1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* Nullstellensatz with Groebner basis computation We use a sparse representation for polynomials: a monomial is an array of exponents (one for each variable) with its degree in head a polynomial is a sorted list of (coefficient, monomial) *) open Utile exception NotInIdeal (*********************************************************************** Global options *) let lexico = ref false (* division of tail monomials *) let reduire_les_queues = false (* divide first with new polynomials *) let nouveaux_pol_en_tete = false type metadata = { name_var : string list; } module Monomial : sig type t val repr : t -> int array val make : int array -> t val deg : t -> int val nvar : t -> int val var_mon : int -> int -> t val mult_mon : t -> t -> t val compare_mon : t -> t -> int val div_mon : t -> t -> t val div_mon_test : t -> t -> bool val ppcm_mon : t -> t -> t val const_mon : int -> t end = struct type t = int array type mon = t let repr m = m let make m = m let nvar (m : mon) = Array.length m - 1 let deg (m : mon) = m.(0) let mult_mon (m : mon) (m' : mon) = let d = nvar m in let m'' = Array.make (d+1) 0 in for i=0 to d do m''.(i)<- (m.(i)+m'.(i)); done; m'' let compare_mon (m : mon) (m' : mon) = let d = nvar m in if !lexico then ( (* Comparaison de monomes avec ordre du degre lexicographique = on commence par regarder la 1ere variable*) let res=ref 0 in let i=ref 1 in (* 1 si lexico pur 0 si degre*) while (!res=0) && (!i<=d) do res:= (Int.compare m.(!i) m'.(!i)); i:=!i+1; done; !res) else ( (* degre lexicographique inverse *) match Int.compare m.(0) m'.(0) with | 0 -> (* meme degre total *) let res=ref 0 in let i=ref d in while (!res=0) && (!i>=1) do res:= - (Int.compare m.(!i) m'.(!i)); i:=!i-1; done; !res | x -> x) let div_mon m m' = let d = nvar m in let m'' = Array.make (d+1) 0 in for i=0 to d do m''.(i)<- (m.(i)-m'.(i)); done; m'' (* m' divides m *) let div_mon_test m m' = let d = nvar m in let res=ref true in let i=ref 0 in (*il faut que le degre total soit bien mis sinon, i=ref 1*) while (!res) && (!i<=d) do res:= (m.(!i) >= m'.(!i)); i:=succ !i; done; !res let set_deg m = let d = nvar m in m.(0)<-0; for i=1 to d do m.(0)<- m.(i)+m.(0); done; m (* lcm *) let ppcm_mon m m' = let d = nvar m in let m'' = Array.make (d+1) 0 in for i=1 to d do m''.(i)<- (max m.(i) m'.(i)); done; set_deg m'' (* returns a constant polynom ial with d variables *) let const_mon d = let m = Array.make (d+1) 0 in let m = set_deg m in m let var_mon d i = let m = Array.make (d+1) 0 in m.(i) <- 1; let m = set_deg m in m end (*********************************************************************** Functor *) module Make (P:Polynom.S) = struct type coef = P.t let coef0 = P.of_num (Num.Int 0) let coef1 = P.of_num (Num.Int 1) let string_of_coef c = "["^(P.to_string c)^"]" (*********************************************************************** Monomials array of integers, first is the degree *) open Monomial type mon = Monomial.t type deg = int type poly = (coef * mon) list type polynom = { pol : poly; num : int; } (********************************************************************** Polynomials list of (coefficient, monomial) decreasing order *) let repr p = p let equal = Util.List.for_all2eq (fun (c1,m1) (c2,m2) -> P.equal c1 c2 && m1=m2) let hash p = let c = List.map fst p in let m = List.map snd p in List.fold_left (fun h p -> h * 17 + P.hash p) (Hashtbl.hash m) c module Hashpol = Hashtbl.Make( struct type t = poly let equal = equal let hash = hash end) (* A pretty printer for polynomials, with Maple-like syntax. *) let getvar lv i = try (List.nth lv i) with Failure _ -> (List.fold_left (fun r x -> r^" "^x) "lv= " lv) ^" i="^(string_of_int i) let string_of_pol zeroP hdP tlP coefterm monterm string_of_coef dimmon string_of_exp lvar p = let rec string_of_mon m coefone = let s=ref [] in for i=1 to (dimmon m) do (match (string_of_exp m i) with "0" -> () | "1" -> s:= (!s) @ [(getvar lvar (i-1))] | e -> s:= (!s) @ [((getvar lvar (i-1)) ^ "^" ^ e)]); done; (match !s with [] -> if coefone then "1" else "" | l -> if coefone then (String.concat "*" l) else ( "*" ^ (String.concat "*" l))) and string_of_term t start = let a = coefterm t and m = monterm t in match (string_of_coef a) with "0" -> "" | "1" ->(match start with true -> string_of_mon m true |false -> ( "+ "^ (string_of_mon m true))) | "-1" ->( "-" ^" "^(string_of_mon m true)) | c -> if (String.get c 0)='-' then ( "- "^ (String.sub c 1 ((String.length c)-1))^ (string_of_mon m false)) else (match start with true -> ( c^(string_of_mon m false)) |false -> ( "+ "^ c^(string_of_mon m false))) and stringP p start = if (zeroP p) then (if start then ("0") else "") else ((string_of_term (hdP p) start)^ " "^ (stringP (tlP p) false)) in (stringP p true) let stringP metadata (p : poly) = string_of_pol (fun p -> match p with [] -> true | _ -> false) (fun p -> match p with (t::p) -> t |_ -> failwith "print_pol dans dansideal") (fun p -> match p with (t::p) -> p |_ -> failwith "print_pol dans dansideal") (fun (a,m) -> a) (fun (a,m) -> m) string_of_coef (fun m -> (Array.length (Monomial.repr m))-1) (fun m i -> (string_of_int ((Monomial.repr m).(i)))) metadata.name_var p let nsP2 = 10 let stringPcut metadata (p : poly) = (*Polynomesrec.nsP1:=20;*) let res = if (List.length p)> nsP2 then (stringP metadata [List.hd p])^" + "^(string_of_int (List.length p))^" terms" else stringP metadata p in (*Polynomesrec.nsP1:= max_int;*) res (* Operations *) let zeroP = [] (* returns a constant polynom ial with d variables *) let polconst d c = let m = const_mon d in [(c,m)] let plusP p q = let rec plusP p q accu = match p, q with | [], [] -> List.rev accu | [], _ -> List.rev_append accu q | _, [] -> List.rev_append accu p | t :: p', t' :: q' -> let c = compare_mon (snd t) (snd t') in if c > 0 then plusP p' q (t :: accu) else if c < 0 then plusP p q' (t' :: accu) else let c = P.plusP (fst t) (fst t') in if P.equal c coef0 then plusP p' q' accu else plusP p' q' ((c, (snd t)) :: accu) in plusP p q [] (* multiplication by (a,monomial) *) let mult_t_pol a m p = let map (b, m') = (P.multP a b, mult_mon m m') in CList.map map p let coef_of_int x = P.of_num (Num.Int x) (* variable i *) let gen d i = let m = var_mon d i in [((coef_of_int 1),m)] let oppP p = let rec oppP p = match p with [] -> [] |(b,m')::p -> ((P.oppP b),m')::(oppP p) in oppP p (* multiplication by a coefficient *) let emultP a p = let rec emultP p = match p with [] -> [] |(b,m')::p -> ((P.multP a b),m')::(emultP p) in emultP p let multP p q = let rec aux p accu = match p with [] -> accu |(a,m)::p' -> aux p' (plusP (mult_t_pol a m q) accu) in aux p [] let puisP p n= match p with [] -> [] |_ -> if n = 0 then let d = nvar (snd (List.hd p)) in [coef1, const_mon d] else let rec puisP p n = if n = 1 then p else let q = puisP p (n / 2) in let q = multP q q in if n mod 2 = 0 then q else multP p q in puisP p n (*********************************************************************** Division of polynomials *) type table = { hmon : (mon, poly) Hashtbl.t option; (* coefficients of polynomials when written with initial polynomials *) coefpoldep : ((int * int), poly) Hashtbl.t; mutable nallpol : int; mutable allpol : polynom array; (* list of initial polynomials *) } let pgcdpos a b = P.pgcdP a b let polynom0 = { pol = []; num = 0 } let ppol p = p.pol let lm p = snd (List.hd (ppol p)) let new_allpol table p = table.nallpol <- table.nallpol + 1; if table.nallpol >= Array.length table.allpol then table.allpol <- Array.append table.allpol (Array.make table.nallpol polynom0); let p = { pol = p; num = table.nallpol } in table.allpol.(table.nallpol) <- p; p (* returns a polynomial of l whose head monomial divides m, else [] *) let rec selectdiv m l = match l with [] -> polynom0 |q::r -> let m'= snd (List.hd (ppol q)) in match (div_mon_test m m') with true -> q |false -> selectdiv m r let div_pol p q a b m = plusP (emultP a p) (mult_t_pol b m q) let find_hmon table m = match table.hmon with | None -> raise Not_found | Some hmon -> Hashtbl.find hmon m let add_hmon table m q = match table.hmon with | None -> () | Some hmon -> Hashtbl.add hmon m q let selectdiv table m l = try find_hmon table m with Not_found -> let q = selectdiv m l in let q = ppol q in match q with | [] -> q | _ :: _ -> let () = add_hmon table m q in q let div_coef a b = P.divP a b (* remainder r of the division of p by polynomials of l, returns (c,r) where c is the coefficient for pseudo-division : c p = sum_i q_i p_i + r *) let reduce2 table p l = let l = if nouveaux_pol_en_tete then List.rev l else l in let rec reduce p = match p with [] -> (coef1,[]) |t::p' -> let (a,m)=t in let q = selectdiv table m l in match q with [] -> if reduire_les_queues then let (c,r)=(reduce p') in (c,((P.multP a c,m)::r)) else (coef1,p) |(b,m')::q' -> let c=(pgcdpos a b) in let a'= (div_coef b c) in let b'=(P.oppP (div_coef a c)) in let (e,r)=reduce (div_pol p' q' a' b' (div_mon m m')) in (P.multP a' e,r) in let (c,r) = reduce p in (c,r) (* coef of q in p = sum_i c_i*q_i *) let coefpoldep_find table p q = try (Hashtbl.find table.coefpoldep (p.num,q.num)) with Not_found -> [] let coefpoldep_set table p q c = Hashtbl.add table.coefpoldep (p.num,q.num) c (* keeps trace in coefpoldep divides without pseudodivisions *) let reduce2_trace table p l lcp = let lp = l in let l = if nouveaux_pol_en_tete then List.rev l else l in (* rend (lq,r), ou r = p + sum(lq) *) let rec reduce p = match p with [] -> ([],[]) |t::p' -> let (a,m)=t in let q = selectdiv table m l in match q with [] -> if reduire_les_queues then let (lq,r)=(reduce p') in (lq,((a,m)::r)) else ([],p) |(b,m')::q' -> let b'=(P.oppP (div_coef a b)) in let m''= div_mon m m' in let p1=plusP p' (mult_t_pol b' m'' q') in let (lq,r)=reduce p1 in ((b',m'',q)::lq, r) in let (lq,r) = reduce p in (List.map2 (fun c0 q -> let c = List.fold_left (fun x (a,m,s) -> if equal s (ppol q) then plusP x (mult_t_pol a m (polconst (nvar m) (coef_of_int 1))) else x) c0 lq in c) lcp lp, r) (*********************************************************************** Completion *) let spol0 ps qs= let p = ppol ps in let q = ppol qs in let m = snd (List.hd p) in let m'= snd (List.hd q) in let a = fst (List.hd p) in let b = fst (List.hd q) in let p'= List.tl p in let q'= List.tl q in let c = (pgcdpos a b) in let m''=(ppcm_mon m m') in let m1 = div_mon m'' m in let m2 = div_mon m'' m' in let fsp p' q' = plusP (mult_t_pol (div_coef b c) m1 p') (mult_t_pol (P.oppP (div_coef a c)) m2 q') in let sp = fsp p' q' in let p0 = fsp (polconst (nvar m) (coef_of_int 1)) [] in let q0 = fsp [] (polconst (nvar m) (coef_of_int 1)) in (sp, p0, q0) let etrangers p p'= let m = snd (List.hd p) in let m'= snd (List.hd p') in let d = nvar m in let res=ref true in let i=ref 1 in while (!res) && (!i<=d) do res:= ((Monomial.repr m).(!i) = 0) || ((Monomial.repr m').(!i)=0); i:=!i+1; done; !res let addS x l = l @ [x] (* oblige de mettre en queue sinon le certificat deconne *) (*********************************************************************** critical pairs/s-polynomials *) module CPair = struct type t = (int * int) * Monomial.t let compare ((i1, j1), m1) ((i2, j2), m2) = compare_mon m2 m1 end module Heap : sig type elt = (int * int) * Monomial.t type t val length : t -> int val empty : t val add : elt -> t -> t val pop : t -> (elt * t) option end = struct include Heap.Functional(CPair) let length h = fold (fun _ accu -> accu + 1) h 0 let pop h = try Some (maximum h, remove h) with Heap.EmptyHeap -> None end let ord i j = if i<j then (i,j) else (j,i) let cpair p q accu = if etrangers (ppol p) (ppol q) then accu else Heap.add (ord p.num q.num, ppcm_mon (lm p) (lm q)) accu let cpairs1 p lq accu = List.fold_left (fun r q -> cpair p q r) accu lq let rec cpairs l accu = match l with | [] | [_] -> accu | p :: l -> cpairs l (cpairs1 p l accu) let critere3 table ((i,j),m) lp lcp = List.exists (fun h -> h.num <> i && h.num <> j && (div_mon_test m (lm h)) && (h.num < j || not (m = ppcm_mon (lm (table.allpol.(i))) (lm h))) && (h.num < i || not (m = ppcm_mon (lm (table.allpol.(j))) (lm h)))) lp let infobuch p q = (info (fun () -> Printf.sprintf "[%i,%i]" (List.length p) (Heap.length q))) (* in lp new polynomials are at the end *) type certificate = { coef : coef; power : int; gb_comb : poly list list; last_comb : poly list } type current_problem = { cur_poly : poly; cur_coef : coef; } exception NotInIdealUpdate of current_problem let test_dans_ideal cur_pb table metadata p lp len0 = (** Invariant: [lp] is [List.tl (Array.to_list table.allpol)] *) let (c,r) = reduce2 table cur_pb.cur_poly lp in info (fun () -> "remainder: "^(stringPcut metadata r)); let cur_pb = { cur_coef = P.multP cur_pb.cur_coef c; cur_poly = r; } in match r with | [] -> sinfo "polynomial reduced to 0"; let lcp = List.map (fun q -> []) lp in let c = cur_pb.cur_coef in let (lcq,r) = reduce2_trace table (emultP c p) lp lcp in sinfo "r ok"; info (fun () -> "r: "^(stringP metadata r)); info (fun () -> let fold res cq q = plusP res (multP cq (ppol q)) in let res = List.fold_left2 fold (emultP c p) lcq lp in "verif sum: "^(stringP metadata res) ); info (fun () -> "coefficient: "^(stringP metadata (polconst 1 c))); let coefficient_multiplicateur = c in let liste_des_coefficients_intermediaires = let rec aux accu lp = match lp with | [] -> accu | p :: lp -> let elt = List.map (fun q -> coefpoldep_find table p q) lp in aux (elt :: accu) lp in let lci = aux [] (List.rev lp) in CList.skipn len0 lci in let liste_des_coefficients = List.rev_map (fun cq -> emultP (coef_of_int (-1)) cq) lcq in {coef = coefficient_multiplicateur; power = 1; gb_comb = liste_des_coefficients_intermediaires; last_comb = liste_des_coefficients} | _ -> raise (NotInIdealUpdate cur_pb) let deg_hom p = match p with | [] -> -1 | (a,m)::_ -> Monomial.deg m let pbuchf table metadata cur_pb homogeneous (lp, lpc) p = (** Invariant: [lp] is [List.tl (Array.to_list table.allpol)] *) sinfo "computation of the Groebner basis"; let () = match table.hmon with | None -> () | Some hmon -> Hashtbl.clear hmon in let len0 = List.length lp in let rec pbuchf cur_pb (lp, lpc) = infobuch lp lpc; match Heap.pop lpc with | None -> test_dans_ideal cur_pb table metadata p lp len0 | Some (((i, j), m), lpc2) -> if critere3 table ((i,j),m) lp lpc2 then (sinfo "c"; pbuchf cur_pb (lp, lpc2)) else let (a0, p0, q0) = spol0 table.allpol.(i) table.allpol.(j) in if homogeneous && a0 <>[] && deg_hom a0 > deg_hom cur_pb.cur_poly then (sinfo "h"; pbuchf cur_pb (lp, lpc2)) else (* let sa = a.sugar in*) match reduce2 table a0 lp with _, [] -> sinfo "0";pbuchf cur_pb (lp, lpc2) | ca, _ :: _ -> (* info "pair reduced\n";*) let map q = let r = if q.num == i then p0 else if q.num == j then q0 else [] in emultP ca r in let lcp = List.map map lp in let (lca, a0) = reduce2_trace table (emultP ca a0) lp lcp in (* info "paire re-reduced";*) let a = new_allpol table a0 in List.iter2 (fun c q -> coefpoldep_set table a q c) lca lp; let a0 = a in info (fun () -> "new polynomial: "^(stringPcut metadata (ppol a0))); let nlp = addS a0 lp in try test_dans_ideal cur_pb table metadata p nlp len0 with NotInIdealUpdate cur_pb -> let newlpc = cpairs1 a0 lp lpc2 in pbuchf cur_pb (nlp, newlpc) in pbuchf cur_pb (lp, lpc) let is_homogeneous p = match p with | [] -> true | (a,m)::p1 -> let d = deg m in List.for_all (fun (b,m') -> deg m' =d) p1 (* returns c lp = [pn;...;p1] p lci = [[a(n+1,n);...;a(n+1,1)]; [a(n+2,n+1);...;a(n+2,1)]; ... [a(n+m,n+m-1);...;a(n+m,1)]] lc = [qn+m; ... q1] such that c*p = sum qi*pi where pn+k = a(n+k,n+k-1)*pn+k-1 + ... + a(n+k,1)* p1 *) let in_ideal metadata d lp p = let table = { hmon = None; coefpoldep = Hashtbl.create 51; nallpol = 0; allpol = Array.make 1000 polynom0; } in let homogeneous = List.for_all is_homogeneous (p::lp) in if homogeneous then sinfo "homogeneous polynomials"; info (fun () -> "p: "^(stringPcut metadata p)); info (fun () -> "lp:\n"^(List.fold_left (fun r p -> r^(stringPcut metadata p)^"\n") "" lp)); let lp = List.map (fun c -> new_allpol table c) lp in List.iter (fun p -> coefpoldep_set table p p (polconst d (coef_of_int 1))) lp; let cur_pb = { cur_poly = p; cur_coef = coef1; } in let cert = try pbuchf table metadata cur_pb homogeneous (lp, Heap.empty) p with NotInIdealUpdate cur_pb -> try pbuchf table metadata cur_pb homogeneous (lp, cpairs lp Heap.empty) p with NotInIdealUpdate _ -> raise NotInIdeal in sinfo "computed"; cert end