1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* *) (* Micromega: A reflexive tactic using the Positivstellensatz *) (* *) (* ** Toplevel definition of tactics ** *) (* *) (* - Modules ISet, M, Mc, Env, Cache, CacheZ *) (* *) (* Frédéric Besson (Irisa/Inria) 2006-20011 *) (* *) (************************************************************************) open Pp open Mutils open Goptions open Names open Constr (** * Debug flag *) let debug = false (** * Time function *) let time str f x = let t0 = (Unix.times()).Unix.tms_utime in let res = f x in let t1 = (Unix.times()).Unix.tms_utime in (*if debug then*) (Printf.printf "time %s %f\n" str (t1 -. t0) ; flush stdout); res (* Limit the proof search *) let max_depth = max_int (* Search limit for provers over Q R *) let lra_proof_depth = ref max_depth (* Search limit for provers over Z *) let lia_enum = ref true let lia_proof_depth = ref max_depth let get_lia_option () = (!lia_enum,!lia_proof_depth) let get_lra_option () = !lra_proof_depth let _ = let int_opt l vref = { optdepr = false; optname = List.fold_right (^) l ""; optkey = l ; optread = (fun () -> Some !vref); optwrite = (fun x -> vref := (match x with None -> max_depth | Some v -> v)) } in let lia_enum_opt = { optdepr = false; optname = "Lia Enum"; optkey = ["Lia";"Enum"]; optread = (fun () -> !lia_enum); optwrite = (fun x -> lia_enum := x) } in let _ = declare_int_option (int_opt ["Lra"; "Depth"] lra_proof_depth) in let _ = declare_int_option (int_opt ["Lia"; "Depth"] lia_proof_depth) in let _ = declare_bool_option lia_enum_opt in () (** * Initialize a tag type to the Tag module declaration (see Mutils). *) type tag = Tag.t (** * An atom is of the form: * pExpr1 \{<,>,=,<>,<=,>=\} pExpr2 * where pExpr1, pExpr2 are polynomial expressions (see Micromega). pExprs are * parametrized by 'cst, which is used as the type of constants. *) type 'cst atom = 'cst Micromega.formula (** * Micromega's encoding of formulas. * By order of appearance: boolean constants, variables, atoms, conjunctions, * disjunctions, negation, implication. *) type 'cst formula = | TT | FF | X of EConstr.constr | A of 'cst atom * tag * EConstr.constr | C of 'cst formula * 'cst formula | D of 'cst formula * 'cst formula | N of 'cst formula | I of 'cst formula * Names.Id.t option * 'cst formula (** * Formula pretty-printer. *) let rec pp_formula o f = match f with | TT -> output_string o "tt" | FF -> output_string o "ff" | X c -> output_string o "X " | A(_,t,_) -> Printf.fprintf o "A(%a)" Tag.pp t | C(f1,f2) -> Printf.fprintf o "C(%a,%a)" pp_formula f1 pp_formula f2 | D(f1,f2) -> Printf.fprintf o "D(%a,%a)" pp_formula f1 pp_formula f2 | I(f1,n,f2) -> Printf.fprintf o "I(%a%s,%a)" pp_formula f1 (match n with | Some id -> Names.Id.to_string id | None -> "") pp_formula f2 | N(f) -> Printf.fprintf o "N(%a)" pp_formula f let rec map_atoms fct f = match f with | TT -> TT | FF -> FF | X x -> X x | A (at,tg,cstr) -> A(fct at,tg,cstr) | C (f1,f2) -> C(map_atoms fct f1, map_atoms fct f2) | D (f1,f2) -> D(map_atoms fct f1, map_atoms fct f2) | N f -> N(map_atoms fct f) | I(f1,o,f2) -> I(map_atoms fct f1, o , map_atoms fct f2) let rec map_prop fct f = match f with | TT -> TT | FF -> FF | X x -> X (fct x) | A (at,tg,cstr) -> A(at,tg,cstr) | C (f1,f2) -> C(map_prop fct f1, map_prop fct f2) | D (f1,f2) -> D(map_prop fct f1, map_prop fct f2) | N f -> N(map_prop fct f) | I(f1,o,f2) -> I(map_prop fct f1, o , map_prop fct f2) (** * Collect the identifiers of a (string of) implications. Implication labels * are inherited from Coq/CoC's higher order dependent type constructor (Pi). *) let rec ids_of_formula f = match f with | I(f1,Some id,f2) -> id::(ids_of_formula f2) | _ -> [] (** * A clause is a list of (tagged) nFormulas. * nFormulas are normalized formulas, i.e., of the form: * cPol \{=,<>,>,>=\} 0 * with cPol compact polynomials (see the Pol inductive type in EnvRing.v). *) type 'cst clause = ('cst Micromega.nFormula * tag) list (** * A CNF is a list of clauses. *) type 'cst cnf = ('cst clause) list (** * True and False are empty cnfs and clauses. *) let tt : 'cst cnf = [] let ff : 'cst cnf = [ [] ] (** * A refinement of cnf with tags left out. This is an intermediary form * between the cnf tagged list representation ('cst cnf) used to solve psatz, * and the freeform formulas ('cst formula) that is retrieved from Coq. *) module Mc = Micromega type 'cst mc_cnf = ('cst Mc.nFormula) list list (** * From a freeform formula, build a cnf. * The parametric functions negate and normalize are theory-dependent, and * originate in micromega.ml (extracted, e.g. for rnegate, from RMicromega.v * and RingMicromega.v). *) type 'a tagged_option = T of tag list | S of 'a let cnf (negate: 'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf) (unsat : 'cst Mc.nFormula -> bool) (deduce : 'cst Mc.nFormula -> 'cst Mc.nFormula -> 'cst Mc.nFormula option) (f:'cst formula) = let negate a t = List.map (fun cl -> List.map (fun x -> (x,t)) cl) (negate a) in let normalise a t = List.map (fun cl -> List.map (fun x -> (x,t)) cl) (normalise a) in let and_cnf x y = x @ y in let rec add_term t0 = function | [] -> (match deduce (fst t0) (fst t0) with | Some u -> if unsat u then T [snd t0] else S (t0::[]) | None -> S (t0::[])) | t'::cl0 -> (match deduce (fst t0) (fst t') with | Some u -> if unsat u then T [snd t0 ; snd t'] else (match add_term t0 cl0 with | S cl' -> S (t'::cl') | T l -> T l) | None -> (match add_term t0 cl0 with | S cl' -> S (t'::cl') | T l -> T l)) in let rec or_clause cl1 cl2 = match cl1 with | [] -> S cl2 | t0::cl -> (match add_term t0 cl2 with | S cl' -> or_clause cl cl' | T l -> T l) in let or_clause_cnf t f = List.fold_right (fun e (acc,tg) -> match or_clause t e with | S cl -> (cl :: acc,tg) | T l -> (acc,tg@l)) f ([],[]) in let rec or_cnf f f' = match f with | [] -> tt,[] | e :: rst -> let (rst_f',t) = or_cnf rst f' in let (e_f', t') = or_clause_cnf e f' in (rst_f' @ e_f', t @ t') in let rec xcnf (polarity : bool) f = match f with | TT -> if polarity then (tt,[]) else (ff,[]) | FF -> if polarity then (ff,[]) else (tt,[]) | X p -> if polarity then (ff,[]) else (ff,[]) | A(x,t,_) -> ((if polarity then normalise x t else negate x t),[]) | N(e) -> xcnf (not polarity) e | C(e1,e2) -> let e1,t1 = xcnf polarity e1 in let e2,t2 = xcnf polarity e2 in if polarity then and_cnf e1 e2, t1 @ t2 else let f',t' = or_cnf e1 e2 in (f', t1 @ t2 @ t') | D(e1,e2) -> let e1,t1 = xcnf polarity e1 in let e2,t2 = xcnf polarity e2 in if polarity then let f',t' = or_cnf e1 e2 in (f', t1 @ t2 @ t') else and_cnf e1 e2, t1 @ t2 | I(e1,_,e2) -> let e1 , t1 = (xcnf (not polarity) e1) in let e2 , t2 = (xcnf polarity e2) in if polarity then let f',t' = or_cnf e1 e2 in (f', t1 @ t2 @ t') else and_cnf e1 e2, t1 @ t2 in xcnf true f (** * MODULE: Ordered set of integers. *) module ISet = Set.Make(Int) module IMap = Map.Make(Int) (** * Given a set of integers s=\{i0,...,iN\} and a list m, return the list of * elements of m that are at position i0,...,iN. *) let selecti s m = let rec xselecti i m = match m with | [] -> [] | e::m -> if ISet.mem i s then e::(xselecti (i+1) m) else xselecti (i+1) m in xselecti 0 m (** * MODULE: Mapping of the Coq data-strustures into Caml and Caml extracted * code. This includes initializing Caml variables based on Coq terms, parsing * various Coq expressions into Caml, and dumping Caml expressions into Coq. * * Opened here and in csdpcert.ml. *) module M = struct (** * Location of the Coq libraries. *) let logic_dir = ["Coq";"Logic";"Decidable"] let mic_modules = [ ["Coq";"Lists";"List"]; ["ZMicromega"]; ["Tauto"]; ["RingMicromega"]; ["EnvRing"]; ["Coq"; "micromega"; "ZMicromega"]; ["Coq"; "micromega"; "RMicromega"]; ["Coq" ; "micromega" ; "Tauto"]; ["Coq" ; "micromega" ; "RingMicromega"]; ["Coq" ; "micromega" ; "EnvRing"]; ["Coq";"QArith"; "QArith_base"]; ["Coq";"Reals" ; "Rdefinitions"]; ["Coq";"Reals" ; "Rpow_def"]; ["LRing_normalise"]] let coq_modules = Coqlib.(init_modules @ [logic_dir] @ arith_modules @ zarith_base_modules @ mic_modules) let bin_module = [["Coq";"Numbers";"BinNums"]] let r_modules = [["Coq";"Reals" ; "Rdefinitions"]; ["Coq";"Reals" ; "Rpow_def"] ; ["Coq";"Reals" ; "Raxioms"] ; ["Coq";"QArith"; "Qreals"] ; ] let z_modules = [["Coq";"ZArith";"BinInt"]] (** * Initialization : a large amount of Caml symbols are derived from * ZMicromega.v *) let gen_constant_in_modules s m n = EConstr.of_constr (Universes.constr_of_global @@ Coqlib.gen_reference_in_modules s m n) let init_constant = gen_constant_in_modules "ZMicromega" Coqlib.init_modules let constant = gen_constant_in_modules "ZMicromega" coq_modules let bin_constant = gen_constant_in_modules "ZMicromega" bin_module let r_constant = gen_constant_in_modules "ZMicromega" r_modules let z_constant = gen_constant_in_modules "ZMicromega" z_modules let m_constant = gen_constant_in_modules "ZMicromega" mic_modules let coq_and = lazy (init_constant "and") let coq_or = lazy (init_constant "or") let coq_not = lazy (init_constant "not") let coq_iff = lazy (init_constant "iff") let coq_True = lazy (init_constant "True") let coq_False = lazy (init_constant "False") let coq_cons = lazy (constant "cons") let coq_nil = lazy (constant "nil") let coq_list = lazy (constant "list") let coq_O = lazy (init_constant "O") let coq_S = lazy (init_constant "S") let coq_nat = lazy (init_constant "nat") let coq_N0 = lazy (bin_constant "N0") let coq_Npos = lazy (bin_constant "Npos") let coq_pair = lazy (init_constant "pair") let coq_None = lazy (init_constant "None") let coq_option = lazy (init_constant "option") let coq_positive = lazy (bin_constant "positive") let coq_xH = lazy (bin_constant "xH") let coq_xO = lazy (bin_constant "xO") let coq_xI = lazy (bin_constant "xI") let coq_Z = lazy (bin_constant "Z") let coq_ZERO = lazy (bin_constant "Z0") let coq_POS = lazy (bin_constant "Zpos") let coq_NEG = lazy (bin_constant "Zneg") let coq_Q = lazy (constant "Q") let coq_R = lazy (constant "R") let coq_Build_Witness = lazy (constant "Build_Witness") let coq_Qmake = lazy (constant "Qmake") let coq_Rcst = lazy (constant "Rcst") let coq_C0 = lazy (m_constant "C0") let coq_C1 = lazy (m_constant "C1") let coq_CQ = lazy (m_constant "CQ") let coq_CZ = lazy (m_constant "CZ") let coq_CPlus = lazy (m_constant "CPlus") let coq_CMinus = lazy (m_constant "CMinus") let coq_CMult = lazy (m_constant "CMult") let coq_CInv = lazy (m_constant "CInv") let coq_COpp = lazy (m_constant "COpp") let coq_R0 = lazy (constant "R0") let coq_R1 = lazy (constant "R1") let coq_proofTerm = lazy (constant "ZArithProof") let coq_doneProof = lazy (constant "DoneProof") let coq_ratProof = lazy (constant "RatProof") let coq_cutProof = lazy (constant "CutProof") let coq_enumProof = lazy (constant "EnumProof") let coq_Zgt = lazy (z_constant "Z.gt") let coq_Zge = lazy (z_constant "Z.ge") let coq_Zle = lazy (z_constant "Z.le") let coq_Zlt = lazy (z_constant "Z.lt") let coq_Eq = lazy (init_constant "eq") let coq_Zplus = lazy (z_constant "Z.add") let coq_Zminus = lazy (z_constant "Z.sub") let coq_Zopp = lazy (z_constant "Z.opp") let coq_Zmult = lazy (z_constant "Z.mul") let coq_Zpower = lazy (z_constant "Z.pow") let coq_Qgt = lazy (constant "Qgt") let coq_Qge = lazy (constant "Qge") let coq_Qle = lazy (constant "Qle") let coq_Qlt = lazy (constant "Qlt") let coq_Qeq = lazy (constant "Qeq") let coq_Qplus = lazy (constant "Qplus") let coq_Qminus = lazy (constant "Qminus") let coq_Qopp = lazy (constant "Qopp") let coq_Qmult = lazy (constant "Qmult") let coq_Qpower = lazy (constant "Qpower") let coq_Rgt = lazy (r_constant "Rgt") let coq_Rge = lazy (r_constant "Rge") let coq_Rle = lazy (r_constant "Rle") let coq_Rlt = lazy (r_constant "Rlt") let coq_Rplus = lazy (r_constant "Rplus") let coq_Rminus = lazy (r_constant "Rminus") let coq_Ropp = lazy (r_constant "Ropp") let coq_Rmult = lazy (r_constant "Rmult") let coq_Rdiv = lazy (r_constant "Rdiv") let coq_Rinv = lazy (r_constant "Rinv") let coq_Rpower = lazy (r_constant "pow") let coq_IZR = lazy (r_constant "IZR") let coq_IQR = lazy (r_constant "Q2R") let coq_PEX = lazy (constant "PEX" ) let coq_PEc = lazy (constant"PEc") let coq_PEadd = lazy (constant "PEadd") let coq_PEopp = lazy (constant "PEopp") let coq_PEmul = lazy (constant "PEmul") let coq_PEsub = lazy (constant "PEsub") let coq_PEpow = lazy (constant "PEpow") let coq_PX = lazy (constant "PX" ) let coq_Pc = lazy (constant"Pc") let coq_Pinj = lazy (constant "Pinj") let coq_OpEq = lazy (constant "OpEq") let coq_OpNEq = lazy (constant "OpNEq") let coq_OpLe = lazy (constant "OpLe") let coq_OpLt = lazy (constant "OpLt") let coq_OpGe = lazy (constant "OpGe") let coq_OpGt = lazy (constant "OpGt") let coq_PsatzIn = lazy (constant "PsatzIn") let coq_PsatzSquare = lazy (constant "PsatzSquare") let coq_PsatzMulE = lazy (constant "PsatzMulE") let coq_PsatzMultC = lazy (constant "PsatzMulC") let coq_PsatzAdd = lazy (constant "PsatzAdd") let coq_PsatzC = lazy (constant "PsatzC") let coq_PsatzZ = lazy (constant "PsatzZ") let coq_coneMember = lazy (constant "coneMember") let coq_make_impl = lazy (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_impl") let coq_make_conj = lazy (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_conj") let coq_TT = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "TT") let coq_FF = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "FF") let coq_And = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "Cj") let coq_Or = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "D") let coq_Neg = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "N") let coq_Atom = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "A") let coq_X = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "X") let coq_Impl = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "I") let coq_Formula = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "BFormula") (** * Initialization : a few Caml symbols are derived from other libraries; * QMicromega, ZArithRing, RingMicromega. *) let coq_QWitness = lazy (gen_constant_in_modules "QMicromega" [["Coq"; "micromega"; "QMicromega"]] "QWitness") let coq_ZWitness = lazy (gen_constant_in_modules "QMicromega" [["Coq"; "micromega"; "ZMicromega"]] "ZWitness") let coq_N_of_Z = lazy (gen_constant_in_modules "ZArithRing" [["Coq";"setoid_ring";"ZArithRing"]] "N_of_Z") let coq_Build = lazy (gen_constant_in_modules "RingMicromega" [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] "Build_Formula") let coq_Cstr = lazy (gen_constant_in_modules "RingMicromega" [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] "Formula") (** * Parsing and dumping : transformation functions between Caml and Coq * data-structures. * * dump_* functions go from Micromega to Coq terms * parse_* functions go from Coq to Micromega terms * pp_* functions pretty-print Coq terms. *) (* Error datastructures *) type parse_error = | Ukn | BadStr of string | BadNum of int | BadTerm of constr | Msg of string | Goal of (constr list ) * constr * parse_error let string_of_error = function | Ukn -> "ukn" | BadStr s -> s | BadNum i -> string_of_int i | BadTerm _ -> "BadTerm" | Msg s -> s | Goal _ -> "Goal" exception ParseError (* A simple but useful getter function *) let get_left_construct sigma term = match EConstr.kind sigma term with | Term.Construct((_,i),_) -> (i,[| |]) | Term.App(l,rst) -> (match EConstr.kind sigma l with | Term.Construct((_,i),_) -> (i,rst) | _ -> raise ParseError ) | _ -> raise ParseError (* Access the Micromega module *) (* parse/dump/print from numbers up to expressions and formulas *) let rec parse_nat sigma term = let (i,c) = get_left_construct sigma term in match i with | 1 -> Mc.O | 2 -> Mc.S (parse_nat sigma (c.(0))) | i -> raise ParseError let pp_nat o n = Printf.fprintf o "%i" (CoqToCaml.nat n) let rec dump_nat x = match x with | Mc.O -> Lazy.force coq_O | Mc.S p -> EConstr.mkApp(Lazy.force coq_S,[| dump_nat p |]) let rec parse_positive sigma term = let (i,c) = get_left_construct sigma term in match i with | 1 -> Mc.XI (parse_positive sigma c.(0)) | 2 -> Mc.XO (parse_positive sigma c.(0)) | 3 -> Mc.XH | i -> raise ParseError let rec dump_positive x = match x with | Mc.XH -> Lazy.force coq_xH | Mc.XO p -> EConstr.mkApp(Lazy.force coq_xO,[| dump_positive p |]) | Mc.XI p -> EConstr.mkApp(Lazy.force coq_xI,[| dump_positive p |]) let pp_positive o x = Printf.fprintf o "%i" (CoqToCaml.positive x) let dump_n x = match x with | Mc.N0 -> Lazy.force coq_N0 | Mc.Npos p -> EConstr.mkApp(Lazy.force coq_Npos,[| dump_positive p|]) let rec dump_index x = match x with | Mc.XH -> Lazy.force coq_xH | Mc.XO p -> EConstr.mkApp(Lazy.force coq_xO,[| dump_index p |]) | Mc.XI p -> EConstr.mkApp(Lazy.force coq_xI,[| dump_index p |]) let pp_index o x = Printf.fprintf o "%i" (CoqToCaml.index x) let pp_n o x = output_string o (string_of_int (CoqToCaml.n x)) let dump_pair t1 t2 dump_t1 dump_t2 (x,y) = EConstr.mkApp(Lazy.force coq_pair,[| t1 ; t2 ; dump_t1 x ; dump_t2 y|]) let parse_z sigma term = let (i,c) = get_left_construct sigma term in match i with | 1 -> Mc.Z0 | 2 -> Mc.Zpos (parse_positive sigma c.(0)) | 3 -> Mc.Zneg (parse_positive sigma c.(0)) | i -> raise ParseError let dump_z x = match x with | Mc.Z0 ->Lazy.force coq_ZERO | Mc.Zpos p -> EConstr.mkApp(Lazy.force coq_POS,[| dump_positive p|]) | Mc.Zneg p -> EConstr.mkApp(Lazy.force coq_NEG,[| dump_positive p|]) let pp_z o x = Printf.fprintf o "%s" (Big_int.string_of_big_int (CoqToCaml.z_big_int x)) let dump_num bd1 = EConstr.mkApp(Lazy.force coq_Qmake, [|dump_z (CamlToCoq.bigint (numerator bd1)) ; dump_positive (CamlToCoq.positive_big_int (denominator bd1)) |]) let dump_q q = EConstr.mkApp(Lazy.force coq_Qmake, [| dump_z q.Micromega.qnum ; dump_positive q.Micromega.qden|]) let parse_q sigma term = match EConstr.kind sigma term with | Term.App(c, args) -> if EConstr.eq_constr sigma c (Lazy.force coq_Qmake) then {Mc.qnum = parse_z sigma args.(0) ; Mc.qden = parse_positive sigma args.(1) } else raise ParseError | _ -> raise ParseError let rec pp_Rcst o cst = match cst with | Mc.C0 -> output_string o "C0" | Mc.C1 -> output_string o "C1" | Mc.CQ q -> output_string o "CQ _" | Mc.CZ z -> pp_z o z | Mc.CPlus(x,y) -> Printf.fprintf o "(%a + %a)" pp_Rcst x pp_Rcst y | Mc.CMinus(x,y) -> Printf.fprintf o "(%a - %a)" pp_Rcst x pp_Rcst y | Mc.CMult(x,y) -> Printf.fprintf o "(%a * %a)" pp_Rcst x pp_Rcst y | Mc.CInv t -> Printf.fprintf o "(/ %a)" pp_Rcst t | Mc.COpp t -> Printf.fprintf o "(- %a)" pp_Rcst t let rec dump_Rcst cst = match cst with | Mc.C0 -> Lazy.force coq_C0 | Mc.C1 -> Lazy.force coq_C1 | Mc.CQ q -> EConstr.mkApp(Lazy.force coq_CQ, [| dump_q q |]) | Mc.CZ z -> EConstr.mkApp(Lazy.force coq_CZ, [| dump_z z |]) | Mc.CPlus(x,y) -> EConstr.mkApp(Lazy.force coq_CPlus, [| dump_Rcst x ; dump_Rcst y |]) | Mc.CMinus(x,y) -> EConstr.mkApp(Lazy.force coq_CMinus, [| dump_Rcst x ; dump_Rcst y |]) | Mc.CMult(x,y) -> EConstr.mkApp(Lazy.force coq_CMult, [| dump_Rcst x ; dump_Rcst y |]) | Mc.CInv t -> EConstr.mkApp(Lazy.force coq_CInv, [| dump_Rcst t |]) | Mc.COpp t -> EConstr.mkApp(Lazy.force coq_COpp, [| dump_Rcst t |]) let rec parse_Rcst sigma term = let (i,c) = get_left_construct sigma term in match i with | 1 -> Mc.C0 | 2 -> Mc.C1 | 3 -> Mc.CQ (parse_q sigma c.(0)) | 4 -> Mc.CPlus(parse_Rcst sigma c.(0), parse_Rcst sigma c.(1)) | 5 -> Mc.CMinus(parse_Rcst sigma c.(0), parse_Rcst sigma c.(1)) | 6 -> Mc.CMult(parse_Rcst sigma c.(0), parse_Rcst sigma c.(1)) | 7 -> Mc.CInv(parse_Rcst sigma c.(0)) | 8 -> Mc.COpp(parse_Rcst sigma c.(0)) | _ -> raise ParseError let rec parse_list sigma parse_elt term = let (i,c) = get_left_construct sigma term in match i with | 1 -> [] | 2 -> parse_elt sigma c.(1) :: parse_list sigma parse_elt c.(2) | i -> raise ParseError let rec dump_list typ dump_elt l = match l with | [] -> EConstr.mkApp(Lazy.force coq_nil,[| typ |]) | e :: l -> EConstr.mkApp(Lazy.force coq_cons, [| typ; dump_elt e;dump_list typ dump_elt l|]) let pp_list op cl elt o l = let rec _pp o l = match l with | [] -> () | [e] -> Printf.fprintf o "%a" elt e | e::l -> Printf.fprintf o "%a ,%a" elt e _pp l in Printf.fprintf o "%s%a%s" op _pp l cl let pp_var = pp_positive let dump_var = dump_positive let pp_expr pp_z o e = let rec pp_expr o e = match e with | Mc.PEX n -> Printf.fprintf o "V %a" pp_var n | Mc.PEc z -> pp_z o z | Mc.PEadd(e1,e2) -> Printf.fprintf o "(%a)+(%a)" pp_expr e1 pp_expr e2 | Mc.PEmul(e1,e2) -> Printf.fprintf o "%a*(%a)" pp_expr e1 pp_expr e2 | Mc.PEopp e -> Printf.fprintf o "-(%a)" pp_expr e | Mc.PEsub(e1,e2) -> Printf.fprintf o "(%a)-(%a)" pp_expr e1 pp_expr e2 | Mc.PEpow(e,n) -> Printf.fprintf o "(%a)^(%a)" pp_expr e pp_n n in pp_expr o e let dump_expr typ dump_z e = let rec dump_expr e = match e with | Mc.PEX n -> EConstr.mkApp(Lazy.force coq_PEX,[| typ; dump_var n |]) | Mc.PEc z -> EConstr.mkApp(Lazy.force coq_PEc,[| typ ; dump_z z |]) | Mc.PEadd(e1,e2) -> EConstr.mkApp(Lazy.force coq_PEadd, [| typ; dump_expr e1;dump_expr e2|]) | Mc.PEsub(e1,e2) -> EConstr.mkApp(Lazy.force coq_PEsub, [| typ; dump_expr e1;dump_expr e2|]) | Mc.PEopp e -> EConstr.mkApp(Lazy.force coq_PEopp, [| typ; dump_expr e|]) | Mc.PEmul(e1,e2) -> EConstr.mkApp(Lazy.force coq_PEmul, [| typ; dump_expr e1;dump_expr e2|]) | Mc.PEpow(e,n) -> EConstr.mkApp(Lazy.force coq_PEpow, [| typ; dump_expr e; dump_n n|]) in dump_expr e let dump_pol typ dump_c e = let rec dump_pol e = match e with | Mc.Pc n -> EConstr.mkApp(Lazy.force coq_Pc, [|typ ; dump_c n|]) | Mc.Pinj(p,pol) -> EConstr.mkApp(Lazy.force coq_Pinj , [| typ ; dump_positive p ; dump_pol pol|]) | Mc.PX(pol1,p,pol2) -> EConstr.mkApp(Lazy.force coq_PX, [| typ ; dump_pol pol1 ; dump_positive p ; dump_pol pol2|]) in dump_pol e let pp_pol pp_c o e = let rec pp_pol o e = match e with | Mc.Pc n -> Printf.fprintf o "Pc %a" pp_c n | Mc.Pinj(p,pol) -> Printf.fprintf o "Pinj(%a,%a)" pp_positive p pp_pol pol | Mc.PX(pol1,p,pol2) -> Printf.fprintf o "PX(%a,%a,%a)" pp_pol pol1 pp_positive p pp_pol pol2 in pp_pol o e let pp_cnf pp_c o f = let pp_clause o l = List.iter (fun ((p,_),t) -> Printf.fprintf o "(%a @%a)" (pp_pol pp_c) p Tag.pp t) l in List.iter (fun l -> Printf.fprintf o "[%a]" pp_clause l) f let dump_psatz typ dump_z e = let z = Lazy.force typ in let rec dump_cone e = match e with | Mc.PsatzIn n -> EConstr.mkApp(Lazy.force coq_PsatzIn,[| z; dump_nat n |]) | Mc.PsatzMulC(e,c) -> EConstr.mkApp(Lazy.force coq_PsatzMultC, [| z; dump_pol z dump_z e ; dump_cone c |]) | Mc.PsatzSquare e -> EConstr.mkApp(Lazy.force coq_PsatzSquare, [| z;dump_pol z dump_z e|]) | Mc.PsatzAdd(e1,e2) -> EConstr.mkApp(Lazy.force coq_PsatzAdd, [| z; dump_cone e1; dump_cone e2|]) | Mc.PsatzMulE(e1,e2) -> EConstr.mkApp(Lazy.force coq_PsatzMulE, [| z; dump_cone e1; dump_cone e2|]) | Mc.PsatzC p -> EConstr.mkApp(Lazy.force coq_PsatzC,[| z; dump_z p|]) | Mc.PsatzZ -> EConstr.mkApp(Lazy.force coq_PsatzZ,[| z|]) in dump_cone e let pp_psatz pp_z o e = let rec pp_cone o e = match e with | Mc.PsatzIn n -> Printf.fprintf o "(In %a)%%nat" pp_nat n | Mc.PsatzMulC(e,c) -> Printf.fprintf o "( %a [*] %a)" (pp_pol pp_z) e pp_cone c | Mc.PsatzSquare e -> Printf.fprintf o "(%a^2)" (pp_pol pp_z) e | Mc.PsatzAdd(e1,e2) -> Printf.fprintf o "(%a [+] %a)" pp_cone e1 pp_cone e2 | Mc.PsatzMulE(e1,e2) -> Printf.fprintf o "(%a [*] %a)" pp_cone e1 pp_cone e2 | Mc.PsatzC p -> Printf.fprintf o "(%a)%%positive" pp_z p | Mc.PsatzZ -> Printf.fprintf o "0" in pp_cone o e let dump_op = function | Mc.OpEq-> Lazy.force coq_OpEq | Mc.OpNEq-> Lazy.force coq_OpNEq | Mc.OpLe -> Lazy.force coq_OpLe | Mc.OpGe -> Lazy.force coq_OpGe | Mc.OpGt-> Lazy.force coq_OpGt | Mc.OpLt-> Lazy.force coq_OpLt let pp_op o e= match e with | Mc.OpEq-> Printf.fprintf o "=" | Mc.OpNEq-> Printf.fprintf o "<>" | Mc.OpLe -> Printf.fprintf o "=<" | Mc.OpGe -> Printf.fprintf o ">=" | Mc.OpGt-> Printf.fprintf o ">" | Mc.OpLt-> Printf.fprintf o "<" let pp_cstr pp_z o {Mc.flhs = l ; Mc.fop = op ; Mc.frhs = r } = Printf.fprintf o"(%a %a %a)" (pp_expr pp_z) l pp_op op (pp_expr pp_z) r let dump_cstr typ dump_constant {Mc.flhs = e1 ; Mc.fop = o ; Mc.frhs = e2} = EConstr.mkApp(Lazy.force coq_Build, [| typ; dump_expr typ dump_constant e1 ; dump_op o ; dump_expr typ dump_constant e2|]) let assoc_const sigma x l = try snd (List.find (fun (x',y) -> EConstr.eq_constr sigma x (Lazy.force x')) l) with Not_found -> raise ParseError let zop_table = [ coq_Zgt, Mc.OpGt ; coq_Zge, Mc.OpGe ; coq_Zlt, Mc.OpLt ; coq_Zle, Mc.OpLe ] let rop_table = [ coq_Rgt, Mc.OpGt ; coq_Rge, Mc.OpGe ; coq_Rlt, Mc.OpLt ; coq_Rle, Mc.OpLe ] let qop_table = [ coq_Qlt, Mc.OpLt ; coq_Qle, Mc.OpLe ; coq_Qeq, Mc.OpEq ] type gl = { env : Environ.env; sigma : Evd.evar_map } let is_convertible gl t1 t2 = Reductionops.is_conv gl.env gl.sigma t1 t2 let parse_zop gl (op,args) = let sigma = gl.sigma in match EConstr.kind sigma op with | Term.Const (x,_) -> (assoc_const sigma op zop_table, args.(0) , args.(1)) | Term.Ind((n,0),_) -> if EConstr.eq_constr sigma op (Lazy.force coq_Eq) && is_convertible gl args.(0) (Lazy.force coq_Z) then (Mc.OpEq, args.(1), args.(2)) else raise ParseError | _ -> failwith "parse_zop" let parse_rop gl (op,args) = let sigma = gl.sigma in match EConstr.kind sigma op with | Term.Const (x,_) -> (assoc_const sigma op rop_table, args.(0) , args.(1)) | Term.Ind((n,0),_) -> if EConstr.eq_constr sigma op (Lazy.force coq_Eq) && is_convertible gl args.(0) (Lazy.force coq_R) then (Mc.OpEq, args.(1), args.(2)) else raise ParseError | _ -> failwith "parse_zop" let parse_qop gl (op,args) = (assoc_const gl.sigma op qop_table, args.(0) , args.(1)) let is_constant sigma t = (* This is an approx *) match EConstr.kind sigma t with | Term.Construct(i,_) -> true | _ -> false type 'a op = | Binop of ('a Mc.pExpr -> 'a Mc.pExpr -> 'a Mc.pExpr) | Opp | Power | Ukn of string let assoc_ops sigma x l = try snd (List.find (fun (x',y) -> EConstr.eq_constr sigma x (Lazy.force x')) l) with Not_found -> Ukn "Oups" (** * MODULE: Env is for environment. *) module Env = struct type t = EConstr.constr list let compute_rank_add env sigma v = let rec _add env n v = match env with | [] -> ([v],n) | e::l -> if EConstr.eq_constr sigma e v then (env,n) else let (env,n) = _add l ( n+1) v in (e::env,n) in let (env, n) = _add env 1 v in (env, CamlToCoq.positive n) let get_rank env sigma v = let rec _get_rank env n = match env with | [] -> raise (Invalid_argument "get_rank") | e::l -> if EConstr.eq_constr sigma e v then n else _get_rank l (n+1) in _get_rank env 1 let empty = [] let elements env = env end (* MODULE END: Env *) (** * This is the big generic function for expression parsers. *) let parse_expr sigma parse_constant parse_exp ops_spec env term = if debug then ( let _, env = Pfedit.get_current_context () in Feedback.msg_debug (Pp.str "parse_expr: " ++ Printer.pr_leconstr_env env sigma term)); (* let constant_or_variable env term = try ( Mc.PEc (parse_constant term) , env) with ParseError -> let (env,n) = Env.compute_rank_add env term in (Mc.PEX n , env) in *) let parse_variable env term = let (env,n) = Env.compute_rank_add env sigma term in (Mc.PEX n , env) in let rec parse_expr env term = let combine env op (t1,t2) = let (expr1,env) = parse_expr env t1 in let (expr2,env) = parse_expr env t2 in (op expr1 expr2,env) in try (Mc.PEc (parse_constant term) , env) with ParseError -> match EConstr.kind sigma term with | Term.App(t,args) -> ( match EConstr.kind sigma t with | Term.Const c -> ( match assoc_ops sigma t ops_spec with | Binop f -> combine env f (args.(0),args.(1)) | Opp -> let (expr,env) = parse_expr env args.(0) in (Mc.PEopp expr, env) | Power -> begin try let (expr,env) = parse_expr env args.(0) in let power = (parse_exp expr args.(1)) in (power , env) with e when CErrors.noncritical e -> (* if the exponent is a variable *) let (env,n) = Env.compute_rank_add env sigma term in (Mc.PEX n, env) end | Ukn s -> if debug then (Printf.printf "unknown op: %s\n" s; flush stdout;); let (env,n) = Env.compute_rank_add env sigma term in (Mc.PEX n, env) ) | _ -> parse_variable env term ) | _ -> parse_variable env term in parse_expr env term let zop_spec = [ coq_Zplus , Binop (fun x y -> Mc.PEadd(x,y)) ; coq_Zminus , Binop (fun x y -> Mc.PEsub(x,y)) ; coq_Zmult , Binop (fun x y -> Mc.PEmul (x,y)) ; coq_Zopp , Opp ; coq_Zpower , Power] let qop_spec = [ coq_Qplus , Binop (fun x y -> Mc.PEadd(x,y)) ; coq_Qminus , Binop (fun x y -> Mc.PEsub(x,y)) ; coq_Qmult , Binop (fun x y -> Mc.PEmul (x,y)) ; coq_Qopp , Opp ; coq_Qpower , Power] let rop_spec = [ coq_Rplus , Binop (fun x y -> Mc.PEadd(x,y)) ; coq_Rminus , Binop (fun x y -> Mc.PEsub(x,y)) ; coq_Rmult , Binop (fun x y -> Mc.PEmul (x,y)) ; coq_Ropp , Opp ; coq_Rpower , Power] let zconstant = parse_z let qconstant = parse_q let rconst_assoc = [ coq_Rplus , (fun x y -> Mc.CPlus(x,y)) ; coq_Rminus , (fun x y -> Mc.CMinus(x,y)) ; coq_Rmult , (fun x y -> Mc.CMult(x,y)) ; (* coq_Rdiv , (fun x y -> Mc.CMult(x,Mc.CInv y)) ;*) ] let rec rconstant sigma term = match EConstr.kind sigma term with | Term.Const x -> if EConstr.eq_constr sigma term (Lazy.force coq_R0) then Mc.C0 else if EConstr.eq_constr sigma term (Lazy.force coq_R1) then Mc.C1 else raise ParseError | Term.App(op,args) -> begin try (* the evaluation order is important in the following *) let f = assoc_const sigma op rconst_assoc in let a = rconstant sigma args.(0) in let b = rconstant sigma args.(1) in f a b with ParseError -> match op with | op when EConstr.eq_constr sigma op (Lazy.force coq_Rinv) -> let arg = rconstant sigma args.(0) in if Mc.qeq_bool (Mc.q_of_Rcst arg) {Mc.qnum = Mc.Z0 ; Mc.qden = Mc.XH} then raise ParseError (* This is a division by zero -- no semantics *) else Mc.CInv(arg) | op when EConstr.eq_constr sigma op (Lazy.force coq_IQR) -> Mc.CQ (parse_q sigma args.(0)) | op when EConstr.eq_constr sigma op (Lazy.force coq_IZR) -> Mc.CZ (parse_z sigma args.(0)) | _ -> raise ParseError end | _ -> raise ParseError let rconstant sigma term = let _, env = Pfedit.get_current_context () in if debug then Feedback.msg_debug (Pp.str "rconstant: " ++ Printer.pr_leconstr_env env sigma term ++ fnl ()); let res = rconstant sigma term in if debug then (Printf.printf "rconstant -> %a\n" pp_Rcst res ; flush stdout) ; res let parse_zexpr sigma = parse_expr sigma (zconstant sigma) (fun expr x -> let exp = (parse_z sigma x) in match exp with | Mc.Zneg _ -> Mc.PEc Mc.Z0 | _ -> Mc.PEpow(expr, Mc.Z.to_N exp)) zop_spec let parse_qexpr sigma = parse_expr sigma (qconstant sigma) (fun expr x -> let exp = parse_z sigma x in match exp with | Mc.Zneg _ -> begin match expr with | Mc.PEc q -> Mc.PEc (Mc.qpower q exp) | _ -> print_string "parse_qexpr parse error" ; flush stdout ; raise ParseError end | _ -> let exp = Mc.Z.to_N exp in Mc.PEpow(expr,exp)) qop_spec let parse_rexpr sigma = parse_expr sigma (rconstant sigma) (fun expr x -> let exp = Mc.N.of_nat (parse_nat sigma x) in Mc.PEpow(expr,exp)) rop_spec let parse_arith parse_op parse_expr env cstr gl = let sigma = gl.sigma in if debug then Feedback.msg_debug (Pp.str "parse_arith: " ++ Printer.pr_leconstr_env gl.env sigma cstr ++ fnl ()); match EConstr.kind sigma cstr with | Term.App(op,args) -> let (op,lhs,rhs) = parse_op gl (op,args) in let (e1,env) = parse_expr sigma env lhs in let (e2,env) = parse_expr sigma env rhs in ({Mc.flhs = e1; Mc.fop = op;Mc.frhs = e2},env) | _ -> failwith "error : parse_arith(2)" let parse_zarith = parse_arith parse_zop parse_zexpr let parse_qarith = parse_arith parse_qop parse_qexpr let parse_rarith = parse_arith parse_rop parse_rexpr (* generic parsing of arithmetic expressions *) let rec f2f = function | TT -> Mc.TT | FF -> Mc.FF | X _ -> Mc.X | A (x,_,_) -> Mc.A x | C (a,b) -> Mc.Cj(f2f a,f2f b) | D (a,b) -> Mc.D(f2f a,f2f b) | N (a) -> Mc.N(f2f a) | I(a,_,b) -> Mc.I(f2f a,f2f b) let mkC f1 f2 = C(f1,f2) let mkD f1 f2 = D(f1,f2) let mkIff f1 f2 = C(I(f1,None,f2),I(f2,None,f1)) let mkI f1 f2 = I(f1,None,f2) let mkformula_binary g term f1 f2 = match f1 , f2 with | X _ , X _ -> X(term) | _ -> g f1 f2 (** * This is the big generic function for formula parsers. *) let parse_formula gl parse_atom env tg term = let sigma = gl.sigma in let parse_atom env tg t = try let (at,env) = parse_atom env t gl in (A(at,tg,t), env,Tag.next tg) with e when CErrors.noncritical e -> (X(t),env,tg) in let is_prop term = let sort = Retyping.get_sort_of gl.env gl.sigma term in Sorts.is_prop sort in let rec xparse_formula env tg term = match EConstr.kind sigma term with | Term.App(l,rst) -> (match rst with | [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_and) -> let f,env,tg = xparse_formula env tg a in let g,env, tg = xparse_formula env tg b in mkformula_binary mkC term f g,env,tg | [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_or) -> let f,env,tg = xparse_formula env tg a in let g,env,tg = xparse_formula env tg b in mkformula_binary mkD term f g,env,tg | [|a|] when EConstr.eq_constr sigma l (Lazy.force coq_not) -> let (f,env,tg) = xparse_formula env tg a in (N(f), env,tg) | [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_iff) -> let f,env,tg = xparse_formula env tg a in let g,env,tg = xparse_formula env tg b in mkformula_binary mkIff term f g,env,tg | _ -> parse_atom env tg term) | Term.Prod(typ,a,b) when EConstr.Vars.noccurn sigma 1 b -> let f,env,tg = xparse_formula env tg a in let g,env,tg = xparse_formula env tg b in mkformula_binary mkI term f g,env,tg | _ when EConstr.eq_constr sigma term (Lazy.force coq_True) -> (TT,env,tg) | _ when EConstr.eq_constr sigma term (Lazy.force coq_False) -> (FF,env,tg) | _ when is_prop term -> X(term),env,tg | _ -> raise ParseError in xparse_formula env tg ((*Reductionops.whd_zeta*) term) let dump_formula typ dump_atom f = let rec xdump f = match f with | TT -> EConstr.mkApp(Lazy.force coq_TT,[|typ|]) | FF -> EConstr.mkApp(Lazy.force coq_FF,[|typ|]) | C(x,y) -> EConstr.mkApp(Lazy.force coq_And,[|typ ; xdump x ; xdump y|]) | D(x,y) -> EConstr.mkApp(Lazy.force coq_Or,[|typ ; xdump x ; xdump y|]) | I(x,_,y) -> EConstr.mkApp(Lazy.force coq_Impl,[|typ ; xdump x ; xdump y|]) | N(x) -> EConstr.mkApp(Lazy.force coq_Neg,[|typ ; xdump x|]) | A(x,_,_) -> EConstr.mkApp(Lazy.force coq_Atom,[|typ ; dump_atom x|]) | X(t) -> EConstr.mkApp(Lazy.force coq_X,[|typ ; t|]) in xdump f let prop_env_of_formula sigma form = let rec doit env = function | TT | FF | A(_,_,_) -> env | X t -> fst (Env.compute_rank_add env sigma t) | C(f1,f2) | D(f1,f2) | I(f1,_,f2) -> doit (doit env f1) f2 | N f -> doit env f in doit [] form let var_env_of_formula form = let rec vars_of_expr = function | Mc.PEX n -> ISet.singleton (CoqToCaml.positive n) | Mc.PEc z -> ISet.empty | Mc.PEadd(e1,e2) | Mc.PEmul(e1,e2) | Mc.PEsub(e1,e2) -> ISet.union (vars_of_expr e1) (vars_of_expr e2) | Mc.PEopp e | Mc.PEpow(e,_)-> vars_of_expr e in let vars_of_atom {Mc.flhs ; Mc.fop; Mc.frhs} = ISet.union (vars_of_expr flhs) (vars_of_expr frhs) in let rec doit = function | TT | FF | X _ -> ISet.empty | A (a,t,c) -> vars_of_atom a | C(f1,f2) | D(f1,f2) |I (f1,_,f2) -> ISet.union (doit f1) (doit f2) | N f -> doit f in doit form type 'cst dump_expr = (* 'cst is the type of the syntactic constants *) { interp_typ : EConstr.constr; dump_cst : 'cst -> EConstr.constr; dump_add : EConstr.constr; dump_sub : EConstr.constr; dump_opp : EConstr.constr; dump_mul : EConstr.constr; dump_pow : EConstr.constr; dump_pow_arg : Mc.n -> EConstr.constr; dump_op : (Mc.op2 * EConstr.constr) list } let dump_zexpr = lazy { interp_typ = Lazy.force coq_Z; dump_cst = dump_z; dump_add = Lazy.force coq_Zplus; dump_sub = Lazy.force coq_Zminus; dump_opp = Lazy.force coq_Zopp; dump_mul = Lazy.force coq_Zmult; dump_pow = Lazy.force coq_Zpower; dump_pow_arg = (fun n -> dump_z (CamlToCoq.z (CoqToCaml.n n))); dump_op = List.map (fun (x,y) -> (y,Lazy.force x)) zop_table } let dump_qexpr = lazy { interp_typ = Lazy.force coq_Q; dump_cst = dump_q; dump_add = Lazy.force coq_Qplus; dump_sub = Lazy.force coq_Qminus; dump_opp = Lazy.force coq_Qopp; dump_mul = Lazy.force coq_Qmult; dump_pow = Lazy.force coq_Qpower; dump_pow_arg = (fun n -> dump_z (CamlToCoq.z (CoqToCaml.n n))); dump_op = List.map (fun (x,y) -> (y,Lazy.force x)) qop_table } let dump_positive_as_R p = let mult = Lazy.force coq_Rmult in let add = Lazy.force coq_Rplus in let one = Lazy.force coq_R1 in let mk_add x y = EConstr.mkApp(add,[|x;y|]) in let mk_mult x y = EConstr.mkApp(mult,[|x;y|]) in let two = mk_add one one in let rec dump_positive p = match p with | Mc.XH -> one | Mc.XO p -> mk_mult two (dump_positive p) | Mc.XI p -> mk_add one (mk_mult two (dump_positive p)) in dump_positive p let dump_n_as_R n = let z = CoqToCaml.n n in if z = 0 then Lazy.force coq_R0 else dump_positive_as_R (CamlToCoq.positive z) let rec dump_Rcst_as_R cst = match cst with | Mc.C0 -> Lazy.force coq_R0 | Mc.C1 -> Lazy.force coq_R1 | Mc.CQ q -> EConstr.mkApp(Lazy.force coq_IQR, [| dump_q q |]) | Mc.CZ z -> EConstr.mkApp(Lazy.force coq_IZR, [| dump_z z |]) | Mc.CPlus(x,y) -> EConstr.mkApp(Lazy.force coq_Rplus, [| dump_Rcst_as_R x ; dump_Rcst_as_R y |]) | Mc.CMinus(x,y) -> EConstr.mkApp(Lazy.force coq_Rminus, [| dump_Rcst_as_R x ; dump_Rcst_as_R y |]) | Mc.CMult(x,y) -> EConstr.mkApp(Lazy.force coq_Rmult, [| dump_Rcst_as_R x ; dump_Rcst_as_R y |]) | Mc.CInv t -> EConstr.mkApp(Lazy.force coq_Rinv, [| dump_Rcst_as_R t |]) | Mc.COpp t -> EConstr.mkApp(Lazy.force coq_Ropp, [| dump_Rcst_as_R t |]) let dump_rexpr = lazy { interp_typ = Lazy.force coq_R; dump_cst = dump_Rcst_as_R; dump_add = Lazy.force coq_Rplus; dump_sub = Lazy.force coq_Rminus; dump_opp = Lazy.force coq_Ropp; dump_mul = Lazy.force coq_Rmult; dump_pow = Lazy.force coq_Rpower; dump_pow_arg = (fun n -> dump_nat (CamlToCoq.nat (CoqToCaml.n n))); dump_op = List.map (fun (x,y) -> (y,Lazy.force x)) rop_table } (** [make_goal_of_formula depxr vars props form] where - vars is an environment for the arithmetic variables occuring in form - props is an environment for the propositions occuring in form @return a goal where all the variables and propositions of the formula are quantified *) let prodn n env b = let rec prodrec = function | (0, env, b) -> b | (n, ((v,t)::l), b) -> prodrec (n-1, l, EConstr.mkProd (v,t,b)) | _ -> assert false in prodrec (n,env,b) let make_goal_of_formula sigma dexpr form = let vars_idx = List.mapi (fun i v -> (v, i+1)) (ISet.elements (var_env_of_formula form)) in (* List.iter (fun (v,i) -> Printf.fprintf stdout "var %i has index %i\n" v i) vars_idx ;*) let props = prop_env_of_formula sigma form in let vars_n = List.map (fun (_,i) -> (Names.Id.of_string (Printf.sprintf "__x%i" i)) , dexpr.interp_typ) vars_idx in let props_n = List.mapi (fun i _ -> (Names.Id.of_string (Printf.sprintf "__p%i" (i+1))) , EConstr.mkProp) props in let var_name_pos = List.map2 (fun (idx,_) (id,_) -> id,idx) vars_idx vars_n in let dump_expr i e = let rec dump_expr = function | Mc.PEX n -> EConstr.mkRel (i+(List.assoc (CoqToCaml.positive n) vars_idx)) | Mc.PEc z -> dexpr.dump_cst z | Mc.PEadd(e1,e2) -> EConstr.mkApp(dexpr.dump_add, [| dump_expr e1;dump_expr e2|]) | Mc.PEsub(e1,e2) -> EConstr.mkApp(dexpr.dump_sub, [| dump_expr e1;dump_expr e2|]) | Mc.PEopp e -> EConstr.mkApp(dexpr.dump_opp, [| dump_expr e|]) | Mc.PEmul(e1,e2) -> EConstr.mkApp(dexpr.dump_mul, [| dump_expr e1;dump_expr e2|]) | Mc.PEpow(e,n) -> EConstr.mkApp(dexpr.dump_pow, [| dump_expr e; dexpr.dump_pow_arg n|]) in dump_expr e in let mkop op e1 e2 = try EConstr.mkApp(List.assoc op dexpr.dump_op, [| e1; e2|]) with Not_found -> EConstr.mkApp(Lazy.force coq_Eq,[|dexpr.interp_typ ; e1 ;e2|]) in let dump_cstr i { Mc.flhs ; Mc.fop ; Mc.frhs } = mkop fop (dump_expr i flhs) (dump_expr i frhs) in let rec xdump pi xi f = match f with | TT -> Lazy.force coq_True | FF -> Lazy.force coq_False | C(x,y) -> EConstr.mkApp(Lazy.force coq_and,[|xdump pi xi x ; xdump pi xi y|]) | D(x,y) -> EConstr.mkApp(Lazy.force coq_or,[| xdump pi xi x ; xdump pi xi y|]) | I(x,_,y) -> EConstr.mkArrow (xdump pi xi x) (xdump (pi+1) (xi+1) y) | N(x) -> EConstr.mkArrow (xdump pi xi x) (Lazy.force coq_False) | A(x,_,_) -> dump_cstr xi x | X(t) -> let idx = Env.get_rank props sigma t in EConstr.mkRel (pi+idx) in let nb_vars = List.length vars_n in let nb_props = List.length props_n in (* Printf.fprintf stdout "NBProps : %i\n" nb_props ;*) let subst_prop p = let idx = Env.get_rank props sigma p in EConstr.mkVar (Names.Id.of_string (Printf.sprintf "__p%i" idx)) in let form' = map_prop subst_prop form in (prodn nb_props (List.map (fun (x,y) -> Name.Name x,y) props_n) (prodn nb_vars (List.map (fun (x,y) -> Name.Name x,y) vars_n) (xdump (List.length vars_n) 0 form)), List.rev props_n, List.rev var_name_pos,form') (** * Given a conclusion and a list of affectations, rebuild a term prefixed by * the appropriate letins. * TODO: reverse the list of bindings! *) let set l concl = let rec xset acc = function | [] -> acc | (e::l) -> let (name,expr,typ) = e in xset (EConstr.mkNamedLetIn (Names.Id.of_string name) expr typ acc) l in xset concl l end (** * MODULE END: M *) open M let rec sig_of_cone = function | Mc.PsatzIn n -> [CoqToCaml.nat n] | Mc.PsatzMulE(w1,w2) -> (sig_of_cone w1)@(sig_of_cone w2) | Mc.PsatzMulC(w1,w2) -> (sig_of_cone w2) | Mc.PsatzAdd(w1,w2) -> (sig_of_cone w1)@(sig_of_cone w2) | _ -> [] let same_proof sg cl1 cl2 = let rec xsame_proof sg = match sg with | [] -> true | n::sg -> (try Int.equal (List.nth cl1 n) (List.nth cl2 n) with Invalid_argument _ -> false) && (xsame_proof sg ) in xsame_proof sg let tags_of_clause tgs wit clause = let rec xtags tgs = function | Mc.PsatzIn n -> Names.Id.Set.union tgs (snd (List.nth clause (CoqToCaml.nat n) )) | Mc.PsatzMulC(e,w) -> xtags tgs w | Mc.PsatzMulE (w1,w2) | Mc.PsatzAdd(w1,w2) -> xtags (xtags tgs w1) w2 | _ -> tgs in xtags tgs wit (*let tags_of_cnf wits cnf = List.fold_left2 (fun acc w cl -> tags_of_clause acc w cl) Names.Id.Set.empty wits cnf *) let find_witness prover polys1 = try_any prover polys1 let rec witness prover l1 l2 = match l2 with | [] -> Some [] | e :: l2 -> match find_witness prover (e::l1) with | None -> None | Some w -> (match witness prover l1 l2 with | None -> None | Some l -> Some (w::l) ) let rec apply_ids t ids = match ids with | [] -> t | i::ids -> apply_ids (mkApp(t,[| mkVar i |])) ids let coq_Node = lazy (gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Node") let coq_Leaf = lazy (gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Leaf") let coq_Empty = lazy (gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ;"VarMap"];["VarMap"]] "Empty") let coq_VarMap = lazy (gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t") let rec dump_varmap typ m = match m with | Mc.Empty -> EConstr.mkApp(Lazy.force coq_Empty,[| typ |]) | Mc.Leaf v -> EConstr.mkApp(Lazy.force coq_Leaf,[| typ; v|]) | Mc.Node(l,o,r) -> EConstr.mkApp (Lazy.force coq_Node, [| typ; dump_varmap typ l; o ; dump_varmap typ r |]) let vm_of_list env = match env with | [] -> Mc.Empty | (d,_)::_ -> List.fold_left (fun vm (c,i) -> Mc.vm_add d (CamlToCoq.positive i) c vm) Mc.Empty env let rec pp_varmap o vm = match vm with | Mc.Empty -> output_string o "[]" | Mc.Leaf z -> Printf.fprintf o "[%a]" pp_z z | Mc.Node(l,z,r) -> Printf.fprintf o "[%a, %a, %a]" pp_varmap l pp_z z pp_varmap r let rec dump_proof_term = function | Micromega.DoneProof -> Lazy.force coq_doneProof | Micromega.RatProof(cone,rst) -> EConstr.mkApp(Lazy.force coq_ratProof, [| dump_psatz coq_Z dump_z cone; dump_proof_term rst|]) | Micromega.CutProof(cone,prf) -> EConstr.mkApp(Lazy.force coq_cutProof, [| dump_psatz coq_Z dump_z cone ; dump_proof_term prf|]) | Micromega.EnumProof(c1,c2,prfs) -> EConstr.mkApp (Lazy.force coq_enumProof, [| dump_psatz coq_Z dump_z c1 ; dump_psatz coq_Z dump_z c2 ; dump_list (Lazy.force coq_proofTerm) dump_proof_term prfs |]) let rec size_of_psatz = function | Micromega.PsatzIn _ -> 1 | Micromega.PsatzSquare _ -> 1 | Micromega.PsatzMulC(_,p) -> 1 + (size_of_psatz p) | Micromega.PsatzMulE(p1,p2) | Micromega.PsatzAdd(p1,p2) -> size_of_psatz p1 + size_of_psatz p2 | Micromega.PsatzC _ -> 1 | Micromega.PsatzZ -> 1 let rec size_of_pf = function | Micromega.DoneProof -> 1 | Micromega.RatProof(p,a) -> (size_of_pf a) + (size_of_psatz p) | Micromega.CutProof(p,a) -> (size_of_pf a) + (size_of_psatz p) | Micromega.EnumProof(p1,p2,l) -> (size_of_psatz p1) + (size_of_psatz p2) + (List.fold_left (fun acc p -> size_of_pf p + acc) 0 l) let dump_proof_term t = if debug then Printf.printf "dump_proof_term %i\n" (size_of_pf t) ; dump_proof_term t let pp_q o q = Printf.fprintf o "%a/%a" pp_z q.Micromega.qnum pp_positive q.Micromega.qden let rec pp_proof_term o = function | Micromega.DoneProof -> Printf.fprintf o "D" | Micromega.RatProof(cone,rst) -> Printf.fprintf o "R[%a,%a]" (pp_psatz pp_z) cone pp_proof_term rst | Micromega.CutProof(cone,rst) -> Printf.fprintf o "C[%a,%a]" (pp_psatz pp_z) cone pp_proof_term rst | Micromega.EnumProof(c1,c2,rst) -> Printf.fprintf o "EP[%a,%a,%a]" (pp_psatz pp_z) c1 (pp_psatz pp_z) c2 (pp_list "[" "]" pp_proof_term) rst let rec parse_hyps gl parse_arith env tg hyps = match hyps with | [] -> ([],env,tg) | (i,t)::l -> let (lhyps,env,tg) = parse_hyps gl parse_arith env tg l in try let (c,env,tg) = parse_formula gl parse_arith env tg t in ((i,c)::lhyps, env,tg) with e when CErrors.noncritical e -> (lhyps,env,tg) (*(if debug then Printf.printf "parse_arith : %s\n" x);*) (*exception ParseError*) let parse_goal gl parse_arith env hyps term = (* try*) let (f,env,tg) = parse_formula gl parse_arith env (Tag.from 0) term in let (lhyps,env,tg) = parse_hyps gl parse_arith env tg hyps in (lhyps,f,env) (* with Failure x -> raise ParseError*) (** * The datastructures that aggregate theory-dependent proof values. *) type ('synt_c, 'prf) domain_spec = { typ : EConstr.constr; (* is the type of the interpretation domain - Z, Q, R*) coeff : EConstr.constr ; (* is the type of the syntactic coeffs - Z , Q , Rcst *) dump_coeff : 'synt_c -> EConstr.constr ; proof_typ : EConstr.constr ; dump_proof : 'prf -> EConstr.constr } let zz_domain_spec = lazy { typ = Lazy.force coq_Z; coeff = Lazy.force coq_Z; dump_coeff = dump_z ; proof_typ = Lazy.force coq_proofTerm ; dump_proof = dump_proof_term } let qq_domain_spec = lazy { typ = Lazy.force coq_Q; coeff = Lazy.force coq_Q; dump_coeff = dump_q ; proof_typ = Lazy.force coq_QWitness ; dump_proof = dump_psatz coq_Q dump_q } let rcst_domain_spec = lazy { typ = Lazy.force coq_R; coeff = Lazy.force coq_Rcst; dump_coeff = dump_Rcst; proof_typ = Lazy.force coq_QWitness ; dump_proof = dump_psatz coq_Q dump_q } (** Naive topological sort of constr according to the subterm-ordering *) (* An element is minimal x is minimal w.r.t y if x <= y or (x and y are incomparable) *) let is_min le x y = if le x y then true else if le y x then false else true let is_minimal le l c = List.for_all (is_min le c) l let find_rem p l = let rec xfind_rem acc l = match l with | [] -> (None, acc) | x :: l -> if p x then (Some x, acc @ l) else xfind_rem (x::acc) l in xfind_rem [] l let find_minimal le l = find_rem (is_minimal le l) l let rec mk_topo_order le l = match find_minimal le l with | (None , _) -> [] | (Some v,l') -> v :: (mk_topo_order le l') let topo_sort_constr l = mk_topo_order (fun c t -> Termops.dependent Evd.empty (** FIXME *) (EConstr.of_constr c) (EConstr.of_constr t)) l (** * Instanciate the current Coq goal with a Micromega formula, a varmap, and a * witness. *) let micromega_order_change spec cert cert_typ env ff (*: unit Proofview.tactic*) = (* let ids = Util.List.map_i (fun i _ -> (Names.Id.of_string ("__v"^(string_of_int i)))) 0 env in *) let formula_typ = (EConstr.mkApp (Lazy.force coq_Cstr,[|spec.coeff|])) in let ff = dump_formula formula_typ (dump_cstr spec.coeff spec.dump_coeff) ff in let vm = dump_varmap (spec.typ) (vm_of_list env) in (* todo : directly generate the proof term - or generalize before conversion? *) Proofview.Goal.nf_enter begin fun gl -> Tacticals.New.tclTHENLIST [ Tactics.change_concl (set [ ("__ff", ff, EConstr.mkApp(Lazy.force coq_Formula, [|formula_typ |])); ("__varmap", vm, EConstr.mkApp(Lazy.force coq_VarMap, [|spec.typ|])); ("__wit", cert, cert_typ) ] (Tacmach.New.pf_concl gl)) ] end (** * The datastructures that aggregate prover attributes. *) type ('option,'a,'prf) prover = { name : string ; (* name of the prover *) get_option : unit ->'option ; (* find the options of the prover *) prover : 'option * 'a list -> 'prf option ; (* the prover itself *) hyps : 'prf -> ISet.t ; (* extract the indexes of the hypotheses really used in the proof *) compact : 'prf -> (int -> int) -> 'prf ; (* remap the hyp indexes according to function *) pp_prf : out_channel -> 'prf -> unit ;(* pretting printing of proof *) pp_f : out_channel -> 'a -> unit (* pretty printing of the formulas (polynomials)*) } (** * Given a list of provers and a disjunction of atoms, find a proof of any of * the atoms. Returns an (optional) pair of a proof and a prover * datastructure. *) let find_witness provers polys1 = let provers = List.map (fun p -> (fun l -> match p.prover (p.get_option (),l) with | None -> None | Some prf -> Some(prf,p)) , p.name) provers in try_any provers (List.map fst polys1) (** * Given a list of provers and a CNF, find a proof for each of the clauses. * Return the proofs as a list. *) let witness_list prover l = let rec xwitness_list l = match l with | [] -> Some [] | e :: l -> match find_witness prover e with | None -> None | Some w -> (match xwitness_list l with | None -> None | Some l -> Some (w :: l) ) in xwitness_list l let witness_list_tags = witness_list (* *Deprecated* let is_singleton = function [] -> true | [e] -> true | _ -> false *) let pp_ml_list pp_elt o l = output_string o "[" ; List.iter (fun x -> Printf.fprintf o "%a ;" pp_elt x) l ; output_string o "]" (** * Prune the proof object, according to the 'diff' between two cnf formulas. *) let compact_proofs (cnf_ff: 'cst cnf) res (cnf_ff': 'cst cnf) = let compact_proof (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) = let new_cl = Mutils.mapi (fun (f,_) i -> (f,i)) new_cl in let remap i = let formula = try fst (List.nth old_cl i) with Failure _ -> failwith "bad old index" in List.assoc formula new_cl in (* if debug then begin Printf.printf "\ncompact_proof : %a %a %a" (pp_ml_list prover.pp_f) (List.map fst old_cl) prover.pp_prf prf (pp_ml_list prover.pp_f) (List.map fst new_cl) ; flush stdout end ; *) let res = try prover.compact prf remap with x when CErrors.noncritical x -> if debug then Printf.fprintf stdout "Proof compaction %s" (Printexc.to_string x) ; (* This should not happen -- this is the recovery plan... *) match prover.prover (prover.get_option () ,List.map fst new_cl) with | None -> failwith "proof compaction error" | Some p -> p in if debug then begin Printf.printf " -> %a\n" prover.pp_prf res ; flush stdout end ; res in let is_proof_compatible (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) = let hyps_idx = prover.hyps prf in let hyps = selecti hyps_idx old_cl in is_sublist Pervasives.(=) hyps new_cl in let cnf_res = List.combine cnf_ff res in (* we get pairs clause * proof *) List.map (fun x -> let (o,p) = List.find (fun (l,p) -> is_proof_compatible l p x) cnf_res in compact_proof o p x) cnf_ff' (** * "Hide out" tagged atoms of a formula by transforming them into generic * variables. See the Tag module in mutils.ml for more. *) let abstract_formula hyps f = let rec xabs f = match f with | X c -> X c | A(a,t,term) -> if TagSet.mem t hyps then A(a,t,term) else X(term) | C(f1,f2) -> (match xabs f1 , xabs f2 with | X a1 , X a2 -> X (EConstr.mkApp(Lazy.force coq_and, [|a1;a2|])) | f1 , f2 -> C(f1,f2) ) | D(f1,f2) -> (match xabs f1 , xabs f2 with | X a1 , X a2 -> X (EConstr.mkApp(Lazy.force coq_or, [|a1;a2|])) | f1 , f2 -> D(f1,f2) ) | N(f) -> (match xabs f with | X a -> X (EConstr.mkApp(Lazy.force coq_not, [|a|])) | f -> N f) | I(f1,hyp,f2) -> (match xabs f1 , hyp, xabs f2 with | X a1 , Some _ , af2 -> af2 | X a1 , None , X a2 -> X (EConstr.mkArrow a1 a2) | af1 , _ , af2 -> I(af1,hyp,af2) ) | FF -> FF | TT -> TT in xabs f (* [abstract_wrt_formula] is used in contexts whre f1 is already an abstraction of f2 *) let rec abstract_wrt_formula f1 f2 = match f1 , f2 with | X c , _ -> X c | A _ , A _ -> f2 | C(a,b) , C(a',b') -> C(abstract_wrt_formula a a', abstract_wrt_formula b b') | D(a,b) , D(a',b') -> D(abstract_wrt_formula a a', abstract_wrt_formula b b') | I(a,_,b) , I(a',x,b') -> I(abstract_wrt_formula a a',x, abstract_wrt_formula b b') | FF , FF -> FF | TT , TT -> TT | N x , N y -> N(abstract_wrt_formula x y) | _ -> failwith "abstract_wrt_formula" (** * This exception is raised by really_call_csdpcert if Coq's configure didn't * find a CSDP executable. *) exception CsdpNotFound (** * This is the core of Micromega: apply the prover, analyze the result and * prune unused fomulas, and finally modify the proof state. *) let formula_hyps_concl hyps concl = List.fold_right (fun (id,f) (cc,ids) -> match f with X _ -> (cc,ids) | _ -> (I(f,Some id,cc), id::ids)) hyps (concl,[]) let micromega_tauto negate normalise unsat deduce spec prover env polys1 polys2 gl = (* Express the goal as one big implication *) let (ff,ids) = formula_hyps_concl polys1 polys2 in (* Convert the aplpication into a (mc_)cnf (a list of lists of formulas) *) let cnf_ff,cnf_ff_tags = cnf negate normalise unsat deduce ff in if debug then begin Feedback.msg_notice (Pp.str "Formula....\n") ; let formula_typ = (EConstr.mkApp(Lazy.force coq_Cstr, [|spec.coeff|])) in let ff = dump_formula formula_typ (dump_cstr spec.typ spec.dump_coeff) ff in Feedback.msg_notice (Printer.pr_leconstr_env gl.env gl.sigma ff); Printf.fprintf stdout "cnf : %a\n" (pp_cnf (fun o _ -> ())) cnf_ff end; match witness_list_tags prover cnf_ff with | None -> None | Some res -> (*Printf.printf "\nList %i" (List.length `res); *) let hyps = List.fold_left (fun s (cl,(prf,p)) -> let tags = ISet.fold (fun i s -> let t = snd (List.nth cl i) in if debug then (Printf.fprintf stdout "T : %i -> %a" i Tag.pp t) ; (*try*) TagSet.add t s (* with Invalid_argument _ -> s*)) (p.hyps prf) TagSet.empty in TagSet.union s tags) (List.fold_left (fun s i -> TagSet.add i s) TagSet.empty cnf_ff_tags) (List.combine cnf_ff res) in if debug then (Printf.printf "TForm : %a\n" pp_formula ff ; flush stdout; Printf.printf "Hyps : %a\n" (fun o s -> TagSet.fold (fun i _ -> Printf.fprintf o "%a " Tag.pp i) s ()) hyps) ; let ff' = abstract_formula hyps ff in let cnf_ff',_ = cnf negate normalise unsat deduce ff' in if debug then begin Feedback.msg_notice (Pp.str "\nAFormula\n") ; let formula_typ = (EConstr.mkApp( Lazy.force coq_Cstr,[| spec.coeff|])) in let ff' = dump_formula formula_typ (dump_cstr spec.typ spec.dump_coeff) ff' in Feedback.msg_notice (Printer.pr_leconstr_env gl.env gl.sigma ff'); Printf.fprintf stdout "cnf : %a\n" (pp_cnf (fun o _ -> ())) cnf_ff' end; (* Even if it does not work, this does not mean it is not provable -- the prover is REALLY incomplete *) (* if debug then begin (* recompute the proofs *) match witness_list_tags prover cnf_ff' with | None -> failwith "abstraction is wrong" | Some res -> () end ; *) let res' = compact_proofs cnf_ff res cnf_ff' in let (ff',res',ids) = (ff',res', ids_of_formula ff') in let res' = dump_list (spec.proof_typ) spec.dump_proof res' in Some (ids,ff',res') (** * Parse the proof environment, and call micromega_tauto *) let fresh_id avoid id gl = Tactics.fresh_id_in_env avoid id (Proofview.Goal.env gl) let micromega_gen parse_arith (negate:'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf) unsat deduce spec dumpexpr prover tac = Proofview.Goal.nf_enter begin fun gl -> let sigma = Tacmach.New.project gl in let concl = Tacmach.New.pf_concl gl in let hyps = Tacmach.New.pf_hyps_types gl in try let gl0 = { env = Tacmach.New.pf_env gl; sigma } in let (hyps,concl,env) = parse_goal gl0 parse_arith Env.empty hyps concl in let env = Env.elements env in let spec = Lazy.force spec in let dumpexpr = Lazy.force dumpexpr in match micromega_tauto negate normalise unsat deduce spec prover env hyps concl gl0 with | None -> Tacticals.New.tclFAIL 0 (Pp.str " Cannot find witness") | Some (ids,ff',res') -> let (arith_goal,props,vars,ff_arith) = make_goal_of_formula sigma dumpexpr ff' in let intro (id,_) = Tactics.introduction id in let intro_vars = Tacticals.New.tclTHENLIST (List.map intro vars) in let intro_props = Tacticals.New.tclTHENLIST (List.map intro props) in let ipat_of_name id = Some (Loc.tag @@ Misctypes.IntroNaming (Misctypes.IntroIdentifier id)) in let goal_name = fresh_id Id.Set.empty (Names.Id.of_string "__arith") gl in let env' = List.map (fun (id,i) -> EConstr.mkVar id,i) vars in let tac_arith = Tacticals.New.tclTHENLIST [ intro_props ; intro_vars ; micromega_order_change spec res' (EConstr.mkApp(Lazy.force coq_list, [|spec.proof_typ|])) env' ff_arith ] in let goal_props = List.rev (prop_env_of_formula sigma ff') in let goal_vars = List.map (fun (_,i) -> List.nth env (i-1)) vars in let arith_args = goal_props @ goal_vars in let kill_arith = Tacticals.New.tclTHEN (Tactics.keep []) ((*Tactics.tclABSTRACT None*) (Tacticals.New.tclTHEN tac_arith tac)) in Tacticals.New.tclTHENS (Tactics.forward true (Some None) (ipat_of_name goal_name) arith_goal) [ kill_arith; (Tacticals.New.tclTHENLIST [(Tactics.generalize (List.map EConstr.mkVar ids)); Tactics.exact_check (EConstr.applist (EConstr.mkVar goal_name, arith_args)) ] ) ] with | ParseError -> Tacticals.New.tclFAIL 0 (Pp.str "Bad logical fragment") | Mfourier.TimeOut -> Tacticals.New.tclFAIL 0 (Pp.str "Timeout") | CsdpNotFound -> flush stdout ; Tacticals.New.tclFAIL 0 (Pp.str (" Skipping what remains of this tactic: the complexity of the goal requires " ^ "the use of a specialized external tool called csdp. \n\n" ^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n" ^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp")) end let micromega_gen parse_arith (negate:'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf) unsat deduce spec prover = (micromega_gen parse_arith negate normalise unsat deduce spec prover) let micromega_order_changer cert env ff = (*let ids = Util.List.map_i (fun i _ -> (Names.Id.of_string ("__v"^(string_of_int i)))) 0 env in *) let coeff = Lazy.force coq_Rcst in let dump_coeff = dump_Rcst in let typ = Lazy.force coq_R in let cert_typ = (EConstr.mkApp(Lazy.force coq_list, [|Lazy.force coq_QWitness |])) in let formula_typ = (EConstr.mkApp (Lazy.force coq_Cstr,[| coeff|])) in let ff = dump_formula formula_typ (dump_cstr coeff dump_coeff) ff in let vm = dump_varmap (typ) (vm_of_list env) in Proofview.Goal.nf_enter begin fun gl -> Tacticals.New.tclTHENLIST [ (Tactics.change_concl (set [ ("__ff", ff, EConstr.mkApp(Lazy.force coq_Formula, [|formula_typ |])); ("__varmap", vm, EConstr.mkApp (gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t", [|typ|])); ("__wit", cert, cert_typ) ] (Tacmach.New.pf_concl gl))); (* Tacticals.New.tclTHENLIST (List.map (fun id -> (Tactics.introduction id)) ids)*) ] end let micromega_genr prover tac = let parse_arith = parse_rarith in let negate = Mc.rnegate in let normalise = Mc.rnormalise in let unsat = Mc.runsat in let deduce = Mc.rdeduce in let spec = lazy { typ = Lazy.force coq_R; coeff = Lazy.force coq_Rcst; dump_coeff = dump_q; proof_typ = Lazy.force coq_QWitness ; dump_proof = dump_psatz coq_Q dump_q } in Proofview.Goal.nf_enter begin fun gl -> let sigma = Tacmach.New.project gl in let concl = Tacmach.New.pf_concl gl in let hyps = Tacmach.New.pf_hyps_types gl in try let gl0 = { env = Tacmach.New.pf_env gl; sigma } in let (hyps,concl,env) = parse_goal gl0 parse_arith Env.empty hyps concl in let env = Env.elements env in let spec = Lazy.force spec in let hyps' = List.map (fun (n,f) -> (n, map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) f)) hyps in let concl' = map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) concl in match micromega_tauto negate normalise unsat deduce spec prover env hyps' concl' gl0 with | None -> Tacticals.New.tclFAIL 0 (Pp.str " Cannot find witness") | Some (ids,ff',res') -> let (ff,ids) = formula_hyps_concl (List.filter (fun (n,_) -> List.mem n ids) hyps) concl in let ff' = abstract_wrt_formula ff' ff in let (arith_goal,props,vars,ff_arith) = make_goal_of_formula sigma (Lazy.force dump_rexpr) ff' in let intro (id,_) = Tactics.introduction id in let intro_vars = Tacticals.New.tclTHENLIST (List.map intro vars) in let intro_props = Tacticals.New.tclTHENLIST (List.map intro props) in let ipat_of_name id = Some (Loc.tag @@ Misctypes.IntroNaming (Misctypes.IntroIdentifier id)) in let goal_name = fresh_id Id.Set.empty (Names.Id.of_string "__arith") gl in let env' = List.map (fun (id,i) -> EConstr.mkVar id,i) vars in let tac_arith = Tacticals.New.tclTHENLIST [ intro_props ; intro_vars ; micromega_order_changer res' env' ff_arith ] in let goal_props = List.rev (prop_env_of_formula sigma ff') in let goal_vars = List.map (fun (_,i) -> List.nth env (i-1)) vars in let arith_args = goal_props @ goal_vars in let kill_arith = Tacticals.New.tclTHEN (Tactics.keep []) ((*Tactics.tclABSTRACT None*) (Tacticals.New.tclTHEN tac_arith tac)) in Tacticals.New.tclTHENS (Tactics.forward true (Some None) (ipat_of_name goal_name) arith_goal) [ kill_arith; (Tacticals.New.tclTHENLIST [(Tactics.generalize (List.map EConstr.mkVar ids)); Tactics.exact_check (EConstr.applist (EConstr.mkVar goal_name, arith_args)) ] ) ] with | ParseError -> Tacticals.New.tclFAIL 0 (Pp.str "Bad logical fragment") | Mfourier.TimeOut -> Tacticals.New.tclFAIL 0 (Pp.str "Timeout") | CsdpNotFound -> flush stdout ; Tacticals.New.tclFAIL 0 (Pp.str (" Skipping what remains of this tactic: the complexity of the goal requires " ^ "the use of a specialized external tool called csdp. \n\n" ^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n" ^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp")) end let micromega_genr prover = (micromega_genr prover) let lift_ratproof prover l = match prover l with | None -> None | Some c -> Some (Mc.RatProof( c,Mc.DoneProof)) type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list type csdp_certificate = S of Sos_types.positivstellensatz option | F of string type provername = string * int option (** * The caching mechanism. *) open Persistent_cache module Cache = PHashtable(struct type t = (provername * micromega_polys) let equal = Pervasives.(=) let hash = Hashtbl.hash end) let csdp_cache = ".csdp.cache" (** * Build the command to call csdpcert, and launch it. This in turn will call * the sos driver to the csdp executable. * Throw CsdpNotFound if Coq isn't aware of any csdp executable. *) let require_csdp = if System.is_in_system_path "csdp" then lazy () else lazy (raise CsdpNotFound) let really_call_csdpcert : provername -> micromega_polys -> Sos_types.positivstellensatz option = fun provername poly -> Lazy.force require_csdp; let cmdname = List.fold_left Filename.concat (Envars.coqlib ()) ["plugins"; "micromega"; "csdpcert" ^ Coq_config.exec_extension] in match ((command cmdname [|cmdname|] (provername,poly)) : csdp_certificate) with | F str -> failwith str | S res -> res (** * Check the cache before calling the prover. *) let xcall_csdpcert = Cache.memo csdp_cache (fun (prover,pb) -> really_call_csdpcert prover pb) (** * Prover callback functions. *) let call_csdpcert prover pb = xcall_csdpcert (prover,pb) let rec z_to_q_pol e = match e with | Mc.Pc z -> Mc.Pc {Mc.qnum = z ; Mc.qden = Mc.XH} | Mc.Pinj(p,pol) -> Mc.Pinj(p,z_to_q_pol pol) | Mc.PX(pol1,p,pol2) -> Mc.PX(z_to_q_pol pol1, p, z_to_q_pol pol2) let call_csdpcert_q provername poly = match call_csdpcert provername poly with | None -> None | Some cert -> let cert = Certificate.q_cert_of_pos cert in if Mc.qWeakChecker poly cert then Some cert else ((print_string "buggy certificate") ;None) let call_csdpcert_z provername poly = let l = List.map (fun (e,o) -> (z_to_q_pol e,o)) poly in match call_csdpcert provername l with | None -> None | Some cert -> let cert = Certificate.z_cert_of_pos cert in if Mc.zWeakChecker poly cert then Some cert else ((print_string "buggy certificate" ; flush stdout) ;None) let xhyps_of_cone base acc prf = let rec xtract e acc = match e with | Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> acc | Mc.PsatzIn n -> let n = (CoqToCaml.nat n) in if n >= base then ISet.add (n-base) acc else acc | Mc.PsatzMulC(_,c) -> xtract c acc | Mc.PsatzAdd(e1,e2) | Mc.PsatzMulE(e1,e2) -> xtract e1 (xtract e2 acc) in xtract prf acc let hyps_of_cone prf = xhyps_of_cone 0 ISet.empty prf let compact_cone prf f = let np n = CamlToCoq.nat (f (CoqToCaml.nat n)) in let rec xinterp prf = match prf with | Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> prf | Mc.PsatzIn n -> Mc.PsatzIn (np n) | Mc.PsatzMulC(e,c) -> Mc.PsatzMulC(e,xinterp c) | Mc.PsatzAdd(e1,e2) -> Mc.PsatzAdd(xinterp e1,xinterp e2) | Mc.PsatzMulE(e1,e2) -> Mc.PsatzMulE(xinterp e1,xinterp e2) in xinterp prf let hyps_of_pt pt = let rec xhyps base pt acc = match pt with | Mc.DoneProof -> acc | Mc.RatProof(c,pt) -> xhyps (base+1) pt (xhyps_of_cone base acc c) | Mc.CutProof(c,pt) -> xhyps (base+1) pt (xhyps_of_cone base acc c) | Mc.EnumProof(c1,c2,l) -> let s = xhyps_of_cone base (xhyps_of_cone base acc c2) c1 in List.fold_left (fun s x -> xhyps (base + 1) x s) s l in xhyps 0 pt ISet.empty let hyps_of_pt pt = let res = hyps_of_pt pt in if debug then (Printf.fprintf stdout "\nhyps_of_pt : %a -> " pp_proof_term pt ; ISet.iter (fun i -> Printf.printf "%i " i) res); res let compact_pt pt f = let translate ofset x = if x < ofset then x else (f (x-ofset) + ofset) in let rec compact_pt ofset pt = match pt with | Mc.DoneProof -> Mc.DoneProof | Mc.RatProof(c,pt) -> Mc.RatProof(compact_cone c (translate (ofset)), compact_pt (ofset+1) pt ) | Mc.CutProof(c,pt) -> Mc.CutProof(compact_cone c (translate (ofset)), compact_pt (ofset+1) pt ) | Mc.EnumProof(c1,c2,l) -> Mc.EnumProof(compact_cone c1 (translate (ofset)), compact_cone c2 (translate (ofset)), Mc.map (fun x -> compact_pt (ofset+1) x) l) in compact_pt 0 pt (** * Definition of provers. * Instantiates the type ('a,'prf) prover defined above. *) let lift_pexpr_prover p l = p (List.map (fun (e,o) -> Mc.denorm e , o) l) module CacheZ = PHashtable(struct type prover_option = bool * int type t = prover_option * ((Mc.z Mc.pol * Mc.op1) list) let equal = (=) let hash = Hashtbl.hash end) module CacheQ = PHashtable(struct type t = int * ((Mc.q Mc.pol * Mc.op1) list) let equal = (=) let hash = Hashtbl.hash end) let memo_zlinear_prover = CacheZ.memo ".lia.cache" (fun ((ce,b),s) -> lift_pexpr_prover (Certificate.lia ce b) s) let memo_nlia = CacheZ.memo ".nia.cache" (fun ((ce,b),s) -> lift_pexpr_prover (Certificate.nlia ce b) s) let memo_nra = CacheQ.memo ".nra.cache" (fun (o,s) -> lift_pexpr_prover (Certificate.nlinear_prover o) s) let linear_prover_Q = { name = "linear prover"; get_option = get_lra_option ; prover = (fun (o,l) -> lift_pexpr_prover (Certificate.linear_prover_with_cert o Certificate.q_spec) l) ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = fun o x -> pp_pol pp_q o (fst x) } let linear_prover_R = { name = "linear prover"; get_option = get_lra_option ; prover = (fun (o,l) -> lift_pexpr_prover (Certificate.linear_prover_with_cert o Certificate.q_spec) l) ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = fun o x -> pp_pol pp_q o (fst x) } let nlinear_prover_R = { name = "nra"; get_option = get_lra_option; prover = memo_nra ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = fun o x -> pp_pol pp_q o (fst x) } let non_linear_prover_Q str o = { name = "real nonlinear prover"; get_option = (fun () -> (str,o)); prover = (fun (o,l) -> call_csdpcert_q o l); hyps = hyps_of_cone; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = fun o x -> pp_pol pp_q o (fst x) } let non_linear_prover_R str o = { name = "real nonlinear prover"; get_option = (fun () -> (str,o)); prover = (fun (o,l) -> call_csdpcert_q o l); hyps = hyps_of_cone; compact = compact_cone; pp_prf = pp_psatz pp_q; pp_f = fun o x -> pp_pol pp_q o (fst x) } let non_linear_prover_Z str o = { name = "real nonlinear prover"; get_option = (fun () -> (str,o)); prover = (fun (o,l) -> lift_ratproof (call_csdpcert_z o) l); hyps = hyps_of_pt; compact = compact_pt; pp_prf = pp_proof_term; pp_f = fun o x -> pp_pol pp_z o (fst x) } let linear_Z = { name = "lia"; get_option = get_lia_option; prover = memo_zlinear_prover ; hyps = hyps_of_pt; compact = compact_pt; pp_prf = pp_proof_term; pp_f = fun o x -> pp_pol pp_z o (fst x) } let nlinear_Z = { name = "nlia"; get_option = get_lia_option; prover = memo_nlia ; hyps = hyps_of_pt; compact = compact_pt; pp_prf = pp_proof_term; pp_f = fun o x -> pp_pol pp_z o (fst x) } let tauto_lia ff = let prover = linear_Z in let cnf_ff,_ = cnf Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce ff in match witness_list_tags [prover] cnf_ff with | None -> None | Some l -> Some (List.map fst l) (** * Functions instantiating micromega_gen with the appropriate theories and * solvers *) let lra_Q = micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr [ linear_prover_Q ] let psatz_Q i = micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr [ non_linear_prover_Q "real_nonlinear_prover" (Some i) ] let lra_R = micromega_genr [ linear_prover_R ] let psatz_R i = micromega_genr [ non_linear_prover_R "real_nonlinear_prover" (Some i) ] let psatz_Z i = micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr [ non_linear_prover_Z "real_nonlinear_prover" (Some i) ] let sos_Z = micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr [ non_linear_prover_Z "pure_sos" None ] let sos_Q = micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr [ non_linear_prover_Q "pure_sos" None ] let sos_R = micromega_genr [ non_linear_prover_R "pure_sos" None ] let xlia = micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr [ linear_Z ] let xnlia = micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr [ nlinear_Z ] let nra = micromega_genr [ nlinear_prover_R ] let nqa = micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr [ nlinear_prover_R ] (* Local Variables: *) (* coding: utf-8 *) (* End: *)