in
      evd := evm;
      lapp coq_mk_Setoid [|a ; r ; refl; sym; trans |]
  with Not_found ->
    error "cannot find setoid relation"

let op_morph r add mul opp req m1 m2 m3 =
  lapp coq_mk_reqe [| r; add; mul; opp; req; m1; m2; m3 |]

let op_smorph r add mul req m1 m2 =
  lapp coq_mk_seqe [| r; add; mul; req; m1; m2 |]

(* let default_ring_equality (r,add,mul,opp,req) = *)
(*   let is_setoid = function *)
(*       {rel_refl=Some _; rel_sym=Some _;rel_trans=Some _;rel_aeq=rel} -> *)
(*         eq_constr_nounivs req rel (\* Qu: use conversion ? *\) *)
(*     | _ -> false in *)
(*   match default_relation_for_carrier ~filter:is_setoid r with *)
(*       Leibniz _ -> *)
(*         let setoid = lapp coq_eq_setoid [|r|] in *)
(*         let op_morph = *)
(*           match opp with *)
(*               Some opp -> lapp coq_eq_morph [|r;add;mul;opp|] *)
(*             | None -> lapp coq_eq_smorph [|r;add;mul|] in *)
(*         (setoid,op_morph) *)
(*     | Relation rel -> *)
(*         let setoid = setoid_of_relation rel in *)
(*         let is_endomorphism = function *)
(*             { args=args } -> List.for_all *)
(*                 (function (var,Relation rel) -> *)
(*                   var=None && eq_constr_nounivs req rel *)
(*                   | _ -> false) args in *)
(*         let add_m = *)
(*           try default_morphism ~filter:is_endomorphism add *)
(*           with Not_found -> *)
(*             error "ring addition should be declared as a morphism" in *)
(*         let mul_m = *)
(*           try default_morphism ~filter:is_endomorphism mul *)
(*           with Not_found -> *)
(*             error "ring multiplication should be declared as a morphism" in *)
(*         let op_morph = *)
(*           match opp with *)
(*             | Some opp -> *)
(*             (let opp_m = *)
(*               try default_morphism ~filter:is_endomorphism opp *)
(*               with Not_found -> *)
(*                 error "ring opposite should be declared as a morphism" in *)
(*              let op_morph = *)
(*                op_morph r add mul opp req add_m.lem mul_m.lem opp_m.lem in *)
(*              msgnl *)
(*                (str"Using setoid \""++pr_constr rel.rel_aeq++str"\""++spc()++   *)
(*                str"and morphisms \""++pr_constr add_m.morphism_theory++ *)
(*                str"\","++spc()++ str"\""++pr_constr mul_m.morphism_theory++ *)
(*                str"\""++spc()++str"and \""++pr_constr opp_m.morphism_theory++ *)
(*                str"\""); *)
(*              op_morph) *)
(*             | None -> *)
(*             (msgnl *)
(*               (str"Using setoid \""++pr_constr rel.rel_aeq++str"\"" ++ spc() ++   *)
(*                str"and morphisms \""++pr_constr add_m.morphism_theory++ *)
(*                str"\""++spc()++str"and \""++ *)
(*                pr_constr mul_m.morphism_theory++str"\""); *)
(*             op_smorph r add mul req add_m.lem mul_m.lem) in *)
(*         (setoid,op_morph) *)

let ring_equality env evd (r,add,mul,opp,req) =
  match EConstr.kind !evd req with
    | App (f, [| _ |]) when eq_constr_nounivs !evd f (Lazy.force coq_eq) ->
        let setoid = plapp evd coq_eq_setoid [|r|] in
        let op_morph =
          match opp with
              Some opp -> plapp evd coq_eq_morph [|r;add;mul;opp|]
            | None -> plapp evd coq_eq_smorph [|r;add;mul|] in
        let setoid = Typing.e_solve_evars env evd setoid in
        let op_morph = Typing.e_solve_evars env evd op_morph in
          (setoid,op_morph)
    | _ ->
        let setoid = setoid_of_relation (Global.env ()) evd r req in
        let signature = [Some (r,Some req);Some (r,Some req)],Some(r,Some req) in
        let add_m, add_m_lem =
          try Rewrite.default_morphism signature add
          with Not_found ->
            error "ring addition should be declared as a morphism" in
        let mul_m, mul_m_lem =
          try Rewrite.default_morphism signature mul
          with Not_found ->
            error "ring multiplication should be declared as a morphism" in
        let op_morph =
          match opp with
            | Some opp ->
                (let opp_m,opp_m_lem =
                  try Rewrite.default_morphism ([Some(r,Some req)],Some(r,Some req)) opp
                  with Not_found ->
                    error "ring opposite should be declared as a morphism" in
                let op_morph =
                  op_morph r add mul opp req add_m_lem mul_m_lem opp_m_lem in
                  Flags.if_verbose
                    Feedback.msg_info
                    (str"Using setoid \""++ pr_econstr_env env !evd req++str"\""++spc()++
                        str"and morphisms \""++pr_econstr_env env !evd add_m_lem ++
                        str"\","++spc()++ str"\""++pr_econstr_env env !evd mul_m_lem++
                        str"\""++spc()++str"and \""++pr_econstr_env env !evd opp_m_lem++
                        str"\"");
                  op_morph)
            | None ->
                (Flags.if_verbose
                    Feedback.msg_info
                    (str"Using setoid \""++pr_econstr_env env !evd req ++str"\"" ++ spc() ++
                        str"and morphisms \""++pr_econstr_env env !evd add_m_lem ++
                        str"\""++spc()++str"and \""++
                        pr_econstr_env env !evd mul_m_lem++str"\"");
                 op_smorph r add mul req add_m_lem mul_m_lem) in
          (setoid,op_morph)

let build_setoid_params env evd r add mul opp req eqth =
  match eqth with
      Some th -> th
    | None -> ring_equality env evd (r,add,mul,opp,req)

let dest_ring env sigma th_spec =
  let th_typ = Retyping.get_type_of env sigma th_spec in
  match EConstr.kind sigma th_typ with
      App(f,[|r;zero;one;add;mul;sub;opp;req|])
        when eq_constr_nounivs sigma f (Lazy.force coq_almost_ring_theory) ->
          (None,r,zero,one,add,mul,Some sub,Some opp,req)
    | App(f,[|r;zero;one;add;mul;req|])
        when eq_constr_nounivs sigma f (Lazy.force coq_semi_ring_theory) ->
        (Some true,r,zero,one,add,mul,None,None,req)
    | App(f,[|r;zero;one;add;mul;sub;opp;req|])
        when eq_constr_nounivs sigma f (Lazy.force coq_ring_theory) ->
        (Some false,r,zero,one,add,mul,Some sub,Some opp,req)
    | _ -> error "bad ring structure"


let reflect_coeff rkind =
  (* We build an ill-typed terms on purpose... *)
  match rkind with
      Abstract -> Lazy.force coq_abstract
    | Computational c -> lapp coq_comp [|c|]
    | Morphism m -> lapp coq_morph [|m|]

let interp_cst_tac env sigma rk kind (zero,one,add,mul,opp) cst_tac =
  match cst_tac with
      Some (CstTac t) -> Tacintern.glob_tactic t
    | Some (Closed lc) ->
        closed_term_ast (List.map Smartlocate.global_with_alias lc)
    | None ->
        let t = ArgArg(Loc.tag @@ Lazy.force ltac_inv_morph_nothing) in
              TacArg(Loc.tag (TacCall(Loc.tag (t,[]))))

let make_hyp env evd c =
  let t = Retyping.get_type_of env !evd c in
   plapp evd coq_mkhypo [|t;c|]

let make_hyp_list env evd lH =
  let carrier = Evarutil.e_new_global evd (Lazy.force coq_hypo) in
  let l = 
    List.fold_right
      (fun c l -> plapp evd coq_cons [|carrier; (make_hyp env evd c); l|]) lH
      (plapp evd coq_nil [|carrier|])
  in 
  let l' = Typing.e_solve_evars env evd l in
  let l' = EConstr.Unsafe.to_constr l' in
    Evarutil.nf_evars_universes !evd l'

let interp_power env evd pow =
  let carrier = Evarutil.e_new_global evd (Lazy.force coq_hypo) in
  match pow with
  | None ->
      let t = ArgArg(Loc.tag (Lazy.force ltac_inv_morph_nothing)) in
      (TacArg(Loc.tag (TacCall(Loc.tag (t,[])))), plapp evd coq_None [|carrier|])
  | Some (tac, spec) ->
      let tac =
        match tac with
        | CstTac t -> Tacintern.glob_tactic t
        | Closed lc ->
            closed_term_ast (List.map Smartlocate.global_with_alias lc) in
      let spec = make_hyp env evd (ic_unsafe spec) in
      (tac, plapp evd coq_Some [|carrier; spec|])

let interp_sign env evd sign =
  let carrier = Evarutil.e_new_global evd (Lazy.force coq_hypo) in
  match sign with
  | None -> plapp evd coq_None [|carrier|]
  | Some spec ->
      let spec = make_hyp env evd (ic_unsafe spec) in
      plapp evd coq_Some [|carrier;spec|]
       (* Same remark on ill-typed terms ... *)

let interp_div env evd div =
  let carrier = Evarutil.e_new_global evd (Lazy.force coq_hypo) in
  match div with
  | None -> plapp evd coq_None [|carrier|]
  | Some spec ->
      let spec = make_hyp env evd (ic_unsafe spec) in
      plapp evd coq_Some [|carrier;spec|]
       (* Same remark on ill-typed terms ... *)

let add_theory0 name (sigma, rth) eqth morphth cst_tac (pre,post) power sign div =
  check_required_library (cdir@["Ring_base"]);
  let env = Global.env() in
  let (kind,r,zero,one,add,mul,sub,opp,req) = dest_ring env sigma rth in
  let evd = ref sigma in
  let (sth,ext) = build_setoid_params env evd r add mul opp req eqth in
  let (pow_tac, pspec) = interp_power env evd power in
  let sspec = interp_sign env evd sign in
  let dspec = interp_div env evd div in
  let rk = reflect_coeff morphth in
  let params,ctx =
    exec_tactic env !evd 5 (zltac "ring_lemmas")
      [sth;ext;rth;pspec;sspec;dspec;rk] in
  let lemma1 = params.(3) in
  let lemma2 = params.(4) in

  let lemma1 =
    decl_constant (Id.to_string name^"_ring_lemma1") ctx lemma1 in
  let lemma2 =
    decl_constant (Id.to_string name^"_ring_lemma2") ctx lemma2 in
  let cst_tac =
    interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in
  let pretac =
    match pre with
        Some t -> Tacintern.glob_tactic t
      | _ -> TacId [] in
  let posttac =
    match post with
        Some t -> Tacintern.glob_tactic t
      | _ -> TacId [] in
  let r = EConstr.to_constr sigma r in
  let req = EConstr.to_constr sigma req in
  let sth = EConstr.to_constr sigma sth in
  let _ =
    Lib.add_leaf name
      (theory_to_obj
        { ring_carrier = r;
          ring_req = req;
          ring_setoid = sth;
          ring_ext = params.(1);
          ring_morph = params.(2);
          ring_th = params.(0);
          ring_cst_tac = cst_tac;
          ring_pow_tac = pow_tac;
          ring_lemma1 = lemma1;
          ring_lemma2 = lemma2;
          ring_pre_tac = pretac;
          ring_post_tac = posttac }) in
  ()

let ic_coeff_spec = function
  | Computational t -> Computational (ic_unsafe t)
  | Morphism t -> Morphism (ic_unsafe t)
  | Abstract -> Abstract


let set_once s r v =
  if Option.is_empty !r then r := Some v else error (s^" cannot be set twice")

let process_ring_mods l =
  let kind = ref None in
  let set = ref None in
  let cst_tac = ref None in
  let pre = ref None in
  let post = ref None in
  let sign = ref None in
  let power = ref None in
  let div = ref None in
  List.iter(function
      Ring_kind k -> set_once "ring kind" kind (ic_coeff_spec k)
    | Const_tac t -> set_once "tactic recognizing constants" cst_tac t
    | Pre_tac t -> set_once "preprocess tactic" pre t
    | Post_tac t -> set_once "postprocess tactic" post t
    | Setoid(sth,ext) -> set_once "setoid" set (ic_unsafe sth,ic_unsafe ext)
    | Pow_spec(t,spec) -> set_once "power" power (t,spec)
    | Sign_spec t -> set_once "sign" sign t
    | Div_spec t -> set_once "div" div t) l;
  let k = match !kind with Some k -> k | None -> Abstract in
  (k, !set, !cst_tac, !pre, !post, !power, !sign, !div)

let add_theory id rth l =
  let (sigma, rth) = ic rth in
  let (k,set,cst,pre,post,power,sign, div) = process_ring_mods l in
  add_theory0 id (sigma, rth) set k cst (pre,post) power sign div

(*****************************************************************************)
(* The tactics consist then only in a lookup in the ring database and
   call the appropriate ltac. *)

let make_args_list sigma rl t =
  match rl with
  | [] -> let (_,t1,t2) = dest_rel0 sigma t in [t1;t2]
  | _ -> rl

let make_term_list env evd carrier rl =
  let l = List.fold_right
    (fun x l -> plapp evd coq_cons [|carrier;x;l|]) rl
    (plapp evd coq_nil [|carrier|])
  in Typing.e_solve_evars env evd l

let carg c = Tacinterp.Value.of_constr (EConstr.of_constr c)
let tacarg expr =
  Tacinterp.Value.of_closure (Tacinterp.default_ist ()) expr

let ltac_ring_structure e =
  let req = carg e.ring_req in
  let sth = carg e.ring_setoid in
  let ext = carg e.ring_ext in
  let morph = carg e.ring_morph in
  let th = carg e.ring_th in
  let cst_tac = tacarg e.ring_cst_tac in
  let pow_tac = tacarg e.ring_pow_tac in
  let lemma1 = carg e.ring_lemma1 in
  let lemma2 = carg e.ring_lemma2 in
  let pretac = tacarg (TacFun([Anonymous],e.ring_pre_tac)) in
  let posttac = tacarg (TacFun([Anonymous],e.ring_post_tac)) in
  [req;sth;ext;morph;th;cst_tac;pow_tac;
   lemma1;lemma2;pretac;posttac]

let ring_lookup (f : Value.t) lH rl t =
  Proofview.Goal.enter begin fun gl ->
    let sigma = Tacmach.New.project gl in
    let env = Proofview.Goal.env gl in
    try (* find_ring_strucure can raise an exception *)
      let rl = make_args_list sigma rl t in
      let evdref = ref sigma in
      let e = find_ring_structure env sigma rl in
      let rl = Value.of_constr (make_term_list env evdref (EConstr.of_constr e.ring_carrier) rl) in
      let lH = carg (make_hyp_list env evdref lH) in
      let ring = ltac_ring_structure e in
      Proofview.tclTHEN (Proofview.Unsafe.tclEVARS !evdref) (ltac_apply f (ring@[lH;rl]))
    with e when Proofview.V82.catchable_exception e -> Proofview.tclZERO e
  end

(***********************************************************************)

let new_field_path =
  DirPath.make (List.map Id.of_string ["Field_tac";plugin_dir;"Coq"])

let field_ltac s =
  lazy(KerName.make (ModPath.MPfile new_field_path) DirPath.empty (Label.make s))


let _ = add_map "field"
  (map_with_eq
    [coq_cons,(function -1->Eval|2->Rec|_->Prot);
    coq_nil, (function -1->Eval|_ -> Prot);
    my_reference "IDphi", (function _->Eval);
    my_reference "gen_phiZ", (function _->Eval);
    (* display_linear: evaluate polynomials and coef operations, protect
       field operations and make recursive call on the var map *)
    my_reference "display_linear",
      (function -1|9|10|11|13|15|16->Eval|12|14->Rec|_->Prot);
    my_reference "display_pow_linear",
     (function -1|9|10|11|14|16|18|19->Eval|12|17->Rec|_->Prot);
   (* Pphi_dev: evaluate polynomial and coef operations, protect
       ring operations and make recursive call on the var map *)
    pol_cst "Pphi_dev", (function -1|8|9|10|12|14->Eval|11|13->Rec|_->Prot);
    pol_cst "Pphi_pow",
          (function -1|8|9|10|13|15|17->Eval|11|16->Rec|_->Prot);
    (* PEeval: evaluate polynomial, protect ring
       operations and make recursive call on the var map *)
    pol_cst "PEeval", (function -1|10|13->Eval|8|12->Rec|_->Prot);
    (* FEeval: evaluate polynomial, protect field
       operations and make recursive call on the var map *)
    my_reference "FEeval", (function -1|12|15->Eval|10|14->Rec|_->Prot)]);;

let _ = add_map "field_cond"
  (map_without_eq
    [coq_cons,(function -1->Eval|2->Rec|_->Prot);
     coq_nil, (function -1->Eval|_ -> Prot);
     my_reference "IDphi", (function _->Eval);
     my_reference "gen_phiZ", (function _->Eval);
    (* PCond: evaluate denum list, protect ring
       operations and make recursive call on the var map *)
     my_reference "PCond", (function -1|11|14->Eval|9|13->Rec|_->Prot)]);;


let _ = Redexpr.declare_reduction "simpl_field_expr"
  (protect_red "field")



let afield_theory = my_reference "almost_field_theory"
let field_theory = my_reference "field_theory"
let sfield_theory = my_reference "semi_field_theory"
let af_ar = my_reference"AF_AR"
let f_r = my_reference"F_R"
let sf_sr = my_reference"SF_SR"
let dest_field env evd th_spec =
  let open Termops in
  let th_typ = Retyping.get_type_of env !evd th_spec in
  match EConstr.kind !evd th_typ with
    | App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
        when is_global !evd (Lazy.force afield_theory) f ->
        let rth = plapp evd af_ar
          [|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
        (None,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
    | App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
        when is_global !evd (Lazy.force field_theory) f ->
        let rth =
          plapp evd f_r
            [|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
        (Some false,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
    | App(f,[|r;zero;one;add;mul;div;inv;req|])
        when is_global !evd (Lazy.force sfield_theory) f ->
        let rth = plapp evd sf_sr
          [|r;zero;one;add;mul;div;inv;req;th_spec|] in
        (Some true,r,zero,one,add,mul,None,None,div,inv,req,rth)
    | _ -> error "bad field structure"

let field_from_carrier = Summary.ref Cmap.empty ~name:"field-tac-carrier-table"
let field_from_name = Summary.ref Spmap.empty ~name:"field-tac-name-table"

let field_for_carrier r = Cmap.find r !field_from_carrier

let find_field_structure env sigma l =
  check_required_library (cdir@["Field_tac"]);
  match l with
    | t::cl' ->
        let ty = Retyping.get_type_of env sigma t in
        let check c =
          let ty' = Retyping.get_type_of env sigma c in
          if not (Reductionops.is_conv env sigma ty ty') then
            CErrors.user_err ~hdr:"field"
              (str"arguments of field_simplify do not have all the same type")
        in
        List.iter check cl';
        (try field_for_carrier (EConstr.to_constr sigma ty)
        with Not_found ->
          CErrors.user_err ~hdr:"field"
            (str"cannot find a declared field structure over"++
             spc()++str"\""++pr_econstr_env env sigma ty++str"\""))
    | [] -> assert false

let add_field_entry (sp,_kn) e =
  field_from_carrier := Cmap.add e.field_carrier e !field_from_carrier;
  field_from_name := Spmap.add sp e !field_from_name

let subst_th (subst,th) =
  let c' = subst_mps subst th.field_carrier in
  let eq' = subst_mps subst th.field_req in
  let thm1' = subst_mps subst th.field_ok in
  let thm2' = subst_mps subst th.field_simpl_eq_ok in
  let thm3' = subst_mps subst th.field_simpl_ok in
  let thm4' = subst_mps subst th.field_simpl_eq_in_ok in
  let thm5' = subst_mps subst th.field_cond in
  let tac'= Tacsubst.subst_tactic subst th.field_cst_tac in
  let pow_tac' = Tacsubst.subst_tactic subst th.field_pow_tac in
  let pretac'= Tacsubst.subst_tactic subst th.field_pre_tac in
  let posttac'= Tacsubst.subst_tactic subst th.field_post_tac in
  if c' == th.field_carrier &&
     eq' == th.field_req &&
     thm1' == th.field_ok &&
     thm2' == th.field_simpl_eq_ok &&
     thm3' == th.field_simpl_ok &&
     thm4' == th.field_simpl_eq_in_ok &&
     thm5' == th.field_cond &&
     tac' == th.field_cst_tac &&
     pow_tac' == th.field_pow_tac &&
     pretac' == th.field_pre_tac &&
     posttac' == th.field_post_tac then th
  else
    { field_carrier = c';
      field_req = eq';
      field_cst_tac = tac';
      field_pow_tac = pow_tac';
      field_ok = thm1';
      field_simpl_eq_ok = thm2';
      field_simpl_ok = thm3';
      field_simpl_eq_in_ok = thm4';
      field_cond = thm5';
      field_pre_tac = pretac';
      field_post_tac = posttac' }

let ftheory_to_obj : field_info -> obj =
  let cache_th (name,th) = add_field_entry name th in
  declare_object
    {(default_object "tactic-new-field-theory") with
      open_function = (fun i o -> if Int.equal i 1 then cache_th o);
      cache_function = cache_th;
      subst_function = subst_th;
      classify_function = (fun x -> Substitute x) }

let field_equality evd r inv req =
  match EConstr.kind !evd req with
    | App (f, [| _ |]) when eq_constr_nounivs !evd f (Lazy.force coq_eq) ->
        let c = Universes.constr_of_global (Coqlib.build_coq_eq_data()).congr in
        let c = EConstr.of_constr c in
        mkApp(c,[|r;r;inv|])
    | _ ->
        let _setoid = setoid_of_relation (Global.env ()) evd r req in
        let signature = [Some (r,Some req)],Some(r,Some req) in
        let inv_m, inv_m_lem =
          try Rewrite.default_morphism signature inv
          with Not_found ->
            error "field inverse should be declared as a morphism" in
          inv_m_lem

let add_field_theory0 name fth eqth morphth cst_tac inj (pre,post) power sign odiv =
  let open Constr in
  check_required_library (cdir@["Field_tac"]);
  let (sigma,fth) = ic fth in
  let env = Global.env() in
  let evd = ref sigma in
  let (kind,r,zero,one,add,mul,sub,opp,div,inv,req,rth) =
    dest_field env evd fth in
  let (sth,ext) = build_setoid_params env evd r add mul opp req eqth in
  let eqth = Some(sth,ext) in
  let _ = add_theory0 name (!evd,rth) eqth morphth cst_tac (None,None) power sign odiv in
  let (pow_tac, pspec) = interp_power env evd power in
  let sspec = interp_sign env evd sign in
  let dspec = interp_div env evd odiv in
  let inv_m = field_equality evd r inv req in
  let rk = reflect_coeff morphth in
  let params,ctx =
    exec_tactic env !evd 9 (field_ltac"field_lemmas")
      [sth;ext;inv_m;fth;pspec;sspec;dspec;rk] in
  let lemma1 = params.(3) in
  let lemma2 = params.(4) in
  let lemma3 = params.(5) in
  let lemma4 = params.(6) in
  let cond_lemma =
    match inj with
      | Some thm -> mkApp(params.(8),[|EConstr.to_constr sigma thm|])
      | None -> params.(7) in
  let lemma1 = decl_constant (Id.to_string name^"_field_lemma1")
    ctx lemma1 in
  let lemma2 = decl_constant (Id.to_string name^"_field_lemma2") 
    ctx lemma2 in
  let lemma3 = decl_constant (Id.to_string name^"_field_lemma3") 
    ctx lemma3 in
  let lemma4 = decl_constant (Id.to_string name^"_field_lemma4") 
    ctx lemma4 in
  let cond_lemma = decl_constant (Id.to_string name^"_lemma5") 
    ctx cond_lemma in
  let cst_tac =
    interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in
  let pretac =
    match pre with
        Some t -> Tacintern.glob_tactic t
      | _ -> TacId [] in
  let posttac =
    match post with
        Some t -> Tacintern.glob_tactic t
      | _ -> TacId [] in
  let r = EConstr.to_constr sigma r in
  let req = EConstr.to_constr sigma req in
  let _ =
    Lib.add_leaf name
      (ftheory_to_obj
        { field_carrier = r;
          field_req = req;
          field_cst_tac = cst_tac;
          field_pow_tac = pow_tac;
          field_ok = lemma1;
          field_simpl_eq_ok = lemma2;
          field_simpl_ok = lemma3;
          field_simpl_eq_in_ok = lemma4;
          field_cond = cond_lemma;
          field_pre_tac = pretac;
          field_post_tac = posttac }) in  ()

let process_field_mods l =
  let kind = ref None in
  let set = ref None in
  let cst_tac = ref None in
  let pre = ref None in
  let post = ref None in
  let inj = ref None in
  let sign = ref None in
  let power = ref None in
  let div = ref None in
  List.iter(function
      Ring_mod(Ring_kind k) -> set_once "field kind" kind (ic_coeff_spec k)
    | Ring_mod(Const_tac t) ->
        set_once "tactic recognizing constants" cst_tac t
    | Ring_mod(Pre_tac t) -> set_once "preprocess tactic" pre t
    | Ring_mod(Post_tac t) -> set_once "postprocess tactic" post t
    | Ring_mod(Setoid(sth,ext)) -> set_once "setoid" set (ic_unsafe sth,ic_unsafe ext)
    | Ring_mod(Pow_spec(t,spec)) -> set_once "power" power (t,spec)
    | Ring_mod(Sign_spec t) -> set_once "sign" sign t
    | Ring_mod(Div_spec t) -> set_once "div" div t
    | Inject i -> set_once "infinite property" inj (ic_unsafe i)) l;
  let k = match !kind with Some k -> k | None -> Abstract in
  (k, !set, !inj, !cst_tac, !pre, !post, !power, !sign, !div)

let add_field_theory id t mods =
  let (k,set,inj,cst_tac,pre,post,power,sign,div) = process_field_mods mods in
  add_field_theory0 id t set k cst_tac inj (pre,post) power sign div

let ltac_field_structure e =
  let req = carg e.field_req in
  let cst_tac = tacarg e.field_cst_tac in
  let pow_tac = tacarg e.field_pow_tac in
  let field_ok = carg e.field_ok in
  let field_simpl_ok = carg e.field_simpl_ok in
  let field_simpl_eq_ok = carg e.field_simpl_eq_ok in
  let field_simpl_eq_in_ok = carg e.field_simpl_eq_in_ok in
  let cond_ok = carg e.field_cond in
  let pretac = tacarg (TacFun([Anonymous],e.field_pre_tac)) in
  let posttac = tacarg (TacFun([Anonymous],e.field_post_tac)) in
  [req;cst_tac;pow_tac;field_ok;field_simpl_ok;field_simpl_eq_ok;
   field_simpl_eq_in_ok;cond_ok;pretac;posttac]

let field_lookup (f : Value.t) lH rl t =
  Proofview.Goal.enter begin fun gl ->
    let sigma = Tacmach.New.project gl in
    let env = Proofview.Goal.env gl in
    try
      let rl = make_args_list sigma rl t in
      let evdref = ref sigma in
      let e = find_field_structure env sigma rl in
      let rl = Value.of_constr (make_term_list env evdref (EConstr.of_constr e.field_carrier) rl) in
      let lH = carg (make_hyp_list env evdref lH) in
      let field = ltac_field_structure e in
      Proofview.tclTHEN (Proofview.Unsafe.tclEVARS !evdref) (ltac_apply f (field@[lH;rl]))
    with e when Proofview.V82.catchable_exception e -> Proofview.tclZERO e
  end