1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(* ** Toplevel definition of tactics **                                 *)
(*                                                                      *)
(* - Modules ISet, M, Mc, Env, Cache, CacheZ                            *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-20011                            *)
(*                                                                      *)
(************************************************************************)

open Pp
open Mutils
open Goptions
open Names
open Constr

(**
  * Debug flag 
  *)

let debug = false

(**
  * Time function
  *)

let time str f x =
 let t0 = (Unix.times()).Unix.tms_utime in
 let res = f x in
 let t1 = (Unix.times()).Unix.tms_utime in
  (*if debug then*) (Printf.printf "time %s %f\n" str (t1 -. t0) ;
                     flush stdout);
  res


(* Limit the proof search *)

let max_depth = max_int

(* Search limit for provers over Q R *)
let lra_proof_depth = ref max_depth

 
(* Search limit for provers over Z *)
let lia_enum  = ref true
let lia_proof_depth = ref max_depth

let get_lia_option () =
 (!lia_enum,!lia_proof_depth)

let get_lra_option () =
 !lra_proof_depth


 
let _ =
 
 let int_opt l vref =
  {
   optdepr = false;
   optname = List.fold_right (^) l "";
   optkey  = l ;
   optread = (fun () -> Some !vref);
   optwrite = (fun x -> vref := (match x with None -> max_depth | Some v -> v))
  } in

 let lia_enum_opt = 
  {
   optdepr = false;
   optname = "Lia Enum";
   optkey  = ["Lia";"Enum"];
   optread = (fun () -> !lia_enum);
   optwrite = (fun x -> lia_enum := x)
  } in
 let _ = declare_int_option (int_opt ["Lra"; "Depth"] lra_proof_depth) in
 let _ = declare_int_option (int_opt ["Lia"; "Depth"] lia_proof_depth) in 
 let _ = declare_bool_option lia_enum_opt in
 ()
 
(**
  * Initialize a tag type to the Tag module declaration (see Mutils).
  *)

type tag = Tag.t

(**
  * An atom is of the form:
  *   pExpr1 \{<,>,=,<>,<=,>=\} pExpr2
  * where pExpr1, pExpr2 are polynomial expressions (see Micromega). pExprs are
  * parametrized by 'cst, which is used as the type of constants.
  *)

type 'cst atom = 'cst Micromega.formula

(**
  * Micromega's encoding of formulas.
  * By order of appearance: boolean constants, variables, atoms, conjunctions,
  * disjunctions, negation, implication.
*)

type 'cst formula =
  | TT
  | FF
  | X of EConstr.constr
  | A of 'cst atom * tag * EConstr.constr
  | C of 'cst formula * 'cst formula
  | D of 'cst formula * 'cst formula
  | N of 'cst formula
  | I of 'cst formula * Names.Id.t option * 'cst formula

(**
  * Formula pretty-printer.
  *)

let rec pp_formula o f =
  match f with
    | TT -> output_string  o "tt"
    | FF -> output_string  o "ff"
    | X c -> output_string o "X "
    | A(_,t,_) -> Printf.fprintf o "A(%a)" Tag.pp t
    | C(f1,f2) -> Printf.fprintf o "C(%a,%a)" pp_formula f1 pp_formula f2
    | D(f1,f2) -> Printf.fprintf o "D(%a,%a)" pp_formula f1 pp_formula f2
    | I(f1,n,f2) -> Printf.fprintf o "I(%a%s,%a)"
        pp_formula f1
          (match n with
            | Some id -> Names.Id.to_string id
            | None -> "") pp_formula f2
    | N(f) -> Printf.fprintf o "N(%a)" pp_formula f


let rec map_atoms fct f = 
  match f with
    | TT -> TT
    | FF -> FF
    | X x -> X x
    | A (at,tg,cstr) -> A(fct at,tg,cstr)
    | C (f1,f2) -> C(map_atoms fct f1, map_atoms fct f2)
    | D (f1,f2) -> D(map_atoms fct f1, map_atoms fct f2)
    | N f -> N(map_atoms fct f)
    | I(f1,o,f2) -> I(map_atoms fct f1, o , map_atoms fct f2)

let rec map_prop fct f =
  match f with
    | TT -> TT
    | FF -> FF
    | X x -> X (fct x)
    | A (at,tg,cstr) -> A(at,tg,cstr)
    | C (f1,f2) -> C(map_prop fct f1, map_prop fct f2)
    | D (f1,f2) -> D(map_prop fct f1, map_prop fct f2)
    | N f -> N(map_prop fct f)
    | I(f1,o,f2) -> I(map_prop fct f1, o , map_prop fct f2)

(**
  * Collect the identifiers of a (string of) implications. Implication labels
  * are inherited from Coq/CoC's higher order dependent type constructor (Pi).
  *)

let rec ids_of_formula f =
  match f with
    | I(f1,Some id,f2) -> id::(ids_of_formula f2)
    | _                -> []

(**
  * A clause is a list of (tagged) nFormulas.
  * nFormulas are normalized formulas, i.e., of the form:
  *   cPol \{=,<>,>,>=\} 0
  * with cPol compact polynomials (see the Pol inductive type in EnvRing.v).
  *)

type 'cst clause = ('cst Micromega.nFormula * tag) list

(**
  * A CNF is a list of clauses.
  *)

type 'cst cnf = ('cst clause) list

(**
  * True and False are empty cnfs and clauses.
  *)

let tt : 'cst cnf = []

let ff : 'cst cnf = [ [] ]

(**
  * A refinement of cnf with tags left out. This is an intermediary form
  * between the cnf tagged list representation ('cst cnf) used to solve psatz,
  * and the freeform formulas ('cst formula) that is retrieved from Coq.
  *)

module Mc = Micromega

type 'cst mc_cnf = ('cst Mc.nFormula) list list

(**
  * From a freeform formula, build a cnf.
  * The parametric functions negate and normalize are theory-dependent, and
  * originate in micromega.ml (extracted, e.g. for rnegate, from RMicromega.v
  * and RingMicromega.v).
  *)

type 'a tagged_option = T of tag list |  S of 'a 

let cnf 
    (negate: 'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf) 
    (unsat : 'cst Mc.nFormula -> bool) (deduce : 'cst Mc.nFormula -> 'cst Mc.nFormula -> 'cst Mc.nFormula option) (f:'cst formula) =

 let negate a t =
  List.map (fun cl -> List.map (fun x -> (x,t)) cl) (negate a) in

 let normalise a t =
  List.map (fun cl -> List.map (fun x -> (x,t)) cl) (normalise a) in

 let and_cnf x y = x @ y in

let rec add_term  t0 = function
  | [] -> 
      (match deduce (fst t0) (fst t0) with
        | Some u -> if unsat u then T [snd t0] else S (t0::[])
        | None -> S (t0::[]))
  | t'::cl0 ->
      (match deduce (fst t0) (fst t') with
         | Some u ->
             if unsat u
             then T [snd t0 ; snd t']
             else (match add_term  t0 cl0 with
                     | S cl' -> S (t'::cl')
                     | T l -> T l)
         | None ->
             (match add_term  t0 cl0 with
                | S cl' -> S (t'::cl')
                | T l -> T l)) in


 let rec or_clause  cl1 cl2 =
   match cl1 with
     | [] -> S cl2
     | t0::cl ->
         (match add_term  t0 cl2 with
            | S cl' -> or_clause  cl cl'
            | T l -> T l) in



 let or_clause_cnf t f =  
   List.fold_right (fun e (acc,tg) -> 
                      match or_clause t e with
                        | S cl -> (cl :: acc,tg)
                        | T l -> (acc,tg@l)) f ([],[]) in


 let rec or_cnf f f' =
  match f with
   | [] -> tt,[]
   | e :: rst -> 
       let (rst_f',t) = or_cnf rst f' in
       let (e_f', t') = or_clause_cnf e f' in
         (rst_f' @ e_f', t @ t') in


 let rec xcnf (polarity : bool) f =
  match f with
   | TT -> if polarity then (tt,[]) else (ff,[])
   | FF  -> if polarity then (ff,[]) else (tt,[])
   | X p -> if polarity then (ff,[]) else (ff,[])
   | A(x,t,_) -> ((if polarity then normalise x t else negate x t),[])
   | N(e)  -> xcnf (not polarity) e
   | C(e1,e2) -> 
       let e1,t1 = xcnf polarity e1 in
       let e2,t2 = xcnf polarity e2 in
      if polarity 
       then and_cnf e1 e2, t1 @ t2
       else let f',t' = or_cnf e1 e2 in
         (f', t1 @ t2 @ t')
   | D(e1,e2)  ->
       let e1,t1 = xcnf polarity e1 in
       let e2,t2 = xcnf polarity e2 in
      if polarity 
       then let f',t' = or_cnf e1 e2 in
         (f', t1 @ t2 @ t')
       else and_cnf e1 e2, t1 @ t2
   | I(e1,_,e2) ->
       let e1 , t1 = (xcnf (not polarity) e1) in
       let e2 , t2 = (xcnf polarity e2) in
      if polarity 
       then let f',t' = or_cnf e1 e2 in
         (f', t1 @ t2 @ t')
       else and_cnf e1 e2, t1 @ t2 in

  xcnf true f

(**
  * MODULE: Ordered set of integers.
  *)

module ISet = Set.Make(Int)
module IMap = Map.Make(Int)
  
(**
  * Given a set of integers s=\{i0,...,iN\} and a list m, return the list of
  * elements of m that are at position i0,...,iN.
  *)

let selecti s m =
  let rec xselecti i m =
    match m with
      | [] -> []
      | e::m -> if ISet.mem i s then e::(xselecti (i+1) m) else xselecti (i+1) m in
    xselecti 0 m

(**
  * MODULE: Mapping of the Coq data-strustures into Caml and Caml extracted
  * code. This includes initializing Caml variables based on Coq terms, parsing
  * various Coq expressions into Caml, and dumping Caml expressions into Coq.
  *
  * Opened here and in csdpcert.ml.
  *)

module M =
struct

  (**
    * Location of the Coq libraries.
    *)

  let logic_dir = ["Coq";"Logic";"Decidable"]

  let mic_modules = 
    [ 
      ["Coq";"Lists";"List"];
      ["ZMicromega"];
      ["Tauto"];
      ["RingMicromega"];
      ["EnvRing"];
      ["Coq"; "micromega"; "ZMicromega"];
      ["Coq"; "micromega"; "RMicromega"];
      ["Coq" ; "micromega" ; "Tauto"];
      ["Coq" ; "micromega" ; "RingMicromega"];
      ["Coq" ; "micromega" ; "EnvRing"];
      ["Coq";"QArith"; "QArith_base"];
      ["Coq";"Reals" ; "Rdefinitions"];
      ["Coq";"Reals" ; "Rpow_def"];
      ["LRing_normalise"]]

  let coq_modules =
   Coqlib.(init_modules @
    [logic_dir] @ arith_modules @ zarith_base_modules @ mic_modules)

  let bin_module = [["Coq";"Numbers";"BinNums"]]

  let r_modules =
    [["Coq";"Reals" ; "Rdefinitions"];
     ["Coq";"Reals" ; "Rpow_def"] ;
     ["Coq";"Reals" ; "Raxioms"] ;
     ["Coq";"QArith"; "Qreals"] ;
    ]

  let z_modules = [["Coq";"ZArith";"BinInt"]]

  (**
    * Initialization : a large amount of Caml symbols are derived from
    * ZMicromega.v
    *)

  let gen_constant_in_modules s m n = EConstr.of_constr (Universes.constr_of_global @@ Coqlib.gen_reference_in_modules s m n)
  let init_constant = gen_constant_in_modules "ZMicromega" Coqlib.init_modules
  let constant = gen_constant_in_modules "ZMicromega" coq_modules
  let bin_constant = gen_constant_in_modules "ZMicromega" bin_module
  let r_constant = gen_constant_in_modules "ZMicromega" r_modules
  let z_constant = gen_constant_in_modules "ZMicromega" z_modules
  let m_constant = gen_constant_in_modules "ZMicromega" mic_modules

  let coq_and = lazy (init_constant "and")
  let coq_or = lazy (init_constant "or")
  let coq_not = lazy (init_constant "not")

  let coq_iff = lazy (init_constant "iff")
  let coq_True = lazy (init_constant "True")
  let coq_False = lazy (init_constant "False")

  let coq_cons = lazy (constant "cons")
  let coq_nil = lazy (constant "nil")
  let coq_list = lazy (constant "list")

  let coq_O = lazy (init_constant "O")
  let coq_S = lazy (init_constant "S")
  let coq_nat = lazy (init_constant "nat")

  let coq_N0 = lazy (bin_constant "N0")
  let coq_Npos = lazy (bin_constant "Npos")

  let coq_pair = lazy (init_constant "pair")
  let coq_None = lazy (init_constant "None")
  let coq_option = lazy (init_constant "option")

  let coq_positive = lazy (bin_constant "positive")
  let coq_xH = lazy (bin_constant "xH")
  let coq_xO = lazy (bin_constant "xO")
  let coq_xI = lazy (bin_constant "xI")

  let coq_Z = lazy (bin_constant "Z")
  let coq_ZERO = lazy (bin_constant "Z0")
  let coq_POS = lazy (bin_constant "Zpos")
  let coq_NEG = lazy (bin_constant "Zneg")

  let coq_Q = lazy (constant "Q")
  let coq_R = lazy (constant "R")

  let coq_Build_Witness = lazy (constant "Build_Witness")

  let coq_Qmake = lazy (constant "Qmake")

  let coq_Rcst = lazy (constant "Rcst")

  let coq_C0   = lazy (m_constant "C0")
  let coq_C1   = lazy (m_constant "C1")
  let coq_CQ   = lazy (m_constant "CQ")
  let coq_CZ   = lazy (m_constant "CZ")
  let coq_CPlus = lazy (m_constant "CPlus")
  let coq_CMinus = lazy (m_constant "CMinus")
  let coq_CMult  = lazy (m_constant "CMult")
  let coq_CInv   = lazy (m_constant "CInv")
  let coq_COpp   = lazy (m_constant "COpp")


  let coq_R0    = lazy (constant "R0")
  let coq_R1    = lazy (constant "R1")

  let coq_proofTerm = lazy (constant "ZArithProof")
  let coq_doneProof = lazy (constant "DoneProof")
  let coq_ratProof = lazy (constant "RatProof")
  let coq_cutProof = lazy (constant "CutProof")
  let coq_enumProof = lazy (constant "EnumProof")

  let coq_Zgt = lazy (z_constant "Z.gt")
  let coq_Zge = lazy (z_constant "Z.ge")
  let coq_Zle = lazy (z_constant "Z.le")
  let coq_Zlt = lazy (z_constant "Z.lt")
  let coq_Eq  = lazy (init_constant "eq")

  let coq_Zplus = lazy (z_constant "Z.add")
  let coq_Zminus = lazy (z_constant "Z.sub")
  let coq_Zopp = lazy (z_constant "Z.opp")
  let coq_Zmult = lazy (z_constant "Z.mul")
  let coq_Zpower = lazy (z_constant "Z.pow")

  let coq_Qgt = lazy (constant "Qgt")
  let coq_Qge = lazy (constant "Qge")
  let coq_Qle = lazy (constant "Qle")
  let coq_Qlt = lazy (constant "Qlt")
  let coq_Qeq = lazy (constant "Qeq")

  let coq_Qplus = lazy (constant "Qplus")
  let coq_Qminus = lazy (constant "Qminus")
  let coq_Qopp = lazy (constant "Qopp")
  let coq_Qmult = lazy (constant "Qmult")
  let coq_Qpower = lazy (constant "Qpower")

  let coq_Rgt = lazy (r_constant "Rgt")
  let coq_Rge = lazy (r_constant "Rge")
  let coq_Rle = lazy (r_constant "Rle")
  let coq_Rlt = lazy (r_constant "Rlt")

  let coq_Rplus = lazy (r_constant "Rplus")
  let coq_Rminus = lazy (r_constant "Rminus")
  let coq_Ropp = lazy (r_constant "Ropp")
  let coq_Rmult = lazy (r_constant "Rmult")
  let coq_Rdiv = lazy (r_constant "Rdiv")
  let coq_Rinv = lazy (r_constant "Rinv")
  let coq_Rpower = lazy (r_constant "pow")
  let coq_IZR    = lazy (r_constant "IZR")
  let coq_IQR    = lazy (r_constant "Q2R")


  let coq_PEX = lazy (constant "PEX" )
  let coq_PEc = lazy (constant"PEc")
  let coq_PEadd = lazy (constant "PEadd")
  let coq_PEopp = lazy (constant "PEopp")
  let coq_PEmul = lazy (constant "PEmul")
  let coq_PEsub = lazy (constant "PEsub")
  let coq_PEpow = lazy (constant "PEpow")

  let coq_PX = lazy (constant "PX" )
  let coq_Pc = lazy (constant"Pc")
  let coq_Pinj = lazy (constant "Pinj")

  let coq_OpEq = lazy (constant "OpEq")
  let coq_OpNEq = lazy (constant "OpNEq")
  let coq_OpLe = lazy (constant "OpLe")
  let coq_OpLt = lazy (constant  "OpLt")
  let coq_OpGe = lazy (constant "OpGe")
  let coq_OpGt = lazy (constant  "OpGt")

  let coq_PsatzIn = lazy (constant "PsatzIn")
  let coq_PsatzSquare = lazy (constant "PsatzSquare")
  let coq_PsatzMulE = lazy (constant "PsatzMulE")
  let coq_PsatzMultC = lazy (constant "PsatzMulC")
  let coq_PsatzAdd  = lazy (constant "PsatzAdd")
  let coq_PsatzC  = lazy (constant "PsatzC")
  let coq_PsatzZ    = lazy (constant "PsatzZ")
  let coq_coneMember    = lazy (constant "coneMember")

  let coq_make_impl = lazy
   (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_impl")
  let coq_make_conj = lazy
   (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_conj")

  let coq_TT = lazy
   (gen_constant_in_modules "ZMicromega"
     [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "TT")
  let coq_FF = lazy
   (gen_constant_in_modules "ZMicromega"
     [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "FF")
  let coq_And = lazy
   (gen_constant_in_modules "ZMicromega"
     [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "Cj")
  let coq_Or = lazy
   (gen_constant_in_modules "ZMicromega"
     [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]    "D")
  let coq_Neg = lazy
   (gen_constant_in_modules "ZMicromega"
     [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "N")
  let coq_Atom = lazy
   (gen_constant_in_modules "ZMicromega"
     [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "A")
  let coq_X = lazy
   (gen_constant_in_modules "ZMicromega"
     [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "X")
  let coq_Impl = lazy
   (gen_constant_in_modules "ZMicromega"
     [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "I")
  let coq_Formula = lazy
   (gen_constant_in_modules "ZMicromega"
     [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "BFormula")

  (**
    * Initialization : a few Caml symbols are derived from other libraries;
    * QMicromega, ZArithRing, RingMicromega.
    *)

  let coq_QWitness = lazy
   (gen_constant_in_modules "QMicromega"
     [["Coq"; "micromega"; "QMicromega"]] "QWitness")
  let coq_ZWitness = lazy
   (gen_constant_in_modules "QMicromega"
     [["Coq"; "micromega"; "ZMicromega"]] "ZWitness")

  let coq_N_of_Z = lazy
   (gen_constant_in_modules "ZArithRing"
     [["Coq";"setoid_ring";"ZArithRing"]] "N_of_Z")

  let coq_Build = lazy
   (gen_constant_in_modules "RingMicromega"
     [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ]
     "Build_Formula")
  let coq_Cstr = lazy
   (gen_constant_in_modules "RingMicromega"
     [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] "Formula")

  (**
    * Parsing and dumping : transformation functions between Caml and Coq
    * data-structures.
    *
    * dump_*    functions go from Micromega to Coq terms
    * parse_*   functions go from Coq to Micromega terms
    * pp_*      functions pretty-print Coq terms.
    *)

  (* Error datastructures *)

  type parse_error  =
    | Ukn
    | BadStr of string
    | BadNum of int
    | BadTerm of constr
    | Msg   of string
    | Goal of (constr list ) * constr * parse_error

  let string_of_error = function
   | Ukn -> "ukn"
   | BadStr s -> s
   | BadNum i -> string_of_int i
   | BadTerm _ -> "BadTerm"
   | Msg  s    -> s
   | Goal _    -> "Goal"

  exception ParseError

  (* A simple but useful getter function *)

  let get_left_construct sigma term =
   match EConstr.kind sigma term with
    | Term.Construct((_,i),_) -> (i,[| |])
    | Term.App(l,rst) ->
       (match EConstr.kind sigma l with
        | Term.Construct((_,i),_) -> (i,rst)
        |   _     -> raise ParseError
       )
    | _ ->   raise ParseError

  (* Access the Micromega module *)
  
  (* parse/dump/print from numbers up to expressions and formulas *)

  let rec parse_nat sigma term =
   let (i,c) = get_left_construct sigma term in
    match i with
     | 1 -> Mc.O
     | 2 -> Mc.S (parse_nat sigma (c.(0)))
     | i -> raise ParseError

  let pp_nat o n = Printf.fprintf o "%i" (CoqToCaml.nat n)

  let rec dump_nat x =
   match x with
    | Mc.O -> Lazy.force coq_O
    | Mc.S p -> EConstr.mkApp(Lazy.force coq_S,[| dump_nat p |])

  let rec parse_positive sigma term =
   let (i,c) = get_left_construct sigma term in
    match i with
     | 1 -> Mc.XI (parse_positive sigma c.(0))
     | 2 -> Mc.XO (parse_positive sigma c.(0))
     | 3 -> Mc.XH
     | i -> raise ParseError

  let rec dump_positive x =
   match x with
    | Mc.XH -> Lazy.force coq_xH
    | Mc.XO p -> EConstr.mkApp(Lazy.force coq_xO,[| dump_positive p |])
    | Mc.XI p -> EConstr.mkApp(Lazy.force coq_xI,[| dump_positive p |])

  let pp_positive o x = Printf.fprintf o "%i" (CoqToCaml.positive x)

  let dump_n x =
   match x with
    | Mc.N0 -> Lazy.force coq_N0
    | Mc.Npos p -> EConstr.mkApp(Lazy.force coq_Npos,[| dump_positive p|])

  let rec dump_index x =
   match x with
    | Mc.XH -> Lazy.force coq_xH
    | Mc.XO p -> EConstr.mkApp(Lazy.force coq_xO,[| dump_index p |])
    | Mc.XI p -> EConstr.mkApp(Lazy.force coq_xI,[| dump_index p |])

  let pp_index o x = Printf.fprintf o "%i" (CoqToCaml.index x)

  let pp_n o x =  output_string o  (string_of_int (CoqToCaml.n x))

  let dump_pair t1 t2 dump_t1 dump_t2 (x,y) =
   EConstr.mkApp(Lazy.force coq_pair,[| t1 ; t2 ; dump_t1 x ; dump_t2 y|])

  let parse_z sigma term =
   let (i,c) = get_left_construct sigma term in
    match i with
     | 1 -> Mc.Z0
     | 2 -> Mc.Zpos (parse_positive sigma c.(0))
     | 3 -> Mc.Zneg (parse_positive sigma c.(0))
     | i -> raise ParseError

  let dump_z x =
   match x with
    | Mc.Z0 ->Lazy.force coq_ZERO
    | Mc.Zpos p -> EConstr.mkApp(Lazy.force coq_POS,[| dump_positive p|])
    | Mc.Zneg p -> EConstr.mkApp(Lazy.force coq_NEG,[| dump_positive p|])

  let pp_z o x = Printf.fprintf o "%s" (Big_int.string_of_big_int (CoqToCaml.z_big_int x))

  let dump_num bd1 =
   EConstr.mkApp(Lazy.force coq_Qmake,
                 [|dump_z (CamlToCoq.bigint (numerator bd1)) ;
                   dump_positive (CamlToCoq.positive_big_int (denominator bd1)) |])

  let dump_q q =
   EConstr.mkApp(Lazy.force coq_Qmake,
                 [| dump_z q.Micromega.qnum ; dump_positive q.Micromega.qden|])

  let parse_q sigma term =
     match EConstr.kind sigma term with
       | Term.App(c, args) -> if EConstr.eq_constr sigma c (Lazy.force coq_Qmake) then
             {Mc.qnum = parse_z sigma args.(0) ; Mc.qden = parse_positive sigma args.(1) }
       else raise ParseError
   |  _ -> raise ParseError


  let rec pp_Rcst o cst = 
    match cst with
      | Mc.C0 -> output_string o "C0"
      | Mc.C1 ->  output_string o "C1"
      | Mc.CQ q ->  output_string o "CQ _"
      | Mc.CZ z -> pp_z o z
      | Mc.CPlus(x,y) -> Printf.fprintf o "(%a + %a)" pp_Rcst x pp_Rcst y
      | Mc.CMinus(x,y) -> Printf.fprintf o "(%a - %a)" pp_Rcst x pp_Rcst y
      | Mc.CMult(x,y) -> Printf.fprintf o "(%a * %a)" pp_Rcst x pp_Rcst y
      | Mc.CInv t -> Printf.fprintf o "(/ %a)" pp_Rcst t
      | Mc.COpp t -> Printf.fprintf o "(- %a)" pp_Rcst t


  let rec dump_Rcst cst = 
    match cst with
      | Mc.C0 -> Lazy.force coq_C0 
      | Mc.C1 ->  Lazy.force coq_C1
      | Mc.CQ q ->  EConstr.mkApp(Lazy.force coq_CQ, [| dump_q q |])
      | Mc.CZ z -> EConstr.mkApp(Lazy.force coq_CZ, [| dump_z z |])
      | Mc.CPlus(x,y) -> EConstr.mkApp(Lazy.force coq_CPlus, [| dump_Rcst x ; dump_Rcst y |])
      | Mc.CMinus(x,y) -> EConstr.mkApp(Lazy.force coq_CMinus, [| dump_Rcst x ; dump_Rcst y |])
      | Mc.CMult(x,y) -> EConstr.mkApp(Lazy.force coq_CMult, [| dump_Rcst x ; dump_Rcst y |])
      | Mc.CInv t -> EConstr.mkApp(Lazy.force coq_CInv, [| dump_Rcst t |])
      | Mc.COpp t -> EConstr.mkApp(Lazy.force coq_COpp, [| dump_Rcst t |])

  let rec parse_Rcst sigma term = 
    let (i,c) = get_left_construct sigma term in
      match i with
        | 1 -> Mc.C0
        | 2 -> Mc.C1
        | 3 -> Mc.CQ (parse_q sigma c.(0))
        | 4 -> Mc.CPlus(parse_Rcst sigma c.(0), parse_Rcst sigma c.(1))
        | 5 -> Mc.CMinus(parse_Rcst sigma c.(0), parse_Rcst sigma c.(1))
        | 6 -> Mc.CMult(parse_Rcst sigma c.(0), parse_Rcst sigma c.(1))
        | 7 -> Mc.CInv(parse_Rcst sigma c.(0))
        | 8 -> Mc.COpp(parse_Rcst sigma c.(0))
        | _ -> raise ParseError




  let rec parse_list sigma parse_elt term =
   let (i,c) = get_left_construct sigma term in
    match i with
     | 1 -> []
     | 2 -> parse_elt sigma c.(1) :: parse_list sigma parse_elt c.(2)
     | i -> raise ParseError

  let rec dump_list typ dump_elt l =
   match l with
    | [] -> EConstr.mkApp(Lazy.force coq_nil,[| typ |])
    | e :: l -> EConstr.mkApp(Lazy.force coq_cons,
                                [| typ; dump_elt e;dump_list typ dump_elt l|])

  let pp_list op cl elt o l =
   let rec _pp  o l =
    match l with
     | [] -> ()
     | [e] -> Printf.fprintf o "%a" elt e
     | e::l -> Printf.fprintf o "%a ,%a" elt e  _pp l in
    Printf.fprintf o "%s%a%s" op _pp l cl

  let pp_var  = pp_positive

  let dump_var = dump_positive

  let pp_expr pp_z o e =
  let rec pp_expr  o e =
   match e with
    | Mc.PEX n -> Printf.fprintf o "V %a" pp_var n
    | Mc.PEc z -> pp_z o z
    | Mc.PEadd(e1,e2) -> Printf.fprintf o "(%a)+(%a)" pp_expr e1 pp_expr e2
    | Mc.PEmul(e1,e2) -> Printf.fprintf o "%a*(%a)" pp_expr e1 pp_expr e2
    | Mc.PEopp e -> Printf.fprintf o "-(%a)" pp_expr e
    | Mc.PEsub(e1,e2) -> Printf.fprintf o "(%a)-(%a)" pp_expr e1 pp_expr e2
    | Mc.PEpow(e,n) -> Printf.fprintf o "(%a)^(%a)" pp_expr e pp_n  n in
    pp_expr o e

  let dump_expr typ dump_z e =
   let rec dump_expr  e =
   match e with
    | Mc.PEX n -> EConstr.mkApp(Lazy.force coq_PEX,[| typ; dump_var n |])
    | Mc.PEc z -> EConstr.mkApp(Lazy.force coq_PEc,[| typ ; dump_z z |])
    | Mc.PEadd(e1,e2) -> EConstr.mkApp(Lazy.force coq_PEadd,
                                       [| typ; dump_expr e1;dump_expr e2|])
    | Mc.PEsub(e1,e2) -> EConstr.mkApp(Lazy.force coq_PEsub,
                                       [| typ; dump_expr  e1;dump_expr  e2|])
    | Mc.PEopp e -> EConstr.mkApp(Lazy.force coq_PEopp,
                                  [| typ; dump_expr  e|])
    | Mc.PEmul(e1,e2) ->  EConstr.mkApp(Lazy.force coq_PEmul,
                                        [| typ; dump_expr  e1;dump_expr e2|])
    | Mc.PEpow(e,n) ->  EConstr.mkApp(Lazy.force coq_PEpow,
                                      [| typ; dump_expr  e; dump_n  n|])
      in
    dump_expr e

  let dump_pol typ dump_c e =
    let rec dump_pol e =
      match e with
        | Mc.Pc n -> EConstr.mkApp(Lazy.force coq_Pc, [|typ ; dump_c n|])
        | Mc.Pinj(p,pol) -> EConstr.mkApp(Lazy.force coq_Pinj , [| typ ; dump_positive p ; dump_pol pol|])
        | Mc.PX(pol1,p,pol2) -> EConstr.mkApp(Lazy.force coq_PX, [| typ ; dump_pol pol1 ; dump_positive p ; dump_pol pol2|]) in
      dump_pol e

  let pp_pol pp_c o e =
    let rec pp_pol o e =
      match e with
        | Mc.Pc n -> Printf.fprintf o "Pc %a" pp_c n
        | Mc.Pinj(p,pol) -> Printf.fprintf o "Pinj(%a,%a)" pp_positive p pp_pol pol
        | Mc.PX(pol1,p,pol2) -> Printf.fprintf o "PX(%a,%a,%a)" pp_pol pol1 pp_positive p pp_pol pol2 in
      pp_pol o e

  let pp_cnf pp_c o f =
    let pp_clause o l = List.iter (fun ((p,_),t) -> Printf.fprintf o "(%a @%a)" (pp_pol pp_c)  p Tag.pp t) l in
      List.iter (fun l -> Printf.fprintf o "[%a]" pp_clause l) f

  let dump_psatz typ dump_z e =
   let z = Lazy.force typ in
  let rec dump_cone e =
   match e with
    | Mc.PsatzIn n -> EConstr.mkApp(Lazy.force coq_PsatzIn,[| z; dump_nat n |])
    | Mc.PsatzMulC(e,c) -> EConstr.mkApp(Lazy.force coq_PsatzMultC,
                                         [| z; dump_pol z dump_z e ; dump_cone c |])
    | Mc.PsatzSquare e -> EConstr.mkApp(Lazy.force coq_PsatzSquare,
                                        [| z;dump_pol z dump_z e|])
    | Mc.PsatzAdd(e1,e2) -> EConstr.mkApp(Lazy.force coq_PsatzAdd,
                                          [| z; dump_cone e1; dump_cone e2|])
    | Mc.PsatzMulE(e1,e2) -> EConstr.mkApp(Lazy.force coq_PsatzMulE,
                                           [| z; dump_cone e1; dump_cone e2|])
    | Mc.PsatzC p -> EConstr.mkApp(Lazy.force coq_PsatzC,[| z; dump_z p|])
    | Mc.PsatzZ    -> EConstr.mkApp(Lazy.force coq_PsatzZ,[| z|]) in
   dump_cone e

  let  pp_psatz pp_z o e =
   let rec pp_cone o e =
    match e with
     | Mc.PsatzIn n ->
        Printf.fprintf o "(In %a)%%nat" pp_nat n
     | Mc.PsatzMulC(e,c) ->
        Printf.fprintf o "( %a [*] %a)" (pp_pol pp_z) e pp_cone c
     | Mc.PsatzSquare e ->
        Printf.fprintf o "(%a^2)" (pp_pol pp_z) e
     | Mc.PsatzAdd(e1,e2) ->
        Printf.fprintf o "(%a [+] %a)" pp_cone e1 pp_cone e2
     | Mc.PsatzMulE(e1,e2) ->
        Printf.fprintf o "(%a [*] %a)" pp_cone e1 pp_cone e2
     | Mc.PsatzC p ->
        Printf.fprintf o "(%a)%%positive" pp_z p
     | Mc.PsatzZ    ->
        Printf.fprintf o "0" in
    pp_cone o e

  let dump_op = function
   | Mc.OpEq-> Lazy.force coq_OpEq
   | Mc.OpNEq-> Lazy.force coq_OpNEq
   | Mc.OpLe -> Lazy.force coq_OpLe
   | Mc.OpGe -> Lazy.force coq_OpGe
   | Mc.OpGt-> Lazy.force coq_OpGt
   | Mc.OpLt-> Lazy.force coq_OpLt

  let pp_op o e=
   match e with
    | Mc.OpEq-> Printf.fprintf o "="
    | Mc.OpNEq-> Printf.fprintf o "<>"
    | Mc.OpLe -> Printf.fprintf o "=<"
    | Mc.OpGe -> Printf.fprintf o ">="
    | Mc.OpGt-> Printf.fprintf o ">"
    | Mc.OpLt-> Printf.fprintf o "<"

  let pp_cstr pp_z o {Mc.flhs = l ; Mc.fop = op ; Mc.frhs = r } =
   Printf.fprintf o"(%a %a %a)" (pp_expr pp_z) l pp_op op (pp_expr pp_z) r

  let dump_cstr typ dump_constant {Mc.flhs = e1 ; Mc.fop = o ; Mc.frhs = e2} =
    EConstr.mkApp(Lazy.force coq_Build,
                  [| typ; dump_expr typ dump_constant e1 ;
                     dump_op o ;
                     dump_expr typ dump_constant e2|])

  let assoc_const sigma x l =
   try
   snd (List.find (fun (x',y) -> EConstr.eq_constr sigma x (Lazy.force x')) l)
   with
     Not_found -> raise ParseError

  let zop_table = [
   coq_Zgt, Mc.OpGt ;
   coq_Zge, Mc.OpGe ;
   coq_Zlt, Mc.OpLt ;
   coq_Zle, Mc.OpLe ]

  let rop_table = [
   coq_Rgt, Mc.OpGt ;
   coq_Rge, Mc.OpGe ;
   coq_Rlt, Mc.OpLt ;
   coq_Rle, Mc.OpLe ]

  let qop_table = [
   coq_Qlt, Mc.OpLt ;
   coq_Qle, Mc.OpLe ;
   coq_Qeq, Mc.OpEq
  ]

  type gl = { env : Environ.env; sigma : Evd.evar_map }

  let is_convertible gl t1 t2 = 
   Reductionops.is_conv gl.env gl.sigma t1 t2

  let parse_zop gl (op,args) =
    let sigma = gl.sigma in
    match EConstr.kind sigma op with
    | Term.Const (x,_) -> (assoc_const sigma op zop_table, args.(0) , args.(1))
    | Term.Ind((n,0),_) ->
        if EConstr.eq_constr sigma op (Lazy.force coq_Eq) && is_convertible gl args.(0) (Lazy.force coq_Z)
        then (Mc.OpEq, args.(1), args.(2))
        else raise ParseError
    |   _ -> failwith "parse_zop"

  let parse_rop gl (op,args) =
    let sigma = gl.sigma in
    match EConstr.kind sigma op with
     | Term.Const (x,_) -> (assoc_const sigma op rop_table, args.(0) , args.(1))
     | Term.Ind((n,0),_) ->
        if EConstr.eq_constr sigma op (Lazy.force coq_Eq) && is_convertible gl args.(0) (Lazy.force coq_R)
        then (Mc.OpEq, args.(1), args.(2))
        else raise ParseError
    |   _ -> failwith "parse_zop"

  let parse_qop gl (op,args) =
    (assoc_const gl.sigma op qop_table, args.(0) , args.(1))

  let is_constant sigma t = (* This is an approx *)
   match EConstr.kind sigma t with
    | Term.Construct(i,_) -> true
    |   _ -> false

  type 'a op =
    | Binop of ('a Mc.pExpr -> 'a Mc.pExpr -> 'a Mc.pExpr)
    | Opp
    | Power
    | Ukn of string

  let assoc_ops sigma x l =
   try
     snd (List.find (fun (x',y) -> EConstr.eq_constr sigma x (Lazy.force x')) l)
   with
     Not_found -> Ukn "Oups"

  (**
    * MODULE: Env is for environment.
    *)

  module Env =
  struct
   type t = EConstr.constr list

   let compute_rank_add env sigma v =
    let rec _add env n v =
     match env with
      | [] -> ([v],n)
      | e::l ->
         if EConstr.eq_constr sigma e v
         then (env,n)
         else
          let (env,n) = _add l ( n+1) v in
           (e::env,n) in
    let (env, n) =  _add env 1 v in
     (env, CamlToCoq.positive n)

   let get_rank env sigma v = 

     let rec _get_rank env n =
       match env with
       | [] -> raise (Invalid_argument "get_rank")
      | e::l ->
         if EConstr.eq_constr sigma e v
         then n
         else  _get_rank l (n+1)  in 
     _get_rank env 1

       
   let empty = []

   let elements env = env

  end (* MODULE END: Env *)

  (**
    * This is the big generic function for expression parsers.
    *)

  let parse_expr sigma parse_constant parse_exp ops_spec env term =
    if debug
    then (
      let _, env = Pfedit.get_current_context () in
      Feedback.msg_debug (Pp.str "parse_expr: " ++ Printer.pr_leconstr_env env sigma term));

(*
    let constant_or_variable env term =
     try
      ( Mc.PEc (parse_constant term) , env)
     with ParseError ->
      let (env,n) = Env.compute_rank_add env term in
       (Mc.PEX  n , env) in
*)
    let parse_variable env term =
      let (env,n) = Env.compute_rank_add env sigma term in
        (Mc.PEX  n , env) in

    let rec parse_expr env term =
     let combine env op (t1,t2) =
      let (expr1,env) = parse_expr env t1 in
      let (expr2,env) = parse_expr env t2 in
      (op expr1 expr2,env) in

       try (Mc.PEc (parse_constant term) , env)
       with ParseError -> 
         match EConstr.kind sigma term with
           | Term.App(t,args) ->
               (
                 match EConstr.kind sigma t with
                   | Term.Const c ->
                       ( match assoc_ops sigma t ops_spec  with
                           | Binop f -> combine env f (args.(0),args.(1))
                   | Opp     -> let (expr,env) = parse_expr env args.(0) in
                       (Mc.PEopp expr, env)
                   | Power   ->
                       begin
                         try
                           let (expr,env) = parse_expr env args.(0) in
                           let power = (parse_exp expr args.(1)) in
                             (power  , env)
                         with e when CErrors.noncritical e ->
                           (* if the exponent is a variable *)
                           let (env,n) = Env.compute_rank_add env sigma term in (Mc.PEX n, env)
                       end
                   | Ukn  s ->
                       if debug
                       then (Printf.printf "unknown op: %s\n" s; flush stdout;);
                       let (env,n) = Env.compute_rank_add env sigma term in (Mc.PEX n, env)
               )
                   |   _ -> parse_variable env term
               )
           | _ -> parse_variable env term in
     parse_expr env term

  let zop_spec =
    [
      coq_Zplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
      coq_Zminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
      coq_Zmult  , Binop  (fun x y -> Mc.PEmul (x,y)) ;
      coq_Zopp   , Opp ;
      coq_Zpower , Power]

  let qop_spec =
   [
      coq_Qplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
      coq_Qminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
      coq_Qmult  , Binop  (fun x y -> Mc.PEmul (x,y)) ;
      coq_Qopp   , Opp ;
      coq_Qpower , Power]

  let rop_spec =
   [
      coq_Rplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
      coq_Rminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
      coq_Rmult  , Binop  (fun x y -> Mc.PEmul (x,y)) ;
      coq_Ropp   , Opp ;
      coq_Rpower , Power]

  let zconstant = parse_z
  let qconstant = parse_q


  let rconst_assoc = 
    [ 
      coq_Rplus , (fun x y -> Mc.CPlus(x,y)) ;
      coq_Rminus , (fun x y -> Mc.CMinus(x,y)) ; 
      coq_Rmult  , (fun x y -> Mc.CMult(x,y)) ; 
    (*      coq_Rdiv   , (fun x y -> Mc.CMult(x,Mc.CInv y)) ;*)
    ]

  let rec rconstant sigma term =
   match EConstr.kind sigma term with
    | Term.Const x ->
        if EConstr.eq_constr sigma term (Lazy.force coq_R0)
        then Mc.C0
        else if EConstr.eq_constr sigma term (Lazy.force coq_R1)
        then Mc.C1
        else raise ParseError
    | Term.App(op,args) -> 
        begin
          try
            (* the evaluation order is important in the following *)
            let f = assoc_const sigma op rconst_assoc in
            let a = rconstant sigma args.(0) in
            let b = rconstant sigma args.(1) in
            f a b
          with
              ParseError -> 
                match op with
                | op when EConstr.eq_constr sigma op (Lazy.force coq_Rinv) ->
                  let arg = rconstant sigma args.(0) in 
                  if Mc.qeq_bool (Mc.q_of_Rcst arg) {Mc.qnum = Mc.Z0 ; Mc.qden = Mc.XH}
                  then raise ParseError (* This is a division by zero -- no semantics *)
                  else Mc.CInv(arg) 
                | op when EConstr.eq_constr sigma op (Lazy.force coq_IQR)  -> Mc.CQ (parse_q sigma args.(0))
                | op when EConstr.eq_constr sigma op   (Lazy.force coq_IZR)  -> Mc.CZ (parse_z sigma args.(0))
                | _ ->  raise ParseError
        end

    |  _ -> raise ParseError


  let rconstant sigma term =
    let _, env = Pfedit.get_current_context () in
    if debug
    then Feedback.msg_debug (Pp.str "rconstant: " ++ Printer.pr_leconstr_env env sigma term ++ fnl ());
    let res = rconstant sigma term in
      if debug then 
        (Printf.printf "rconstant -> %a\n" pp_Rcst res ; flush stdout) ;
      res


  let parse_zexpr sigma =  parse_expr sigma
    (zconstant sigma)
    (fun expr x ->
      let exp = (parse_z sigma x) in
        match exp with
          | Mc.Zneg _ -> Mc.PEc Mc.Z0
          |   _     ->  Mc.PEpow(expr, Mc.Z.to_N exp))
    zop_spec

  let parse_qexpr sigma =  parse_expr sigma
   (qconstant sigma)
    (fun expr x ->
      let exp = parse_z sigma x in
        match exp with
          | Mc.Zneg _ ->
              begin
                match expr with
                | Mc.PEc q -> Mc.PEc (Mc.qpower q exp)
                |     _    -> print_string "parse_qexpr parse error" ; flush stdout ; raise ParseError
              end
          | _     ->  let exp = Mc.Z.to_N  exp in
                        Mc.PEpow(expr,exp))
   qop_spec

  let parse_rexpr sigma =  parse_expr sigma
   (rconstant sigma)
   (fun expr x ->
      let exp = Mc.N.of_nat (parse_nat sigma x) in
        Mc.PEpow(expr,exp))
   rop_spec

  let  parse_arith parse_op parse_expr env cstr gl =
    let sigma = gl.sigma in
    if debug
    then Feedback.msg_debug (Pp.str "parse_arith: " ++ Printer.pr_leconstr_env gl.env sigma cstr ++ fnl ());
    match EConstr.kind sigma cstr with
    | Term.App(op,args) ->
       let (op,lhs,rhs) = parse_op gl (op,args) in
       let (e1,env) = parse_expr sigma env lhs in
       let (e2,env) = parse_expr sigma env rhs in
        ({Mc.flhs = e1; Mc.fop = op;Mc.frhs = e2},env)
    |  _ -> failwith "error : parse_arith(2)"

  let parse_zarith = parse_arith parse_zop parse_zexpr

  let parse_qarith = parse_arith parse_qop parse_qexpr

  let parse_rarith = parse_arith parse_rop parse_rexpr

  (* generic parsing of arithmetic expressions *)

  let rec f2f = function
   | TT  -> Mc.TT
   | FF  -> Mc.FF
   | X _  -> Mc.X
   | A (x,_,_) -> Mc.A x
   | C (a,b)  -> Mc.Cj(f2f a,f2f b)
   | D (a,b)  -> Mc.D(f2f a,f2f b)
   | N (a) -> Mc.N(f2f a)
   | I(a,_,b)  -> Mc.I(f2f a,f2f b)


  let mkC f1 f2 = C(f1,f2)
  let mkD f1 f2 = D(f1,f2)
  let mkIff f1 f2 = C(I(f1,None,f2),I(f2,None,f1))
  let mkI f1 f2 = I(f1,None,f2)

  let mkformula_binary g term f1 f2 =
    match f1 , f2 with
    |  X _  , X _ -> X(term)
    |   _         -> g f1 f2

  (**
    * This is the big generic function for formula parsers.
    *)
  
  let parse_formula gl parse_atom env tg term =
    let sigma = gl.sigma in

    let parse_atom env tg t =
      try
        let (at,env) = parse_atom env t gl in
        (A(at,tg,t), env,Tag.next tg)
      with e when CErrors.noncritical e -> (X(t),env,tg) in

    let is_prop term =
      let sort  = Retyping.get_sort_of gl.env gl.sigma term in 
     Sorts.is_prop sort in
     
    let rec xparse_formula env tg term =
      match EConstr.kind sigma term with
      | Term.App(l,rst) ->
        (match rst with
        | [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_and) ->
          let f,env,tg = xparse_formula env tg a in
          let g,env, tg = xparse_formula env tg b  in
          mkformula_binary mkC term f g,env,tg
        | [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_or) ->
          let f,env,tg = xparse_formula env tg a in
          let g,env,tg  = xparse_formula env tg b in
          mkformula_binary mkD term f g,env,tg
        | [|a|] when EConstr.eq_constr sigma l (Lazy.force coq_not) ->
          let (f,env,tg) = xparse_formula env tg a in (N(f), env,tg)
        | [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_iff) ->
          let f,env,tg = xparse_formula env tg a in
          let g,env,tg = xparse_formula env tg b in
          mkformula_binary mkIff term f g,env,tg
        | _ -> parse_atom env tg term)
      | Term.Prod(typ,a,b) when EConstr.Vars.noccurn sigma 1 b ->
        let f,env,tg = xparse_formula env tg a in
        let g,env,tg = xparse_formula env tg b in
        mkformula_binary mkI term f g,env,tg
      | _ when EConstr.eq_constr sigma term (Lazy.force coq_True) -> (TT,env,tg)
      | _ when EConstr.eq_constr sigma term (Lazy.force coq_False) -> (FF,env,tg)
      | _ when is_prop term -> X(term),env,tg
      | _ -> raise ParseError
    in
    xparse_formula env tg  ((*Reductionops.whd_zeta*) term)

  let dump_formula typ dump_atom f =
   let rec xdump f =
    match f with
     | TT  -> EConstr.mkApp(Lazy.force coq_TT,[|typ|])
     | FF  -> EConstr.mkApp(Lazy.force coq_FF,[|typ|])
     | C(x,y) -> EConstr.mkApp(Lazy.force coq_And,[|typ ; xdump x ; xdump y|])
     | D(x,y) -> EConstr.mkApp(Lazy.force coq_Or,[|typ ; xdump x ; xdump y|])
     | I(x,_,y) -> EConstr.mkApp(Lazy.force coq_Impl,[|typ ; xdump x ; xdump y|])
     | N(x) -> EConstr.mkApp(Lazy.force coq_Neg,[|typ ; xdump x|])
     | A(x,_,_) -> EConstr.mkApp(Lazy.force coq_Atom,[|typ ; dump_atom x|])
     | X(t) -> EConstr.mkApp(Lazy.force coq_X,[|typ ; t|])  in
   xdump f


  let prop_env_of_formula sigma form =
    let rec doit env = function
      | TT | FF | A(_,_,_) -> env
      | X t -> fst (Env.compute_rank_add env sigma t)
      | C(f1,f2) | D(f1,f2) | I(f1,_,f2) -> 
        doit (doit env f1) f2
      | N f -> doit env f in
    
    doit [] form

  let var_env_of_formula form =

    let rec vars_of_expr  = function
      | Mc.PEX n -> ISet.singleton (CoqToCaml.positive n)
      | Mc.PEc z -> ISet.empty
      | Mc.PEadd(e1,e2) | Mc.PEmul(e1,e2) | Mc.PEsub(e1,e2) ->
        ISet.union (vars_of_expr e1) (vars_of_expr e2)
      | Mc.PEopp e | Mc.PEpow(e,_)-> vars_of_expr e
    in
    
    let vars_of_atom  {Mc.flhs ; Mc.fop; Mc.frhs} =
      ISet.union (vars_of_expr flhs) (vars_of_expr frhs) in
      
    let rec doit = function
      |  TT | FF | X _ -> ISet.empty
      | A (a,t,c) -> vars_of_atom a
      | C(f1,f2) | D(f1,f2) |I (f1,_,f2) -> ISet.union (doit f1) (doit f2)
      | N f -> doit f in

    doit  form
    


      
  type 'cst dump_expr =  (* 'cst is the type of the syntactic constants *)
    {
      interp_typ : EConstr.constr;
      dump_cst : 'cst -> EConstr.constr;
      dump_add : EConstr.constr;
      dump_sub : EConstr.constr;
      dump_opp : EConstr.constr;
      dump_mul : EConstr.constr;
      dump_pow : EConstr.constr;
      dump_pow_arg : Mc.n -> EConstr.constr;
      dump_op  : (Mc.op2 * EConstr.constr) list
    }

let dump_zexpr = lazy
  {
    interp_typ = Lazy.force coq_Z;
    dump_cst = dump_z;
    dump_add = Lazy.force coq_Zplus;
    dump_sub = Lazy.force coq_Zminus;
    dump_opp = Lazy.force coq_Zopp;
    dump_mul = Lazy.force coq_Zmult;
    dump_pow = Lazy.force coq_Zpower;
    dump_pow_arg = (fun n -> dump_z (CamlToCoq.z (CoqToCaml.n n)));
    dump_op  = List.map (fun (x,y) -> (y,Lazy.force x)) zop_table
  }

let dump_qexpr = lazy
  {
    interp_typ = Lazy.force coq_Q;
    dump_cst = dump_q;
    dump_add = Lazy.force coq_Qplus;
    dump_sub = Lazy.force coq_Qminus;
    dump_opp = Lazy.force coq_Qopp;
    dump_mul = Lazy.force coq_Qmult;
    dump_pow = Lazy.force coq_Qpower;
    dump_pow_arg = (fun n -> dump_z (CamlToCoq.z (CoqToCaml.n n)));
    dump_op  = List.map (fun (x,y) -> (y,Lazy.force x)) qop_table      
  }

  let dump_positive_as_R p =
  let mult = Lazy.force coq_Rmult in
  let add  = Lazy.force coq_Rplus  in

  let one  = Lazy.force coq_R1    in 
  let mk_add x y  = EConstr.mkApp(add,[|x;y|]) in
  let mk_mult x y = EConstr.mkApp(mult,[|x;y|]) in

  let two  = mk_add one one in 

  let rec dump_positive p = 
      match p with
      | Mc.XH   -> one
      | Mc.XO p -> mk_mult two (dump_positive p)
      | Mc.XI p -> mk_add one (mk_mult two (dump_positive p)) in

  dump_positive p

let dump_n_as_R n =
  let z = CoqToCaml.n n in
  if z = 0
  then Lazy.force coq_R0
  else dump_positive_as_R (CamlToCoq.positive z)
    

let rec dump_Rcst_as_R cst = 
  match cst with
  | Mc.C0 -> Lazy.force coq_R0 
  | Mc.C1 ->  Lazy.force coq_R1
  | Mc.CQ q ->  EConstr.mkApp(Lazy.force coq_IQR, [| dump_q q |])
  | Mc.CZ z -> EConstr.mkApp(Lazy.force coq_IZR, [| dump_z z |])
  | Mc.CPlus(x,y) -> EConstr.mkApp(Lazy.force coq_Rplus, [| dump_Rcst_as_R x ; dump_Rcst_as_R y |])
  | Mc.CMinus(x,y) -> EConstr.mkApp(Lazy.force coq_Rminus, [| dump_Rcst_as_R x ; dump_Rcst_as_R y |])
  | Mc.CMult(x,y) -> EConstr.mkApp(Lazy.force coq_Rmult, [| dump_Rcst_as_R x ; dump_Rcst_as_R y |])
  | Mc.CInv t -> EConstr.mkApp(Lazy.force coq_Rinv, [| dump_Rcst_as_R t |])
  | Mc.COpp t -> EConstr.mkApp(Lazy.force coq_Ropp, [| dump_Rcst_as_R t |])


let dump_rexpr = lazy
  {
    interp_typ = Lazy.force coq_R;
    dump_cst = dump_Rcst_as_R;
    dump_add = Lazy.force coq_Rplus;
    dump_sub = Lazy.force coq_Rminus;
    dump_opp = Lazy.force coq_Ropp;
    dump_mul = Lazy.force coq_Rmult;
    dump_pow = Lazy.force coq_Rpower;
    dump_pow_arg = (fun n -> dump_nat (CamlToCoq.nat (CoqToCaml.n n)));
    dump_op  = List.map (fun (x,y) -> (y,Lazy.force x)) rop_table      
  }


    
    
(** [make_goal_of_formula depxr vars props form] where 
     - vars is an environment for the arithmetic variables occuring in form
     - props is an environment for the propositions occuring in form
    @return a goal where all the variables and propositions of the formula are quantified

*) 

let prodn n env b =
  let rec prodrec = function
    | (0, env, b)        -> b
    | (n, ((v,t)::l), b) -> prodrec (n-1,  l, EConstr.mkProd (v,t,b))
    | _ -> assert false
  in
  prodrec (n,env,b)

let make_goal_of_formula sigma dexpr form =

  let vars_idx =
    List.mapi (fun i v -> (v, i+1))  (ISet.elements (var_env_of_formula form)) in

  (*  List.iter (fun (v,i) -> Printf.fprintf stdout "var %i has index %i\n" v i) vars_idx ;*)
  
  let props     = prop_env_of_formula sigma form in 

  let vars_n  = List.map (fun (_,i) -> (Names.Id.of_string (Printf.sprintf "__x%i" i)) , dexpr.interp_typ) vars_idx in 
  let props_n = List.mapi (fun i _ -> (Names.Id.of_string (Printf.sprintf "__p%i" (i+1))) , EConstr.mkProp) props in 

  let var_name_pos = List.map2 (fun (idx,_) (id,_) -> id,idx) vars_idx vars_n in

  let  dump_expr i e =
    let rec dump_expr  = function
    | Mc.PEX n -> EConstr.mkRel (i+(List.assoc (CoqToCaml.positive n)  vars_idx))
    | Mc.PEc z -> dexpr.dump_cst z
    | Mc.PEadd(e1,e2) -> EConstr.mkApp(dexpr.dump_add,
                               [| dump_expr e1;dump_expr e2|])
    | Mc.PEsub(e1,e2) -> EConstr.mkApp(dexpr.dump_sub,
                               [| dump_expr  e1;dump_expr  e2|])
    | Mc.PEopp e -> EConstr.mkApp(dexpr.dump_opp,
                                  [| dump_expr  e|])
    | Mc.PEmul(e1,e2) -> EConstr.mkApp(dexpr.dump_mul,
                                       [| dump_expr  e1;dump_expr e2|])
    | Mc.PEpow(e,n) -> EConstr.mkApp(dexpr.dump_pow,
                                     [| dump_expr  e; dexpr.dump_pow_arg  n|])
    in dump_expr e in
  
  let mkop op e1 e2 =
      try
        EConstr.mkApp(List.assoc op dexpr.dump_op, [| e1; e2|])
      with Not_found ->
        EConstr.mkApp(Lazy.force coq_Eq,[|dexpr.interp_typ ; e1 ;e2|]) in
    
  let dump_cstr i { Mc.flhs ; Mc.fop ; Mc.frhs } =
    mkop fop (dump_expr i flhs) (dump_expr i frhs) in
  
  let rec xdump pi xi f =
    match f with
    | TT  -> Lazy.force coq_True
    | FF  -> Lazy.force coq_False
    | C(x,y) -> EConstr.mkApp(Lazy.force coq_and,[|xdump pi xi x ; xdump pi xi y|])
    | D(x,y) -> EConstr.mkApp(Lazy.force coq_or,[| xdump pi xi x ; xdump pi xi y|])
    | I(x,_,y) -> EConstr.mkArrow (xdump pi xi x) (xdump (pi+1) (xi+1) y)
    | N(x) -> EConstr.mkArrow (xdump pi xi x) (Lazy.force coq_False)
    | A(x,_,_) -> dump_cstr xi x
    | X(t) -> let idx = Env.get_rank props sigma t in
              EConstr.mkRel (pi+idx) in 
  
  let nb_vars  = List.length vars_n  in
  let nb_props = List.length props_n in 

  (*  Printf.fprintf stdout "NBProps : %i\n" nb_props ;*)
  
  let subst_prop p =
    let idx = Env.get_rank props sigma p in
    EConstr.mkVar (Names.Id.of_string (Printf.sprintf "__p%i"  idx)) in 

  let form' = map_prop subst_prop   form in

  (prodn nb_props (List.map (fun (x,y) -> Name.Name x,y) props_n)
     (prodn nb_vars (List.map (fun (x,y) -> Name.Name x,y) vars_n)
        (xdump (List.length vars_n) 0  form)),
   List.rev props_n, List.rev var_name_pos,form')
    
  (**
     * Given a conclusion and a list of affectations, rebuild a term prefixed by
     * the appropriate letins.
     * TODO: reverse the list of bindings!
  *)
    
  let set l concl =
   let rec xset acc = function
    | [] -> acc
    | (e::l) ->
       let (name,expr,typ) = e in
        xset (EConstr.mkNamedLetIn
               (Names.Id.of_string name)
               expr typ acc) l in
    xset concl l

end (**
      * MODULE END: M 
      *)

open M

let rec sig_of_cone = function
 | Mc.PsatzIn n ->          [CoqToCaml.nat n]
 | Mc.PsatzMulE(w1,w2) ->   (sig_of_cone w1)@(sig_of_cone w2)
 | Mc.PsatzMulC(w1,w2) ->   (sig_of_cone w2)
 | Mc.PsatzAdd(w1,w2) ->    (sig_of_cone w1)@(sig_of_cone w2)
 | _  -> []

let same_proof sg cl1 cl2 =
 let rec xsame_proof sg =
  match sg with
   | [] -> true
   | n::sg ->
     (try Int.equal (List.nth cl1 n) (List.nth cl2 n) with Invalid_argument _ -> false)
      && (xsame_proof sg ) in
  xsame_proof sg

let tags_of_clause tgs wit clause =
 let rec xtags tgs = function
  | Mc.PsatzIn n -> Names.Id.Set.union tgs
     (snd (List.nth clause (CoqToCaml.nat n) ))
  | Mc.PsatzMulC(e,w) -> xtags tgs w
  | Mc.PsatzMulE (w1,w2) | Mc.PsatzAdd(w1,w2) -> xtags (xtags tgs w1) w2
  |   _   -> tgs in
  xtags tgs wit

(*let tags_of_cnf wits cnf =
 List.fold_left2 (fun acc w cl -> tags_of_clause acc w cl)
  Names.Id.Set.empty wits cnf *)

let find_witness prover polys1 = try_any prover polys1

let rec witness prover   l1 l2 =
 match l2 with
  | [] -> Some []
  | e :: l2 ->
     match find_witness prover (e::l1) with
      | None -> None
      | Some w ->
         (match witness prover l1 l2 with
          | None -> None
          | Some l -> Some (w::l)
         )

let rec apply_ids t ids =
 match ids with
  | [] -> t
  | i::ids -> apply_ids (mkApp(t,[| mkVar i |])) ids

let coq_Node = 
 lazy (gen_constant_in_modules "VarMap"
   [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Node")
let coq_Leaf = 
 lazy (gen_constant_in_modules "VarMap"
   [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Leaf")
let coq_Empty = 
 lazy (gen_constant_in_modules "VarMap"
   [["Coq" ; "micromega" ;"VarMap"];["VarMap"]] "Empty")

let coq_VarMap = 
  lazy (gen_constant_in_modules "VarMap"
     [["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t")
 

let rec dump_varmap typ m =
  match m with
  | Mc.Empty -> EConstr.mkApp(Lazy.force coq_Empty,[| typ |])
  | Mc.Leaf v -> EConstr.mkApp(Lazy.force coq_Leaf,[| typ; v|])
  | Mc.Node(l,o,r) ->
    EConstr.mkApp (Lazy.force coq_Node, [| typ; dump_varmap typ l; o ; dump_varmap typ r |])


let vm_of_list env =
  match env with
  | [] -> Mc.Empty
  | (d,_)::_ -> 
    List.fold_left (fun vm (c,i) ->
      Mc.vm_add d (CamlToCoq.positive i) c vm) Mc.Empty env 


let rec pp_varmap o vm =
 match vm with
  | Mc.Empty -> output_string o "[]"
  | Mc.Leaf z -> Printf.fprintf o "[%a]" pp_z  z
  | Mc.Node(l,z,r) -> Printf.fprintf o "[%a, %a, %a]" pp_varmap l  pp_z z pp_varmap r



let rec dump_proof_term = function
  | Micromega.DoneProof -> Lazy.force coq_doneProof
  | Micromega.RatProof(cone,rst) ->
    EConstr.mkApp(Lazy.force coq_ratProof, [| dump_psatz coq_Z dump_z cone; dump_proof_term rst|])
 | Micromega.CutProof(cone,prf) ->
    EConstr.mkApp(Lazy.force coq_cutProof,
              [| dump_psatz coq_Z dump_z cone ;
                 dump_proof_term prf|])
 | Micromega.EnumProof(c1,c2,prfs) ->
    EConstr.mkApp (Lazy.force coq_enumProof,
                   [|  dump_psatz coq_Z dump_z c1 ; dump_psatz coq_Z dump_z c2 ;
                       dump_list (Lazy.force coq_proofTerm) dump_proof_term prfs |])


let rec size_of_psatz = function
  | Micromega.PsatzIn _ -> 1
  | Micromega.PsatzSquare _ -> 1
  | Micromega.PsatzMulC(_,p) -> 1 + (size_of_psatz p)
  | Micromega.PsatzMulE(p1,p2) | Micromega.PsatzAdd(p1,p2) -> size_of_psatz p1 + size_of_psatz p2
  | Micromega.PsatzC _ -> 1
  | Micromega.PsatzZ   -> 1

let rec size_of_pf = function
  | Micromega.DoneProof -> 1
  | Micromega.RatProof(p,a) -> (size_of_pf a) + (size_of_psatz p)
  | Micromega.CutProof(p,a) -> (size_of_pf a) + (size_of_psatz p)
  | Micromega.EnumProof(p1,p2,l) -> (size_of_psatz p1) + (size_of_psatz p2) + (List.fold_left (fun acc p -> size_of_pf p + acc) 0 l)

let dump_proof_term t = 
  if debug then  Printf.printf "dump_proof_term %i\n" (size_of_pf t) ; 
  dump_proof_term t



let pp_q o q = Printf.fprintf o "%a/%a" pp_z q.Micromega.qnum pp_positive q.Micromega.qden


let rec pp_proof_term o = function
  | Micromega.DoneProof -> Printf.fprintf o "D"
  | Micromega.RatProof(cone,rst) -> Printf.fprintf o "R[%a,%a]" (pp_psatz  pp_z) cone pp_proof_term rst
  | Micromega.CutProof(cone,rst) -> Printf.fprintf o "C[%a,%a]" (pp_psatz  pp_z) cone pp_proof_term rst
  | Micromega.EnumProof(c1,c2,rst) ->
      Printf.fprintf o "EP[%a,%a,%a]"
        (pp_psatz pp_z) c1 (pp_psatz pp_z) c2
     (pp_list "[" "]" pp_proof_term) rst

let rec parse_hyps gl parse_arith env tg hyps =
 match hyps with
  | [] -> ([],env,tg)
  | (i,t)::l ->
     let (lhyps,env,tg) = parse_hyps gl parse_arith env tg l in
      try
       let (c,env,tg) = parse_formula gl parse_arith env  tg t in
        ((i,c)::lhyps, env,tg)
      with e when CErrors.noncritical e -> (lhyps,env,tg)
       (*(if debug then Printf.printf "parse_arith : %s\n" x);*)


(*exception ParseError*)

let parse_goal gl parse_arith env hyps term =
 (*  try*)
 let (f,env,tg) = parse_formula gl parse_arith env (Tag.from 0) term in
 let (lhyps,env,tg) = parse_hyps gl parse_arith env tg hyps in
  (lhyps,f,env)
   (*  with Failure x -> raise ParseError*)

(**
  * The datastructures that aggregate theory-dependent proof values.
  *)
type ('synt_c, 'prf) domain_spec = {
  typ : EConstr.constr; (* is the type of the interpretation domain - Z, Q, R*)
  coeff : EConstr.constr ; (* is the type of the syntactic coeffs - Z , Q , Rcst *)
  dump_coeff : 'synt_c -> EConstr.constr ; 
  proof_typ  : EConstr.constr ; 
  dump_proof   : 'prf -> EConstr.constr
}

let zz_domain_spec  = lazy {
 typ = Lazy.force coq_Z;
 coeff = Lazy.force coq_Z;
 dump_coeff = dump_z ;
 proof_typ = Lazy.force coq_proofTerm ;
 dump_proof = dump_proof_term
}

let qq_domain_spec  = lazy {
 typ = Lazy.force coq_Q;
 coeff = Lazy.force coq_Q;
 dump_coeff = dump_q ;
 proof_typ = Lazy.force coq_QWitness ;
 dump_proof = dump_psatz coq_Q dump_q
}

let rcst_domain_spec  = lazy {
 typ = Lazy.force coq_R;
 coeff = Lazy.force coq_Rcst;
 dump_coeff = dump_Rcst;
 proof_typ = Lazy.force coq_QWitness ;
 dump_proof = dump_psatz coq_Q dump_q
}

(** Naive topological sort of constr according to the subterm-ordering *)

(* An element is minimal x is minimal w.r.t y if 
   x <= y or (x and y are incomparable) *)

let is_min le x y =
  if le x y then true
  else    if le y x then false else true

let is_minimal le l c = List.for_all (is_min le c) l
    
let find_rem p l =
  let rec xfind_rem  acc l =
    match l with
    | [] -> (None, acc)
    | x :: l -> if p x then (Some x, acc @ l)
      else xfind_rem (x::acc) l in
  xfind_rem [] l

let find_minimal le l = find_rem (is_minimal le l) l
  
let rec mk_topo_order le l =
  match find_minimal le l with
  | (None , _) -> []
  | (Some v,l') -> v ::  (mk_topo_order le l')

    
let topo_sort_constr l =
  mk_topo_order (fun c t -> Termops.dependent Evd.empty (** FIXME *) (EConstr.of_constr c) (EConstr.of_constr t)) l


(**
  * Instanciate the current Coq goal with a Micromega formula, a varmap, and a
  * witness.
  *)

let micromega_order_change spec cert cert_typ env ff  (*: unit Proofview.tactic*) = 
 (* let ids = Util.List.map_i (fun i _ -> (Names.Id.of_string ("__v"^(string_of_int i)))) 0 env in *)
 let formula_typ = (EConstr.mkApp (Lazy.force coq_Cstr,[|spec.coeff|])) in
 let ff  = dump_formula formula_typ (dump_cstr spec.coeff spec.dump_coeff) ff in
 let vm = dump_varmap (spec.typ) (vm_of_list env) in
 (* todo : directly generate the proof term - or generalize before conversion? *)
  Proofview.Goal.nf_enter begin fun gl -> 
   Tacticals.New.tclTHENLIST
    [
     Tactics.change_concl
    (set
      [
       ("__ff", ff, EConstr.mkApp(Lazy.force coq_Formula, [|formula_typ |]));
       ("__varmap", vm, EConstr.mkApp(Lazy.force coq_VarMap, [|spec.typ|]));
       ("__wit", cert, cert_typ)
      ]
      (Tacmach.New.pf_concl gl))
  ] 
  end


(**
  * The datastructures that aggregate prover attributes.
  *)

type ('option,'a,'prf) prover = {
  name : string ; (* name of the prover *)
 get_option : unit ->'option ; (* find the options of the prover *)              
 prover : 'option * 'a list -> 'prf option ; (* the prover itself *)
  hyps : 'prf -> ISet.t ; (* extract the indexes of the hypotheses really used in the proof *)
  compact : 'prf -> (int -> int) -> 'prf ; (* remap the hyp indexes according to function *)
  pp_prf : out_channel -> 'prf -> unit ;(* pretting printing of proof *)
  pp_f   : out_channel -> 'a   -> unit (* pretty printing of the formulas (polynomials)*)
}


 
(**
  * Given a list of provers and a disjunction of atoms, find a proof of any of
  * the atoms.  Returns an (optional) pair of a proof and a prover
  * datastructure.
  *)

let find_witness provers polys1 =
  let provers = List.map (fun p ->
    (fun l ->
      match p.prover (p.get_option (),l) with
        | None -> None
        | Some prf -> Some(prf,p)) , p.name) provers in
  try_any provers (List.map fst polys1)

(**
  * Given a list of provers and a CNF, find a proof for each of the clauses.
  * Return the proofs as a list.
  *)

let witness_list prover l =
 let rec xwitness_list l =
  match l with
   | [] -> Some []
   | e :: l ->
      match find_witness prover e  with
       | None -> None
       | Some w ->
          (match xwitness_list l with
           | None -> None
           | Some l -> Some (w :: l)
          ) in
  xwitness_list l

let witness_list_tags  = witness_list

(* *Deprecated* let is_singleton = function [] -> true | [e] -> true | _ -> false *)

let pp_ml_list pp_elt o l =
  output_string o "[" ;
  List.iter (fun x -> Printf.fprintf o "%a ;" pp_elt x) l ;
  output_string o "]"

(**
  * Prune the proof object, according to the 'diff' between two cnf formulas.
  *)

let compact_proofs (cnf_ff: 'cst cnf) res (cnf_ff': 'cst cnf) =

  let compact_proof (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) =
    let new_cl = Mutils.mapi (fun (f,_) i -> (f,i)) new_cl in
    let remap i =
      let formula = try fst (List.nth old_cl i) with Failure _ -> failwith "bad old index" in
      List.assoc formula new_cl in
(*    if debug then
      begin
        Printf.printf "\ncompact_proof : %a %a %a"
          (pp_ml_list prover.pp_f) (List.map fst old_cl)
          prover.pp_prf prf
          (pp_ml_list prover.pp_f) (List.map fst new_cl)   ;
          flush stdout
      end ; *)
    let res = try prover.compact prf remap with x when CErrors.noncritical x ->
      if debug then Printf.fprintf stdout "Proof compaction %s" (Printexc.to_string x) ;
      (* This should not happen -- this is the recovery plan... *)
      match prover.prover (prover.get_option () ,List.map fst new_cl) with
        | None -> failwith "proof compaction error"
        | Some p ->  p
    in
    if debug then
      begin
        Printf.printf " -> %a\n"
          prover.pp_prf res ;
        flush stdout
      end ;
    res in

  let is_proof_compatible (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) =
    let hyps_idx = prover.hyps prf in
    let hyps = selecti hyps_idx old_cl in
      is_sublist Pervasives.(=) hyps new_cl in

  let cnf_res = List.combine cnf_ff res in (* we get pairs clause * proof *)

  List.map (fun x ->
    let (o,p) = List.find (fun (l,p) -> is_proof_compatible l p x) cnf_res
    in compact_proof o p x) cnf_ff'


(**
  * "Hide out" tagged atoms of a formula by transforming them into generic
  * variables. See the Tag module in mutils.ml for more.
  *)

let abstract_formula hyps f =
  let rec xabs f =
    match f with
      | X c -> X c
      | A(a,t,term) -> if TagSet.mem t hyps then A(a,t,term) else X(term)
      | C(f1,f2) ->
          (match xabs f1 , xabs f2 with
            |   X a1    ,  X a2   -> X (EConstr.mkApp(Lazy.force coq_and, [|a1;a2|]))
            |    f1     , f2      -> C(f1,f2) )
      | D(f1,f2) ->
          (match xabs f1 , xabs f2 with
            |   X a1    ,  X a2   -> X (EConstr.mkApp(Lazy.force coq_or, [|a1;a2|]))
            |    f1     , f2      -> D(f1,f2) )
      | N(f) ->
          (match xabs f with
            |   X a    -> X (EConstr.mkApp(Lazy.force coq_not, [|a|]))
            |     f     -> N f)
      | I(f1,hyp,f2) ->
          (match xabs f1 , hyp, xabs f2 with
            | X a1      , Some _ , af2    ->  af2
            | X a1      , None   , X a2   -> X (EConstr.mkArrow a1 a2)
            |   af1     ,  _     , af2    -> I(af1,hyp,af2)
          )
      | FF -> FF
      | TT -> TT
  in  xabs f


(* [abstract_wrt_formula] is used in contexts whre f1 is already an abstraction of f2   *)
let rec abstract_wrt_formula f1 f2 = 
  match f1 , f2 with
    | X c  , _   -> X c
    | A _  , A _ -> f2
    | C(a,b) , C(a',b') -> C(abstract_wrt_formula a a', abstract_wrt_formula b b')
    | D(a,b) , D(a',b') -> D(abstract_wrt_formula a a', abstract_wrt_formula b b')
    | I(a,_,b) , I(a',x,b') -> I(abstract_wrt_formula a a',x, abstract_wrt_formula b b')
    | FF , FF -> FF
    | TT , TT -> TT
    | N x , N y -> N(abstract_wrt_formula x y)
    |    _    -> failwith "abstract_wrt_formula"

(**
  * This exception is raised by really_call_csdpcert if Coq's configure didn't
  * find a CSDP executable.
  *)

exception CsdpNotFound

  
(**
  * This is the core of Micromega: apply the prover, analyze the result and
  * prune unused fomulas, and finally modify the proof state.
  *)

let formula_hyps_concl hyps concl = 
  List.fold_right
   (fun (id,f) (cc,ids) ->
    match f with
      X _ -> (cc,ids)
     | _ -> (I(f,Some id,cc), id::ids))
    hyps (concl,[])


let micromega_tauto negate normalise unsat deduce spec prover env polys1 polys2 gl =

 (* Express the goal as one big implication *)
 let (ff,ids) = formula_hyps_concl polys1 polys2 in

 (* Convert the aplpication into a (mc_)cnf (a list of lists of formulas) *)
 let cnf_ff,cnf_ff_tags = cnf negate normalise unsat deduce ff in

 if debug then
   begin
     Feedback.msg_notice (Pp.str "Formula....\n") ;
     let formula_typ = (EConstr.mkApp(Lazy.force coq_Cstr, [|spec.coeff|])) in
     let ff = dump_formula formula_typ
       (dump_cstr spec.typ spec.dump_coeff) ff in
       Feedback.msg_notice (Printer.pr_leconstr_env gl.env gl.sigma ff);
       Printf.fprintf stdout "cnf : %a\n" (pp_cnf (fun o _ -> ())) cnf_ff
   end;

 match witness_list_tags prover cnf_ff with
  | None -> None
  | Some res -> (*Printf.printf "\nList %i" (List.length `res); *)
  let hyps = List.fold_left (fun s (cl,(prf,p)) ->
    let tags = ISet.fold (fun i s -> let t = snd (List.nth cl i) in
                                     if debug then (Printf.fprintf stdout "T : %i -> %a" i Tag.pp t) ;
      (*try*) TagSet.add t s (* with Invalid_argument _ -> s*)) (p.hyps prf) TagSet.empty in
    TagSet.union s tags) (List.fold_left (fun s i -> TagSet.add i s) TagSet.empty cnf_ff_tags) (List.combine cnf_ff res) in

  if debug then (Printf.printf "TForm : %a\n" pp_formula ff ; flush stdout;
                 Printf.printf "Hyps : %a\n" (fun o s -> TagSet.fold (fun i _ -> Printf.fprintf o "%a " Tag.pp i) s ()) hyps) ;

  let ff'     = abstract_formula hyps ff in
  let cnf_ff',_ = cnf negate normalise unsat deduce ff' in

  if debug then
    begin
      Feedback.msg_notice (Pp.str "\nAFormula\n") ;
      let formula_typ = (EConstr.mkApp( Lazy.force coq_Cstr,[| spec.coeff|])) in
      let ff' = dump_formula formula_typ
          (dump_cstr spec.typ spec.dump_coeff) ff' in
      Feedback.msg_notice (Printer.pr_leconstr_env gl.env gl.sigma ff');
      Printf.fprintf stdout "cnf : %a\n" (pp_cnf (fun o _ -> ())) cnf_ff'
    end;

  (* Even if it does not work, this does not mean it is not provable
  -- the prover is REALLY incomplete *)
  (* if debug then
      begin
        (* recompute the proofs *)
        match witness_list_tags prover  cnf_ff' with
          | None -> failwith "abstraction is wrong"
          | Some res -> ()
      end ; *)
  let res' = compact_proofs cnf_ff res cnf_ff' in

  let (ff',res',ids) = (ff',res', ids_of_formula ff') in

  let res' = dump_list (spec.proof_typ) spec.dump_proof res' in
    Some (ids,ff',res')


(**
  * Parse the proof environment, and call micromega_tauto
  *)

let fresh_id avoid id gl =
  Tactics.fresh_id_in_env avoid id (Proofview.Goal.env gl)

let micromega_gen
    parse_arith 
    (negate:'cst atom -> 'cst mc_cnf)
    (normalise:'cst atom -> 'cst mc_cnf)
    unsat deduce 
    spec dumpexpr prover tac =
 Proofview.Goal.nf_enter begin fun gl -> 
    let sigma = Tacmach.New.project gl in
    let concl = Tacmach.New.pf_concl gl in
    let hyps  = Tacmach.New.pf_hyps_types gl in
    try
     let gl0 = { env = Tacmach.New.pf_env gl; sigma } in
     let (hyps,concl,env) = parse_goal gl0 parse_arith Env.empty hyps concl in
     let env = Env.elements env in
     let spec = Lazy.force spec in
     let dumpexpr = Lazy.force dumpexpr in
     
     match micromega_tauto  negate normalise unsat deduce spec prover env hyps concl gl0 with
     | None -> Tacticals.New.tclFAIL 0 (Pp.str " Cannot find witness")
     | Some (ids,ff',res') -> 
       let (arith_goal,props,vars,ff_arith) = make_goal_of_formula sigma dumpexpr ff' in
       let intro (id,_) = Tactics.introduction id  in 

       let intro_vars = Tacticals.New.tclTHENLIST (List.map intro vars) in
       let intro_props = Tacticals.New.tclTHENLIST (List.map intro props) in
       let ipat_of_name id = Some (Loc.tag @@ Misctypes.IntroNaming (Misctypes.IntroIdentifier id)) in
       let goal_name = fresh_id Id.Set.empty (Names.Id.of_string "__arith") gl in
       let env' = List.map (fun (id,i) -> EConstr.mkVar id,i) vars in 

       let tac_arith = Tacticals.New.tclTHENLIST [ intro_props ; intro_vars ; 
                                                    micromega_order_change spec res'
                                                      (EConstr.mkApp(Lazy.force coq_list, [|spec.proof_typ|])) env' ff_arith ] in

       let goal_props = List.rev (prop_env_of_formula sigma ff') in 

       let goal_vars = List.map (fun (_,i) -> List.nth env (i-1)) vars in 
       
       let arith_args = goal_props @ goal_vars in

       let kill_arith = 
           Tacticals.New.tclTHEN
             (Tactics.keep [])
             ((*Tactics.tclABSTRACT  None*)
                (Tacticals.New.tclTHEN tac_arith tac)) in 

       Tacticals.New.tclTHENS
         (Tactics.forward true (Some None) (ipat_of_name goal_name) arith_goal)
         [
           kill_arith;
           (Tacticals.New.tclTHENLIST
            [(Tactics.generalize (List.map EConstr.mkVar ids));
             Tactics.exact_check (EConstr.applist (EConstr.mkVar goal_name, arith_args))
            ] )
         ]
    with
    | ParseError  -> Tacticals.New.tclFAIL 0 (Pp.str "Bad logical fragment")
    | Mfourier.TimeOut  -> Tacticals.New.tclFAIL 0 (Pp.str "Timeout")
    | CsdpNotFound -> flush stdout ;
     Tacticals.New.tclFAIL 0 (Pp.str 
                           (" Skipping what remains of this tactic: the complexity of the goal requires "
                            ^ "the use of a specialized external tool called csdp. \n\n" 
                            ^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n"
                            ^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp"))
  end

let micromega_gen parse_arith 
    (negate:'cst atom -> 'cst mc_cnf)
    (normalise:'cst atom -> 'cst mc_cnf)
    unsat deduce 
    spec prover  =
 (micromega_gen parse_arith negate normalise unsat deduce spec prover)
 
       

let micromega_order_changer cert env ff  = 
  (*let ids = Util.List.map_i (fun i _ -> (Names.Id.of_string ("__v"^(string_of_int i)))) 0 env in *)
  let coeff = Lazy.force coq_Rcst in
  let dump_coeff = dump_Rcst in
  let typ  = Lazy.force coq_R in
  let cert_typ = (EConstr.mkApp(Lazy.force coq_list, [|Lazy.force coq_QWitness |])) in
 
  let formula_typ = (EConstr.mkApp (Lazy.force coq_Cstr,[| coeff|])) in
  let ff = dump_formula formula_typ (dump_cstr coeff dump_coeff) ff in
  let vm = dump_varmap (typ) (vm_of_list env) in
  Proofview.Goal.nf_enter begin fun gl -> 
    Tacticals.New.tclTHENLIST
     [
     (Tactics.change_concl
      (set
        [
         ("__ff", ff, EConstr.mkApp(Lazy.force coq_Formula, [|formula_typ |]));
         ("__varmap", vm, EConstr.mkApp
          (gen_constant_in_modules "VarMap"
            [["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t", [|typ|]));
         ("__wit", cert, cert_typ)
        ]
        (Tacmach.New.pf_concl gl)));
     (*      Tacticals.New.tclTHENLIST (List.map (fun id ->  (Tactics.introduction id)) ids)*)
     ]
  end

let micromega_genr prover tac =
  let parse_arith = parse_rarith in
  let negate = Mc.rnegate in
  let normalise = Mc.rnormalise in
  let unsat = Mc.runsat in
  let deduce = Mc.rdeduce in
  let spec = lazy {
    typ = Lazy.force coq_R;
    coeff = Lazy.force coq_Rcst;
    dump_coeff = dump_q;
    proof_typ = Lazy.force coq_QWitness ;
    dump_proof = dump_psatz coq_Q dump_q
  } in
  Proofview.Goal.nf_enter begin fun gl -> 
     let sigma = Tacmach.New.project gl in
     let concl = Tacmach.New.pf_concl gl in
     let hyps  = Tacmach.New.pf_hyps_types gl in

     try
      let gl0 = { env = Tacmach.New.pf_env gl; sigma } in
      let (hyps,concl,env) = parse_goal gl0 parse_arith Env.empty hyps concl in
       let env = Env.elements env in
       let spec = Lazy.force spec in
       
       let hyps' = List.map (fun (n,f) -> (n, map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) f)) hyps in
       let concl' = map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) concl in
       
       match micromega_tauto  negate normalise unsat deduce spec prover env hyps' concl' gl0 with
       | None -> Tacticals.New.tclFAIL 0 (Pp.str " Cannot find witness") 
       | Some (ids,ff',res') -> 
         let (ff,ids) = formula_hyps_concl 
             (List.filter (fun (n,_) -> List.mem n ids) hyps) concl in
         let ff' = abstract_wrt_formula ff' ff  in

         let (arith_goal,props,vars,ff_arith) = make_goal_of_formula sigma (Lazy.force dump_rexpr)  ff' in
         let intro (id,_) = Tactics.introduction id  in 

       let intro_vars = Tacticals.New.tclTHENLIST (List.map intro vars) in
       let intro_props = Tacticals.New.tclTHENLIST (List.map intro props) in
       let ipat_of_name id = Some (Loc.tag @@ Misctypes.IntroNaming (Misctypes.IntroIdentifier id)) in
       let goal_name = fresh_id Id.Set.empty (Names.Id.of_string "__arith") gl in
       let env' = List.map (fun (id,i) -> EConstr.mkVar id,i) vars in 
       
       let tac_arith = Tacticals.New.tclTHENLIST [ intro_props ; intro_vars ; 
                                                    micromega_order_changer res' env' ff_arith ] in

       let goal_props = List.rev (prop_env_of_formula sigma ff') in 

       let goal_vars = List.map (fun (_,i) -> List.nth env (i-1)) vars in 
       
       let arith_args = goal_props @ goal_vars in

       let kill_arith = 
           Tacticals.New.tclTHEN
             (Tactics.keep [])
             ((*Tactics.tclABSTRACT  None*)
                (Tacticals.New.tclTHEN tac_arith tac)) in 

       Tacticals.New.tclTHENS
         (Tactics.forward true (Some None) (ipat_of_name goal_name) arith_goal)
         [
           kill_arith;
           (Tacticals.New.tclTHENLIST
            [(Tactics.generalize (List.map EConstr.mkVar ids));
             Tactics.exact_check (EConstr.applist (EConstr.mkVar goal_name, arith_args))
            ] )
         ]

    with
    | ParseError  -> Tacticals.New.tclFAIL 0 (Pp.str "Bad logical fragment")
    | Mfourier.TimeOut  -> Tacticals.New.tclFAIL 0 (Pp.str "Timeout")
    | CsdpNotFound -> flush stdout ;
     Tacticals.New.tclFAIL 0 (Pp.str 
                           (" Skipping what remains of this tactic: the complexity of the goal requires "
                            ^ "the use of a specialized external tool called csdp. \n\n" 
                            ^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n"
                            ^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp"))
  end




let micromega_genr prover  = (micromega_genr prover)


let lift_ratproof  prover l =
 match prover l with
  | None -> None
  | Some c -> Some (Mc.RatProof( c,Mc.DoneProof))

type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list
type csdp_certificate = S of Sos_types.positivstellensatz option | F of string
type provername = string * int option

(**
  * The caching mechanism.
  *)

open Persistent_cache

module Cache = PHashtable(struct
  type t = (provername * micromega_polys)
  let equal = Pervasives.(=)
  let hash  = Hashtbl.hash
end)

let csdp_cache = ".csdp.cache"

(**
  * Build the command to call csdpcert, and launch it. This in turn will call
  * the sos driver to the csdp executable.
  * Throw CsdpNotFound if Coq isn't aware of any csdp executable.
  *)

let require_csdp =
  if System.is_in_system_path "csdp" 
  then lazy ()
  else lazy (raise CsdpNotFound)

let really_call_csdpcert : provername -> micromega_polys -> Sos_types.positivstellensatz option  =
  fun provername poly ->

  Lazy.force require_csdp;

  let cmdname =
    List.fold_left Filename.concat (Envars.coqlib ())
      ["plugins"; "micromega"; "csdpcert" ^ Coq_config.exec_extension] in

    match ((command cmdname [|cmdname|] (provername,poly)) : csdp_certificate) with
      | F str -> failwith str
      | S res -> res

(**
  * Check the cache before calling the prover.
  *)

let xcall_csdpcert =
  Cache.memo csdp_cache (fun (prover,pb) -> really_call_csdpcert prover pb)

(**
  * Prover callback functions.
  *)

let call_csdpcert prover pb = xcall_csdpcert (prover,pb)

let rec z_to_q_pol e =
 match e with
  | Mc.Pc z   -> Mc.Pc {Mc.qnum = z ; Mc.qden = Mc.XH}
  | Mc.Pinj(p,pol)   -> Mc.Pinj(p,z_to_q_pol pol)
  | Mc.PX(pol1,p,pol2) -> Mc.PX(z_to_q_pol pol1, p, z_to_q_pol pol2)

let call_csdpcert_q provername poly =
 match call_csdpcert provername poly with
  | None -> None
  | Some cert ->
     let cert = Certificate.q_cert_of_pos cert in
     if Mc.qWeakChecker poly cert
     then Some cert
     else ((print_string "buggy certificate") ;None)

let call_csdpcert_z provername poly =
 let l = List.map (fun (e,o) -> (z_to_q_pol e,o)) poly in
  match call_csdpcert provername l with
   | None -> None
   | Some cert ->
      let cert = Certificate.z_cert_of_pos cert in
      if Mc.zWeakChecker poly cert
      then Some cert
      else ((print_string "buggy certificate" ; flush stdout) ;None)

let xhyps_of_cone base acc prf =
  let rec xtract e acc =
    match e with
    | Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> acc
    | Mc.PsatzIn n -> let n = (CoqToCaml.nat n) in
                        if n >= base
                        then  ISet.add (n-base) acc
                        else acc
    | Mc.PsatzMulC(_,c) -> xtract  c acc
    | Mc.PsatzAdd(e1,e2) |  Mc.PsatzMulE(e1,e2) -> xtract e1 (xtract e2 acc) in

    xtract prf acc

let hyps_of_cone prf = xhyps_of_cone 0 ISet.empty prf

let compact_cone prf f  =
  let np n = CamlToCoq.nat (f (CoqToCaml.nat n)) in

  let rec xinterp prf =
    match prf with
    | Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> prf
    | Mc.PsatzIn n -> Mc.PsatzIn (np n)
    | Mc.PsatzMulC(e,c) -> Mc.PsatzMulC(e,xinterp c)
    | Mc.PsatzAdd(e1,e2) -> Mc.PsatzAdd(xinterp e1,xinterp e2)
    | Mc.PsatzMulE(e1,e2) -> Mc.PsatzMulE(xinterp e1,xinterp e2) in

    xinterp prf

let hyps_of_pt pt =

  let rec xhyps base pt acc =
    match pt with
      | Mc.DoneProof -> acc
      | Mc.RatProof(c,pt) ->  xhyps (base+1) pt (xhyps_of_cone base acc c)
      | Mc.CutProof(c,pt) -> xhyps (base+1) pt (xhyps_of_cone base acc c)
      | Mc.EnumProof(c1,c2,l) ->
          let s = xhyps_of_cone base (xhyps_of_cone base acc c2) c1 in
            List.fold_left (fun s x -> xhyps (base + 1) x s) s l in

    xhyps 0 pt ISet.empty

let hyps_of_pt pt =
  let res = hyps_of_pt pt in
    if debug
    then (Printf.fprintf stdout "\nhyps_of_pt : %a -> " pp_proof_term pt ; ISet.iter (fun i -> Printf.printf "%i " i) res);
    res

let compact_pt pt f =
  let translate ofset x =
    if x < ofset then x
    else (f (x-ofset) + ofset) in

  let rec compact_pt ofset pt =
    match pt with
      | Mc.DoneProof -> Mc.DoneProof
      | Mc.RatProof(c,pt) -> Mc.RatProof(compact_cone c (translate (ofset)), compact_pt (ofset+1) pt )
      | Mc.CutProof(c,pt) -> Mc.CutProof(compact_cone c (translate (ofset)), compact_pt (ofset+1) pt )
      | Mc.EnumProof(c1,c2,l) -> Mc.EnumProof(compact_cone c1 (translate (ofset)), compact_cone c2 (translate (ofset)),
                                                   Mc.map (fun x -> compact_pt (ofset+1) x) l) in
    compact_pt 0 pt

(** 
  * Definition of provers.
  * Instantiates the type ('a,'prf) prover defined above.
  *)

let lift_pexpr_prover p l =  p (List.map (fun (e,o) -> Mc.denorm e , o) l)

module CacheZ = PHashtable(struct
 type prover_option = bool * int

 type t = prover_option * ((Mc.z Mc.pol * Mc.op1) list)
  let equal = (=)
  let hash  = Hashtbl.hash
end)

module CacheQ = PHashtable(struct
  type t = int * ((Mc.q Mc.pol * Mc.op1) list)
  let equal = (=)
  let hash  = Hashtbl.hash
end)

let memo_zlinear_prover = CacheZ.memo ".lia.cache" (fun ((ce,b),s) -> lift_pexpr_prover (Certificate.lia ce b) s)
let memo_nlia = CacheZ.memo ".nia.cache" (fun ((ce,b),s) -> lift_pexpr_prover (Certificate.nlia ce b) s)
let memo_nra = CacheQ.memo ".nra.cache" (fun (o,s) -> lift_pexpr_prover (Certificate.nlinear_prover o) s)


 
let linear_prover_Q = {
 name    = "linear prover";
 get_option = get_lra_option ; 
 prover  = (fun (o,l) -> lift_pexpr_prover (Certificate.linear_prover_with_cert o Certificate.q_spec) l) ;
 hyps    = hyps_of_cone ;
 compact = compact_cone ;
 pp_prf  = pp_psatz pp_q ;
 pp_f   = fun o x -> pp_pol pp_q o  (fst x)
}


let linear_prover_R = {
  name    = "linear prover";
 get_option = get_lra_option ; 
 prover  = (fun (o,l) -> lift_pexpr_prover (Certificate.linear_prover_with_cert o Certificate.q_spec) l) ;
  hyps    = hyps_of_cone ;
  compact = compact_cone ;
  pp_prf  = pp_psatz pp_q ;
  pp_f    =  fun o x -> pp_pol pp_q o (fst x)
}

let nlinear_prover_R = {
  name    = "nra";
 get_option = get_lra_option;
 prover  = memo_nra ;
  hyps    = hyps_of_cone ;
  compact = compact_cone ;
  pp_prf  = pp_psatz pp_q ;
  pp_f    =  fun o x -> pp_pol pp_q o (fst x)
}

let non_linear_prover_Q str o = {
  name    = "real nonlinear prover";
 get_option = (fun () -> (str,o));
 prover  = (fun (o,l) -> call_csdpcert_q o l);
  hyps    = hyps_of_cone;
  compact = compact_cone ;
  pp_prf  = pp_psatz pp_q ;
  pp_f    = fun o x -> pp_pol pp_q o  (fst x)
}

let non_linear_prover_R str o = {
  name    = "real nonlinear prover";
 get_option = (fun () -> (str,o));
 prover  = (fun (o,l) -> call_csdpcert_q o l);
  hyps    = hyps_of_cone;
  compact = compact_cone;
  pp_prf  = pp_psatz pp_q;
  pp_f    = fun o x -> pp_pol pp_q o  (fst x)
}

let non_linear_prover_Z str o  = {
  name    = "real nonlinear prover";
 get_option = (fun () -> (str,o));
 prover  = (fun (o,l) -> lift_ratproof (call_csdpcert_z o) l);
  hyps    = hyps_of_pt;
  compact = compact_pt;
  pp_prf  = pp_proof_term;
  pp_f    =  fun o x -> pp_pol pp_z o (fst x)
}

let linear_Z =   {
  name    = "lia";
 get_option = get_lia_option;
 prover  = memo_zlinear_prover ;
  hyps    = hyps_of_pt;
  compact = compact_pt;
  pp_prf  = pp_proof_term;
  pp_f    = fun o x -> pp_pol pp_z o (fst x)
}

let nlinear_Z =   {
  name    = "nlia";
 get_option = get_lia_option;
 prover  = memo_nlia ;
  hyps    = hyps_of_pt;
  compact = compact_pt;
  pp_prf  = pp_proof_term;
  pp_f    = fun o x -> pp_pol pp_z o (fst x)
}



let tauto_lia ff = 
  let prover = linear_Z in
  let cnf_ff,_ = cnf Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce  ff in
    match witness_list_tags [prover] cnf_ff with
      | None -> None
      | Some l -> Some (List.map fst l)


(** 
  * Functions instantiating micromega_gen with the appropriate theories and
  * solvers
  *)

let lra_Q =
 micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr
  [ linear_prover_Q ] 

let psatz_Q i  =
 micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr
  [ non_linear_prover_Q "real_nonlinear_prover" (Some i) ]

let lra_R  =
 micromega_genr [ linear_prover_R ]

let psatz_R i  =
 micromega_genr  [ non_linear_prover_R "real_nonlinear_prover" (Some i) ] 


let psatz_Z i  =
    micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr
      [ non_linear_prover_Z "real_nonlinear_prover" (Some i) ] 

let sos_Z  =
 micromega_gen parse_zarith Mc.negate Mc.normalise  Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr
  [ non_linear_prover_Z "pure_sos" None ] 

let sos_Q  =
 micromega_gen parse_qarith Mc.qnegate Mc.qnormalise  Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr
  [ non_linear_prover_Q "pure_sos" None ] 


let sos_R  =
 micromega_genr  [ non_linear_prover_R "pure_sos" None ] 


let xlia  =  micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr
      [ linear_Z ] 

let xnlia  =
    micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr
      [ nlinear_Z ] 

let nra  = 
 micromega_genr  [ nlinear_prover_R ] 

let nqa  =
 micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr
  [ nlinear_prover_R ]

   

(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)