1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Ltac_plugin open Pp open Util open Names open Constr open EConstr open Vars open CClosure open Environ open Libnames open Globnames open Glob_term open Tacexpr open Coqlib open Mod_subst open Tacinterp open Libobject open Printer open Declare open Decl_kinds open Entries open Misctypes open Newring_ast open Proofview.Notations let error msg = CErrors.user_err Pp.(str msg) (****************************************************************************) (* controlled reduction *) type protect_flag = Eval|Prot|Rec let tag_arg tag_rec map subs i c = match map i with Eval -> mk_clos subs c | Prot -> mk_atom c | Rec -> if Int.equal i (-1) then mk_clos subs c else tag_rec c let global_head_of_constr sigma c = let f, args = decompose_app sigma c in try fst (Termops.global_of_constr sigma f) with Not_found -> CErrors.anomaly (str "global_head_of_constr.") let global_of_constr_nofail c = try global_of_constr c with Not_found -> VarRef (Id.of_string "dummy") let rec mk_clos_but f_map subs t = let open Term in match f_map (global_of_constr_nofail t) with | Some map -> tag_arg (mk_clos_but f_map subs) map subs (-1) t | None -> (match Constr.kind t with App(f,args) -> mk_clos_app_but f_map subs f args 0 | Prod _ -> mk_clos_deep (mk_clos_but f_map) subs t | _ -> mk_atom t) and mk_clos_app_but f_map subs f args n = let open Constr in if n >= Array.length args then mk_atom(mkApp(f, args)) else let fargs, args' = Array.chop n args in let f' = mkApp(f,fargs) in match f_map (global_of_constr_nofail f') with | Some map -> let f i t = tag_arg (mk_clos_but f_map subs) map subs i t in mk_red (FApp (f (-1) f', Array.mapi f args')) | None -> mk_atom (mkApp (f, args)) let interp_map l t = try Some(List.assoc_f eq_gr t l) with Not_found -> None let protect_maps = ref String.Map.empty let add_map s m = protect_maps := String.Map.add s m !protect_maps let lookup_map map = try String.Map.find map !protect_maps with Not_found -> CErrors.user_err ~hdr:"lookup_map" (str"map "++qs map++str"not found") let protect_red map env sigma c0 = let evars ev = Evarutil.safe_evar_value sigma ev in let c = EConstr.Unsafe.to_constr c0 in EConstr.of_constr (kl (create_clos_infos ~evars all env) (mk_clos_but (lookup_map map sigma c0) (Esubst.subs_id 0) c));; let protect_tac map = Tactics.reduct_option (protect_red map,DEFAULTcast) None let protect_tac_in map id = Tactics.reduct_option (protect_red map,DEFAULTcast) (Some(id, Locus.InHyp)) (****************************************************************************) let closed_term t l = let open Quote_plugin in Proofview.tclEVARMAP >>= fun sigma -> let l = List.map Universes.constr_of_global l in let cs = List.fold_right Quote.ConstrSet.add l Quote.ConstrSet.empty in if Quote.closed_under sigma cs t then Proofview.tclUNIT () else Tacticals.New.tclFAIL 0 (mt()) (* TACTIC EXTEND echo | [ "echo" constr(t) ] -> [ Pp.msg (Termops.print_constr t); Tacinterp.eval_tactic (TacId []) ] END;;*) (* let closed_term_ast l = TacFun([Some(Id.of_string"t")], TacAtom(Loc.ghost,TacExtend(Loc.ghost,"closed_term", [Genarg.in_gen Constrarg.wit_constr (mkVar(Id.of_string"t")); Genarg.in_gen (Genarg.wit_list Constrarg.wit_ref) l]))) *) let closed_term_ast l = let tacname = { mltac_plugin = "newring_plugin"; mltac_tactic = "closed_term"; } in let tacname = { mltac_name = tacname; mltac_index = 0; } in let l = List.map (fun gr -> ArgArg(Loc.tag gr)) l in TacFun([Name(Id.of_string"t")], TacML(Loc.tag (tacname, [TacGeneric (Genarg.in_gen (Genarg.glbwit Stdarg.wit_constr) (DAst.make @@ GVar(Id.of_string"t"),None)); TacGeneric (Genarg.in_gen (Genarg.glbwit (Genarg.wit_list Stdarg.wit_ref)) l)]))) (* let _ = add_tacdef false ((Loc.ghost,Id.of_string"ring_closed_term" *) (****************************************************************************) let ic c = let env = Global.env() in let sigma = Evd.from_env env in let sigma, c = Constrintern.interp_open_constr env sigma c in (sigma, c) let ic_unsafe c = (*FIXME remove *) let env = Global.env() in let sigma = Evd.from_env env in EConstr.of_constr (fst (Constrintern.interp_constr env sigma c)) let decl_constant na univs c = let open Constr in let vars = Univops.universes_of_constr c in let univs = Univops.restrict_universe_context univs vars in let univs = Monomorphic_const_entry univs in mkConst(declare_constant (Id.of_string na) (DefinitionEntry (definition_entry ~opaque:true ~univs c), IsProof Lemma)) (* Calling a global tactic *) let ltac_call tac (args:glob_tactic_arg list) = TacArg(Loc.tag @@ TacCall (Loc.tag (ArgArg(Loc.tag @@ Lazy.force tac),args))) (* Calling a locally bound tactic *) let ltac_lcall tac args = TacArg(Loc.tag @@ TacCall (Loc.tag (ArgVar(Loc.tag @@ Id.of_string tac),args))) let ltac_apply (f : Value.t) (args: Tacinterp.Value.t list) = let fold arg (i, vars, lfun) = let id = Id.of_string ("x" ^ string_of_int i) in let x = Reference (ArgVar (Loc.tag id)) in (succ i, x :: vars, Id.Map.add id arg lfun) in let (_, args, lfun) = List.fold_right fold args (0, [], Id.Map.empty) in let lfun = Id.Map.add (Id.of_string "F") f lfun in let ist = { (Tacinterp.default_ist ()) with Tacinterp.lfun = lfun; } in Tacinterp.eval_tactic_ist ist (ltac_lcall "F" args) let dummy_goal env sigma = let (gl,_,sigma) = Goal.V82.mk_goal sigma (named_context_val env) EConstr.mkProp Evd.Store.empty in {Evd.it = gl; Evd.sigma = sigma} let constr_of v = match Value.to_constr v with | Some c -> EConstr.Unsafe.to_constr c | None -> failwith "Ring.exec_tactic: anomaly" let tactic_res = ref [||] let get_res = let open Tacexpr in let name = { mltac_plugin = "newring_plugin"; mltac_tactic = "get_res"; } in let entry = { mltac_name = name; mltac_index = 0 } in let tac args ist = let n = Tacinterp.Value.cast (Genarg.topwit Stdarg.wit_int) (List.hd args) in let init i = Id.Map.find (Id.of_string ("x" ^ string_of_int i)) ist.lfun in tactic_res := Array.init n init; Proofview.tclUNIT () in Tacenv.register_ml_tactic name [| tac |]; entry let exec_tactic env evd n f args = let fold arg (i, vars, lfun) = let id = Id.of_string ("x" ^ string_of_int i) in let x = Reference (ArgVar (Loc.tag id)) in (succ i, x :: vars, Id.Map.add id (Value.of_constr arg) lfun) in let (_, args, lfun) = List.fold_right fold args (0, [], Id.Map.empty) in let ist = { (Tacinterp.default_ist ()) with Tacinterp.lfun = lfun; } in (** Build the getter *) let lid = List.init n (fun i -> Id.of_string("x"^string_of_int i)) in let n = Genarg.in_gen (Genarg.glbwit Stdarg.wit_int) n in let get_res = TacML (Loc.tag (get_res, [TacGeneric n])) in let getter = Tacexp (TacFun (List.map (fun n -> Name n) lid, get_res)) in (** Evaluate the whole result *) let gl = dummy_goal env evd in let gls = Proofview.V82.of_tactic (Tacinterp.eval_tactic_ist ist (ltac_call f (args@[getter]))) gl in let evd, nf = Evarutil.nf_evars_and_universes (Refiner.project gls) in let nf c = nf (constr_of c) in Array.map nf !tactic_res, Evd.universe_context_set evd let stdlib_modules = [["Coq";"Setoids";"Setoid"]; ["Coq";"Lists";"List"]; ["Coq";"Init";"Datatypes"]; ["Coq";"Init";"Logic"]; ] let coq_constant c = lazy (EConstr.of_constr (Universes.constr_of_global @@ Coqlib.gen_reference_in_modules "Ring" stdlib_modules c)) let coq_reference c = lazy (Coqlib.gen_reference_in_modules "Ring" stdlib_modules c) let coq_mk_Setoid = coq_constant "Build_Setoid_Theory" let coq_None = coq_reference "None" let coq_Some = coq_reference "Some" let coq_eq = coq_constant "eq" let coq_cons = coq_reference "cons" let coq_nil = coq_reference "nil" let lapp f args = mkApp(Lazy.force f,args) let plapp evd f args = let fc = Evarutil.e_new_global evd (Lazy.force f) in mkApp(fc,args) let dest_rel0 sigma t = match EConstr.kind sigma t with | App(f,args) when Array.length args >= 2 -> let rel = mkApp(f,Array.sub args 0 (Array.length args - 2)) in if closed0 sigma rel then (rel,args.(Array.length args - 2),args.(Array.length args - 1)) else error "ring: cannot find relation (not closed)" | _ -> error "ring: cannot find relation" let rec dest_rel sigma t = match EConstr.kind sigma t with | Prod(_,_,c) -> dest_rel sigma c | _ -> dest_rel0 sigma t (****************************************************************************) (* Library linking *) let plugin_dir = "setoid_ring" let cdir = ["Coq";plugin_dir] let plugin_modules = List.map (fun d -> cdir@d) [["Ring_theory"];["Ring_polynom"]; ["Ring_tac"];["InitialRing"]; ["Field_tac"]; ["Field_theory"] ] let my_constant c = lazy (EConstr.of_constr (Universes.constr_of_global @@ Coqlib.gen_reference_in_modules "Ring" plugin_modules c)) let my_reference c = lazy (Coqlib.gen_reference_in_modules "Ring" plugin_modules c) let znew_ring_path = DirPath.make (List.map Id.of_string ["InitialRing";plugin_dir;"Coq"]) let zltac s = lazy(KerName.make (ModPath.MPfile znew_ring_path) DirPath.empty (Label.make s)) let mk_cst l s = lazy (Coqlib.coq_reference "newring" l s);; let pol_cst s = mk_cst [plugin_dir;"Ring_polynom"] s ;; (* Ring theory *) (* almost_ring defs *) let coq_almost_ring_theory = my_constant "almost_ring_theory" (* setoid and morphism utilities *) let coq_eq_setoid = my_reference "Eqsth" let coq_eq_morph = my_reference "Eq_ext" let coq_eq_smorph = my_reference "Eq_s_ext" (* ring -> almost_ring utilities *) let coq_ring_theory = my_constant "ring_theory" let coq_mk_reqe = my_constant "mk_reqe" (* semi_ring -> almost_ring utilities *) let coq_semi_ring_theory = my_constant "semi_ring_theory" let coq_mk_seqe = my_constant "mk_seqe" let coq_abstract = my_constant"Abstract" let coq_comp = my_constant"Computational" let coq_morph = my_constant"Morphism" (* power function *) let ltac_inv_morph_nothing = zltac"inv_morph_nothing" (* hypothesis *) let coq_mkhypo = my_reference "mkhypo" let coq_hypo = my_reference "hypo" (* Equality: do not evaluate but make recursive call on both sides *) let map_with_eq arg_map sigma c = let (req,_,_) = dest_rel sigma c in interp_map ((global_head_of_constr sigma req,(function -1->Prot|_->Rec)):: List.map (fun (c,map) -> (Lazy.force c,map)) arg_map) let map_without_eq arg_map _ _ = interp_map (List.map (fun (c,map) -> (Lazy.force c,map)) arg_map) let _ = add_map "ring" (map_with_eq [coq_cons,(function -1->Eval|2->Rec|_->Prot); coq_nil, (function -1->Eval|_ -> Prot); my_reference "IDphi", (function _->Eval); my_reference "gen_phiZ", (function _->Eval); (* Pphi_dev: evaluate polynomial and coef operations, protect ring operations and make recursive call on the var map *) pol_cst "Pphi_dev", (function -1|8|9|10|12|14->Eval|11|13->Rec|_->Prot); pol_cst "Pphi_pow", (function -1|8|9|10|13|15|17->Eval|11|16->Rec|_->Prot); (* PEeval: evaluate polynomial, protect ring operations and make recursive call on the var map *) pol_cst "PEeval", (function -1|10|13->Eval|8|12->Rec|_->Prot)]) (****************************************************************************) (* Ring database *) module Cmap = Map.Make(Constr) let from_carrier = Summary.ref Cmap.empty ~name:"ring-tac-carrier-table" let from_name = Summary.ref Spmap.empty ~name:"ring-tac-name-table" let ring_for_carrier r = Cmap.find r !from_carrier let find_ring_structure env sigma l = match l with | t::cl' -> let ty = Retyping.get_type_of env sigma t in let check c = let ty' = Retyping.get_type_of env sigma c in if not (Reductionops.is_conv env sigma ty ty') then CErrors.user_err ~hdr:"ring" (str"arguments of ring_simplify do not have all the same type") in List.iter check cl'; (try ring_for_carrier (EConstr.to_constr sigma ty) with Not_found -> CErrors.user_err ~hdr:"ring" (str"cannot find a declared ring structure over"++ spc() ++ str"\"" ++ pr_econstr_env env sigma ty ++ str"\"")) | [] -> assert false let add_entry (sp,_kn) e = from_carrier := Cmap.add e.ring_carrier e !from_carrier; from_name := Spmap.add sp e !from_name let subst_th (subst,th) = let c' = subst_mps subst th.ring_carrier in let eq' = subst_mps subst th.ring_req in let set' = subst_mps subst th.ring_setoid in let ext' = subst_mps subst th.ring_ext in let morph' = subst_mps subst th.ring_morph in let th' = subst_mps subst th.ring_th in let thm1' = subst_mps subst th.ring_lemma1 in let thm2' = subst_mps subst th.ring_lemma2 in let tac'= Tacsubst.subst_tactic subst th.ring_cst_tac in let pow_tac'= Tacsubst.subst_tactic subst th.ring_pow_tac in let pretac'= Tacsubst.subst_tactic subst th.ring_pre_tac in let posttac'= Tacsubst.subst_tactic subst th.ring_post_tac in if c' == th.ring_carrier && eq' == th.ring_req && Constr.equal set' th.ring_setoid && ext' == th.ring_ext && morph' == th.ring_morph && th' == th.ring_th && thm1' == th.ring_lemma1 && thm2' == th.ring_lemma2 && tac' == th.ring_cst_tac && pow_tac' == th.ring_pow_tac && pretac' == th.ring_pre_tac && posttac' == th.ring_post_tac then th else { ring_carrier = c'; ring_req = eq'; ring_setoid = set'; ring_ext = ext'; ring_morph = morph'; ring_th = th'; ring_cst_tac = tac'; ring_pow_tac = pow_tac'; ring_lemma1 = thm1'; ring_lemma2 = thm2'; ring_pre_tac = pretac'; ring_post_tac = posttac' } let theory_to_obj : ring_info -> obj = let cache_th (name,th) = add_entry name th in declare_object {(default_object "tactic-new-ring-theory") with open_function = (fun i o -> if Int.equal i 1 then cache_th o); cache_function = cache_th; subst_function = subst_th; classify_function = (fun x -> Substitute x)} let setoid_of_relation env evd a r = try let evm = !evd in let evm, refl = Rewrite.get_reflexive_proof env evm a r in let evm, sym = Rewrite.get_symmetric_proof env evm a r in let evm, trans = Rewrite.get_transitive_proof env evm a r in evd := evm; lapp coq_mk_Setoid [|a ; r ; refl; sym; trans |] with Not_found -> error "cannot find setoid relation" let op_morph r add mul opp req m1 m2 m3 = lapp coq_mk_reqe [| r; add; mul; opp; req; m1; m2; m3 |] let op_smorph r add mul req m1 m2 = lapp coq_mk_seqe [| r; add; mul; req; m1; m2 |] (* let default_ring_equality (r,add,mul,opp,req) = *) (* let is_setoid = function *) (* {rel_refl=Some _; rel_sym=Some _;rel_trans=Some _;rel_aeq=rel} -> *) (* eq_constr_nounivs req rel (\* Qu: use conversion ? *\) *) (* | _ -> false in *) (* match default_relation_for_carrier ~filter:is_setoid r with *) (* Leibniz _ -> *) (* let setoid = lapp coq_eq_setoid [|r|] in *) (* let op_morph = *) (* match opp with *) (* Some opp -> lapp coq_eq_morph [|r;add;mul;opp|] *) (* | None -> lapp coq_eq_smorph [|r;add;mul|] in *) (* (setoid,op_morph) *) (* | Relation rel -> *) (* let setoid = setoid_of_relation rel in *) (* let is_endomorphism = function *) (* { args=args } -> List.for_all *) (* (function (var,Relation rel) -> *) (* var=None && eq_constr_nounivs req rel *) (* | _ -> false) args in *) (* let add_m = *) (* try default_morphism ~filter:is_endomorphism add *) (* with Not_found -> *) (* error "ring addition should be declared as a morphism" in *) (* let mul_m = *) (* try default_morphism ~filter:is_endomorphism mul *) (* with Not_found -> *) (* error "ring multiplication should be declared as a morphism" in *) (* let op_morph = *) (* match opp with *) (* | Some opp -> *) (* (let opp_m = *) (* try default_morphism ~filter:is_endomorphism opp *) (* with Not_found -> *) (* error "ring opposite should be declared as a morphism" in *) (* let op_morph = *) (* op_morph r add mul opp req add_m.lem mul_m.lem opp_m.lem in *) (* msgnl *) (* (str"Using setoid \""++pr_constr rel.rel_aeq++str"\""++spc()++ *) (* str"and morphisms \""++pr_constr add_m.morphism_theory++ *) (* str"\","++spc()++ str"\""++pr_constr mul_m.morphism_theory++ *) (* str"\""++spc()++str"and \""++pr_constr opp_m.morphism_theory++ *) (* str"\""); *) (* op_morph) *) (* | None -> *) (* (msgnl *) (* (str"Using setoid \""++pr_constr rel.rel_aeq++str"\"" ++ spc() ++ *) (* str"and morphisms \""++pr_constr add_m.morphism_theory++ *) (* str"\""++spc()++str"and \""++ *) (* pr_constr mul_m.morphism_theory++str"\""); *) (* op_smorph r add mul req add_m.lem mul_m.lem) in *) (* (setoid,op_morph) *) let ring_equality env evd (r,add,mul,opp,req) = match EConstr.kind !evd req with | App (f, [| _ |]) when eq_constr_nounivs !evd f (Lazy.force coq_eq) -> let setoid = plapp evd coq_eq_setoid [|r|] in let op_morph = match opp with Some opp -> plapp evd coq_eq_morph [|r;add;mul;opp|] | None -> plapp evd coq_eq_smorph [|r;add;mul|] in let setoid = Typing.e_solve_evars env evd setoid in let op_morph = Typing.e_solve_evars env evd op_morph in (setoid,op_morph) | _ -> let setoid = setoid_of_relation (Global.env ()) evd r req in let signature = [Some (r,Some req);Some (r,Some req)],Some(r,Some req) in let add_m, add_m_lem = try Rewrite.default_morphism signature add with Not_found -> error "ring addition should be declared as a morphism" in let mul_m, mul_m_lem = try Rewrite.default_morphism signature mul with Not_found -> error "ring multiplication should be declared as a morphism" in let op_morph = match opp with | Some opp -> (let opp_m,opp_m_lem = try Rewrite.default_morphism ([Some(r,Some req)],Some(r,Some req)) opp with Not_found -> error "ring opposite should be declared as a morphism" in let op_morph = op_morph r add mul opp req add_m_lem mul_m_lem opp_m_lem in Flags.if_verbose Feedback.msg_info (str"Using setoid \""++ pr_econstr_env env !evd req++str"\""++spc()++ str"and morphisms \""++pr_econstr_env env !evd add_m_lem ++ str"\","++spc()++ str"\""++pr_econstr_env env !evd mul_m_lem++ str"\""++spc()++str"and \""++pr_econstr_env env !evd opp_m_lem++ str"\""); op_morph) | None -> (Flags.if_verbose Feedback.msg_info (str"Using setoid \""++pr_econstr_env env !evd req ++str"\"" ++ spc() ++ str"and morphisms \""++pr_econstr_env env !evd add_m_lem ++ str"\""++spc()++str"and \""++ pr_econstr_env env !evd mul_m_lem++str"\""); op_smorph r add mul req add_m_lem mul_m_lem) in (setoid,op_morph) let build_setoid_params env evd r add mul opp req eqth = match eqth with Some th -> th | None -> ring_equality env evd (r,add,mul,opp,req) let dest_ring env sigma th_spec = let th_typ = Retyping.get_type_of env sigma th_spec in match EConstr.kind sigma th_typ with App(f,[|r;zero;one;add;mul;sub;opp;req|]) when eq_constr_nounivs sigma f (Lazy.force coq_almost_ring_theory) -> (None,r,zero,one,add,mul,Some sub,Some opp,req) | App(f,[|r;zero;one;add;mul;req|]) when eq_constr_nounivs sigma f (Lazy.force coq_semi_ring_theory) -> (Some true,r,zero,one,add,mul,None,None,req) | App(f,[|r;zero;one;add;mul;sub;opp;req|]) when eq_constr_nounivs sigma f (Lazy.force coq_ring_theory) -> (Some false,r,zero,one,add,mul,Some sub,Some opp,req) | _ -> error "bad ring structure" let reflect_coeff rkind = (* We build an ill-typed terms on purpose... *) match rkind with Abstract -> Lazy.force coq_abstract | Computational c -> lapp coq_comp [|c|] | Morphism m -> lapp coq_morph [|m|] let interp_cst_tac env sigma rk kind (zero,one,add,mul,opp) cst_tac = match cst_tac with Some (CstTac t) -> Tacintern.glob_tactic t | Some (Closed lc) -> closed_term_ast (List.map Smartlocate.global_with_alias lc) | None -> let t = ArgArg(Loc.tag @@ Lazy.force ltac_inv_morph_nothing) in TacArg(Loc.tag (TacCall(Loc.tag (t,[])))) let make_hyp env evd c = let t = Retyping.get_type_of env !evd c in plapp evd coq_mkhypo [|t;c|] let make_hyp_list env evd lH = let carrier = Evarutil.e_new_global evd (Lazy.force coq_hypo) in let l = List.fold_right (fun c l -> plapp evd coq_cons [|carrier; (make_hyp env evd c); l|]) lH (plapp evd coq_nil [|carrier|]) in let l' = Typing.e_solve_evars env evd l in let l' = EConstr.Unsafe.to_constr l' in Evarutil.nf_evars_universes !evd l' let interp_power env evd pow = let carrier = Evarutil.e_new_global evd (Lazy.force coq_hypo) in match pow with | None -> let t = ArgArg(Loc.tag (Lazy.force ltac_inv_morph_nothing)) in (TacArg(Loc.tag (TacCall(Loc.tag (t,[])))), plapp evd coq_None [|carrier|]) | Some (tac, spec) -> let tac = match tac with | CstTac t -> Tacintern.glob_tactic t | Closed lc -> closed_term_ast (List.map Smartlocate.global_with_alias lc) in let spec = make_hyp env evd (ic_unsafe spec) in (tac, plapp evd coq_Some [|carrier; spec|]) let interp_sign env evd sign = let carrier = Evarutil.e_new_global evd (Lazy.force coq_hypo) in match sign with | None -> plapp evd coq_None [|carrier|] | Some spec -> let spec = make_hyp env evd (ic_unsafe spec) in plapp evd coq_Some [|carrier;spec|] (* Same remark on ill-typed terms ... *) let interp_div env evd div = let carrier = Evarutil.e_new_global evd (Lazy.force coq_hypo) in match div with | None -> plapp evd coq_None [|carrier|] | Some spec -> let spec = make_hyp env evd (ic_unsafe spec) in plapp evd coq_Some [|carrier;spec|] (* Same remark on ill-typed terms ... *) let add_theory0 name (sigma, rth) eqth morphth cst_tac (pre,post) power sign div = check_required_library (cdir@["Ring_base"]); let env = Global.env() in let (kind,r,zero,one,add,mul,sub,opp,req) = dest_ring env sigma rth in let evd = ref sigma in let (sth,ext) = build_setoid_params env evd r add mul opp req eqth in let (pow_tac, pspec) = interp_power env evd power in let sspec = interp_sign env evd sign in let dspec = interp_div env evd div in let rk = reflect_coeff morphth in let params,ctx = exec_tactic env !evd 5 (zltac "ring_lemmas") [sth;ext;rth;pspec;sspec;dspec;rk] in let lemma1 = params.(3) in let lemma2 = params.(4) in let lemma1 = decl_constant (Id.to_string name^"_ring_lemma1") ctx lemma1 in let lemma2 = decl_constant (Id.to_string name^"_ring_lemma2") ctx lemma2 in let cst_tac = interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in let pretac = match pre with Some t -> Tacintern.glob_tactic t | _ -> TacId [] in let posttac = match post with Some t -> Tacintern.glob_tactic t | _ -> TacId [] in let r = EConstr.to_constr sigma r in let req = EConstr.to_constr sigma req in let sth = EConstr.to_constr sigma sth in let _ = Lib.add_leaf name (theory_to_obj { ring_carrier = r; ring_req = req; ring_setoid = sth; ring_ext = params.(1); ring_morph = params.(2); ring_th = params.(0); ring_cst_tac = cst_tac; ring_pow_tac = pow_tac; ring_lemma1 = lemma1; ring_lemma2 = lemma2; ring_pre_tac = pretac; ring_post_tac = posttac }) in () let ic_coeff_spec = function | Computational t -> Computational (ic_unsafe t) | Morphism t -> Morphism (ic_unsafe t) | Abstract -> Abstract let set_once s r v = if Option.is_empty !r then r := Some v else error (s^" cannot be set twice") let process_ring_mods l = let kind = ref None in let set = ref None in let cst_tac = ref None in let pre = ref None in let post = ref None in let sign = ref None in let power = ref None in let div = ref None in List.iter(function Ring_kind k -> set_once "ring kind" kind (ic_coeff_spec k) | Const_tac t -> set_once "tactic recognizing constants" cst_tac t | Pre_tac t -> set_once "preprocess tactic" pre t | Post_tac t -> set_once "postprocess tactic" post t | Setoid(sth,ext) -> set_once "setoid" set (ic_unsafe sth,ic_unsafe ext) | Pow_spec(t,spec) -> set_once "power" power (t,spec) | Sign_spec t -> set_once "sign" sign t | Div_spec t -> set_once "div" div t) l; let k = match !kind with Some k -> k | None -> Abstract in (k, !set, !cst_tac, !pre, !post, !power, !sign, !div) let add_theory id rth l = let (sigma, rth) = ic rth in let (k,set,cst,pre,post,power,sign, div) = process_ring_mods l in add_theory0 id (sigma, rth) set k cst (pre,post) power sign div (*****************************************************************************) (* The tactics consist then only in a lookup in the ring database and call the appropriate ltac. *) let make_args_list sigma rl t = match rl with | [] -> let (_,t1,t2) = dest_rel0 sigma t in [t1;t2] | _ -> rl let make_term_list env evd carrier rl = let l = List.fold_right (fun x l -> plapp evd coq_cons [|carrier;x;l|]) rl (plapp evd coq_nil [|carrier|]) in Typing.e_solve_evars env evd l let carg c = Tacinterp.Value.of_constr (EConstr.of_constr c) let tacarg expr = Tacinterp.Value.of_closure (Tacinterp.default_ist ()) expr let ltac_ring_structure e = let req = carg e.ring_req in let sth = carg e.ring_setoid in let ext = carg e.ring_ext in let morph = carg e.ring_morph in let th = carg e.ring_th in let cst_tac = tacarg e.ring_cst_tac in let pow_tac = tacarg e.ring_pow_tac in let lemma1 = carg e.ring_lemma1 in let lemma2 = carg e.ring_lemma2 in let pretac = tacarg (TacFun([Anonymous],e.ring_pre_tac)) in let posttac = tacarg (TacFun([Anonymous],e.ring_post_tac)) in [req;sth;ext;morph;th;cst_tac;pow_tac; lemma1;lemma2;pretac;posttac] let ring_lookup (f : Value.t) lH rl t = Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in let env = Proofview.Goal.env gl in try (* find_ring_strucure can raise an exception *) let rl = make_args_list sigma rl t in let evdref = ref sigma in let e = find_ring_structure env sigma rl in let rl = Value.of_constr (make_term_list env evdref (EConstr.of_constr e.ring_carrier) rl) in let lH = carg (make_hyp_list env evdref lH) in let ring = ltac_ring_structure e in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS !evdref) (ltac_apply f (ring@[lH;rl])) with e when Proofview.V82.catchable_exception e -> Proofview.tclZERO e end (***********************************************************************) let new_field_path = DirPath.make (List.map Id.of_string ["Field_tac";plugin_dir;"Coq"]) let field_ltac s = lazy(KerName.make (ModPath.MPfile new_field_path) DirPath.empty (Label.make s)) let _ = add_map "field" (map_with_eq [coq_cons,(function -1->Eval|2->Rec|_->Prot); coq_nil, (function -1->Eval|_ -> Prot); my_reference "IDphi", (function _->Eval); my_reference "gen_phiZ", (function _->Eval); (* display_linear: evaluate polynomials and coef operations, protect field operations and make recursive call on the var map *) my_reference "display_linear", (function -1|9|10|11|13|15|16->Eval|12|14->Rec|_->Prot); my_reference "display_pow_linear", (function -1|9|10|11|14|16|18|19->Eval|12|17->Rec|_->Prot); (* Pphi_dev: evaluate polynomial and coef operations, protect ring operations and make recursive call on the var map *) pol_cst "Pphi_dev", (function -1|8|9|10|12|14->Eval|11|13->Rec|_->Prot); pol_cst "Pphi_pow", (function -1|8|9|10|13|15|17->Eval|11|16->Rec|_->Prot); (* PEeval: evaluate polynomial, protect ring operations and make recursive call on the var map *) pol_cst "PEeval", (function -1|10|13->Eval|8|12->Rec|_->Prot); (* FEeval: evaluate polynomial, protect field operations and make recursive call on the var map *) my_reference "FEeval", (function -1|12|15->Eval|10|14->Rec|_->Prot)]);; let _ = add_map "field_cond" (map_without_eq [coq_cons,(function -1->Eval|2->Rec|_->Prot); coq_nil, (function -1->Eval|_ -> Prot); my_reference "IDphi", (function _->Eval); my_reference "gen_phiZ", (function _->Eval); (* PCond: evaluate denum list, protect ring operations and make recursive call on the var map *) my_reference "PCond", (function -1|11|14->Eval|9|13->Rec|_->Prot)]);; let _ = Redexpr.declare_reduction "simpl_field_expr" (protect_red "field") let afield_theory = my_reference "almost_field_theory" let field_theory = my_reference "field_theory" let sfield_theory = my_reference "semi_field_theory" let af_ar = my_reference"AF_AR" let f_r = my_reference"F_R" let sf_sr = my_reference"SF_SR" let dest_field env evd th_spec = let open Termops in let th_typ = Retyping.get_type_of env !evd th_spec in match EConstr.kind !evd th_typ with | App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|]) when is_global !evd (Lazy.force afield_theory) f -> let rth = plapp evd af_ar [|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in (None,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth) | App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|]) when is_global !evd (Lazy.force field_theory) f -> let rth = plapp evd f_r [|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in (Some false,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth) | App(f,[|r;zero;one;add;mul;div;inv;req|]) when is_global !evd (Lazy.force sfield_theory) f -> let rth = plapp evd sf_sr [|r;zero;one;add;mul;div;inv;req;th_spec|] in (Some true,r,zero,one,add,mul,None,None,div,inv,req,rth) | _ -> error "bad field structure" let field_from_carrier = Summary.ref Cmap.empty ~name:"field-tac-carrier-table" let field_from_name = Summary.ref Spmap.empty ~name:"field-tac-name-table" let field_for_carrier r = Cmap.find r !field_from_carrier let find_field_structure env sigma l = check_required_library (cdir@["Field_tac"]); match l with | t::cl' -> let ty = Retyping.get_type_of env sigma t in let check c = let ty' = Retyping.get_type_of env sigma c in if not (Reductionops.is_conv env sigma ty ty') then CErrors.user_err ~hdr:"field" (str"arguments of field_simplify do not have all the same type") in List.iter check cl'; (try field_for_carrier (EConstr.to_constr sigma ty) with Not_found -> CErrors.user_err ~hdr:"field" (str"cannot find a declared field structure over"++ spc()++str"\""++pr_econstr_env env sigma ty++str"\"")) | [] -> assert false let add_field_entry (sp,_kn) e = field_from_carrier := Cmap.add e.field_carrier e !field_from_carrier; field_from_name := Spmap.add sp e !field_from_name let subst_th (subst,th) = let c' = subst_mps subst th.field_carrier in let eq' = subst_mps subst th.field_req in let thm1' = subst_mps subst th.field_ok in let thm2' = subst_mps subst th.field_simpl_eq_ok in let thm3' = subst_mps subst th.field_simpl_ok in let thm4' = subst_mps subst th.field_simpl_eq_in_ok in let thm5' = subst_mps subst th.field_cond in let tac'= Tacsubst.subst_tactic subst th.field_cst_tac in let pow_tac' = Tacsubst.subst_tactic subst th.field_pow_tac in let pretac'= Tacsubst.subst_tactic subst th.field_pre_tac in let posttac'= Tacsubst.subst_tactic subst th.field_post_tac in if c' == th.field_carrier && eq' == th.field_req && thm1' == th.field_ok && thm2' == th.field_simpl_eq_ok && thm3' == th.field_simpl_ok && thm4' == th.field_simpl_eq_in_ok && thm5' == th.field_cond && tac' == th.field_cst_tac && pow_tac' == th.field_pow_tac && pretac' == th.field_pre_tac && posttac' == th.field_post_tac then th else { field_carrier = c'; field_req = eq'; field_cst_tac = tac'; field_pow_tac = pow_tac'; field_ok = thm1'; field_simpl_eq_ok = thm2'; field_simpl_ok = thm3'; field_simpl_eq_in_ok = thm4'; field_cond = thm5'; field_pre_tac = pretac'; field_post_tac = posttac' } let ftheory_to_obj : field_info -> obj = let cache_th (name,th) = add_field_entry name th in declare_object {(default_object "tactic-new-field-theory") with open_function = (fun i o -> if Int.equal i 1 then cache_th o); cache_function = cache_th; subst_function = subst_th; classify_function = (fun x -> Substitute x) } let field_equality evd r inv req = match EConstr.kind !evd req with | App (f, [| _ |]) when eq_constr_nounivs !evd f (Lazy.force coq_eq) -> let c = Universes.constr_of_global (Coqlib.build_coq_eq_data()).congr in let c = EConstr.of_constr c in mkApp(c,[|r;r;inv|]) | _ -> let _setoid = setoid_of_relation (Global.env ()) evd r req in let signature = [Some (r,Some req)],Some(r,Some req) in let inv_m, inv_m_lem = try Rewrite.default_morphism signature inv with Not_found -> error "field inverse should be declared as a morphism" in inv_m_lem let add_field_theory0 name fth eqth morphth cst_tac inj (pre,post) power sign odiv = let open Constr in check_required_library (cdir@["Field_tac"]); let (sigma,fth) = ic fth in let env = Global.env() in let evd = ref sigma in let (kind,r,zero,one,add,mul,sub,opp,div,inv,req,rth) = dest_field env evd fth in let (sth,ext) = build_setoid_params env evd r add mul opp req eqth in let eqth = Some(sth,ext) in let _ = add_theory0 name (!evd,rth) eqth morphth cst_tac (None,None) power sign odiv in let (pow_tac, pspec) = interp_power env evd power in let sspec = interp_sign env evd sign in let dspec = interp_div env evd odiv in let inv_m = field_equality evd r inv req in let rk = reflect_coeff morphth in let params,ctx = exec_tactic env !evd 9 (field_ltac"field_lemmas") [sth;ext;inv_m;fth;pspec;sspec;dspec;rk] in let lemma1 = params.(3) in let lemma2 = params.(4) in let lemma3 = params.(5) in let lemma4 = params.(6) in let cond_lemma = match inj with | Some thm -> mkApp(params.(8),[|EConstr.to_constr sigma thm|]) | None -> params.(7) in let lemma1 = decl_constant (Id.to_string name^"_field_lemma1") ctx lemma1 in let lemma2 = decl_constant (Id.to_string name^"_field_lemma2") ctx lemma2 in let lemma3 = decl_constant (Id.to_string name^"_field_lemma3") ctx lemma3 in let lemma4 = decl_constant (Id.to_string name^"_field_lemma4") ctx lemma4 in let cond_lemma = decl_constant (Id.to_string name^"_lemma5") ctx cond_lemma in let cst_tac = interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in let pretac = match pre with Some t -> Tacintern.glob_tactic t | _ -> TacId [] in let posttac = match post with Some t -> Tacintern.glob_tactic t | _ -> TacId [] in let r = EConstr.to_constr sigma r in let req = EConstr.to_constr sigma req in let _ = Lib.add_leaf name (ftheory_to_obj { field_carrier = r; field_req = req; field_cst_tac = cst_tac; field_pow_tac = pow_tac; field_ok = lemma1; field_simpl_eq_ok = lemma2; field_simpl_ok = lemma3; field_simpl_eq_in_ok = lemma4; field_cond = cond_lemma; field_pre_tac = pretac; field_post_tac = posttac }) in () let process_field_mods l = let kind = ref None in let set = ref None in let cst_tac = ref None in let pre = ref None in let post = ref None in let inj = ref None in let sign = ref None in let power = ref None in let div = ref None in List.iter(function Ring_mod(Ring_kind k) -> set_once "field kind" kind (ic_coeff_spec k) | Ring_mod(Const_tac t) -> set_once "tactic recognizing constants" cst_tac t | Ring_mod(Pre_tac t) -> set_once "preprocess tactic" pre t | Ring_mod(Post_tac t) -> set_once "postprocess tactic" post t | Ring_mod(Setoid(sth,ext)) -> set_once "setoid" set (ic_unsafe sth,ic_unsafe ext) | Ring_mod(Pow_spec(t,spec)) -> set_once "power" power (t,spec) | Ring_mod(Sign_spec t) -> set_once "sign" sign t | Ring_mod(Div_spec t) -> set_once "div" div t | Inject i -> set_once "infinite property" inj (ic_unsafe i)) l; let k = match !kind with Some k -> k | None -> Abstract in (k, !set, !inj, !cst_tac, !pre, !post, !power, !sign, !div) let add_field_theory id t mods = let (k,set,inj,cst_tac,pre,post,power,sign,div) = process_field_mods mods in add_field_theory0 id t set k cst_tac inj (pre,post) power sign div let ltac_field_structure e = let req = carg e.field_req in let cst_tac = tacarg e.field_cst_tac in let pow_tac = tacarg e.field_pow_tac in let field_ok = carg e.field_ok in let field_simpl_ok = carg e.field_simpl_ok in let field_simpl_eq_ok = carg e.field_simpl_eq_ok in let field_simpl_eq_in_ok = carg e.field_simpl_eq_in_ok in let cond_ok = carg e.field_cond in let pretac = tacarg (TacFun([Anonymous],e.field_pre_tac)) in let posttac = tacarg (TacFun([Anonymous],e.field_post_tac)) in [req;cst_tac;pow_tac;field_ok;field_simpl_ok;field_simpl_eq_ok; field_simpl_eq_in_ok;cond_ok;pretac;posttac] let field_lookup (f : Value.t) lH rl t = Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in let env = Proofview.Goal.env gl in try let rl = make_args_list sigma rl t in let evdref = ref sigma in let e = find_field_structure env sigma rl in let rl = Value.of_constr (make_term_list env evdref (EConstr.of_constr e.field_carrier) rl) in let lH = carg (make_hyp_list env evdref lH) in let field = ltac_field_structure e in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS !evdref) (ltac_apply f (field@[lH;rl])) with e when Proofview.V82.catchable_exception e -> Proofview.tclZERO e end