1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

open CErrors
open Util
open Names
open Constr
open Termops
open Environ
open EConstr
open Vars
open CClosure
open Reduction
open Reductionops
open Recordops
open Evarutil
open Evardefine
open Evarsolve
open Evd
open Pretype_errors
open Context.Named.Declaration

module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration

type unify_fun = transparent_state ->
  env -> evar_map -> conv_pb -> EConstr.constr -> EConstr.constr -> Evarsolve.unification_result

let debug_unification = ref (false)
let _ = Goptions.declare_bool_option {
  Goptions.optdepr = false;
  Goptions.optname =
    "Print states sent to Evarconv unification";
  Goptions.optkey = ["Debug";"Unification"];
  Goptions.optread = (fun () -> !debug_unification);
  Goptions.optwrite = (fun a -> debug_unification:=a);
}

(*******************************************)
(* Functions to deal with impossible cases *)
(*******************************************)
(* XXX: we would like to search for this with late binding
   "data.id.type" etc... *)
let impossible_default_case () =
  let c, ctx = Universes.fresh_global_instance (Global.env()) (Globnames.ConstRef Coqlib.id) in
  let (_, u) = Constr.destConst c in
  Some (c, Constr.mkConstU (Coqlib.type_of_id, u), ctx)

let coq_unit_judge =
  let open Environ in
  let make_judge c t = make_judge (EConstr.of_constr c) (EConstr.of_constr t) in
  let na1 = Name (Id.of_string "A") in
  let na2 = Name (Id.of_string "H") in
  fun () ->
    match impossible_default_case () with
    | Some (id, type_of_id, ctx) ->
      make_judge id type_of_id, ctx
    | None ->
      (* In case the constants id/ID are not defined *)
      Environ.make_judge (mkLambda (na1,mkProp,mkLambda(na2,mkRel 1,mkRel 1)))
        (mkProd (na1,mkProp,mkArrow (mkRel 1) (mkRel 2))), 
      Univ.ContextSet.empty

let unfold_projection env evd ts p c =
  let cst = Projection.constant p in
    if is_transparent_constant ts cst then
      Some (mkProj (Projection.make cst true, c))
    else None
      
let eval_flexible_term ts env evd c =
  match EConstr.kind evd c with
  | Const (c, u) ->
      if is_transparent_constant ts c
      then Option.map EConstr.of_constr (constant_opt_value_in env (c, EInstance.kind evd u))
      else None
  | Rel n ->
      (try match lookup_rel n env with
           | RelDecl.LocalAssum _ -> None
           | RelDecl.LocalDef (_,v,_) -> Some (lift n v)
       with Not_found -> None)
  | Var id ->
      (try
         if is_transparent_variable ts id then
           env |> lookup_named id |> NamedDecl.get_value
         else None
       with Not_found -> None)
  | LetIn (_,b,_,c) -> Some (subst1 b c)
  | Lambda _ -> Some c
  | Proj (p, c) -> 
    if Projection.unfolded p then assert false
    else unfold_projection env evd ts p c
  | _ -> assert false

type flex_kind_of_term =
  | Rigid
  | MaybeFlexible of EConstr.t (* reducible but not necessarily reduced *)
  | Flexible of EConstr.existential

let flex_kind_of_term ts env evd c sk =
  match EConstr.kind evd c with
    | LetIn _ | Rel _ | Const _ | Var _ | Proj _ ->
      Option.cata (fun x -> MaybeFlexible x) Rigid (eval_flexible_term ts env evd c)
    | Lambda _ when not (Option.is_empty (Stack.decomp sk)) -> MaybeFlexible c
    | Evar ev -> Flexible ev
    | Lambda _ | Prod _ | Sort _ | Ind _ | Construct _ | CoFix _ -> Rigid
    | Meta _ -> Rigid
    | Fix _ -> Rigid (* happens when the fixpoint is partially applied *)
    | Cast _ | App _ | Case _ -> assert false

let add_conv_pb (pb, env, x, y) sigma =
  Evd.add_conv_pb (pb, env, EConstr.Unsafe.to_constr x, EConstr.Unsafe.to_constr y) sigma

let apprec_nohdbeta ts env evd c =
  let (t,sk as appr) = Reductionops.whd_nored_state evd (c, []) in
  if Stack.not_purely_applicative sk
  then Stack.zip evd (fst (whd_betaiota_deltazeta_for_iota_state
                   ts env evd Cst_stack.empty appr))
  else c

let position_problem l2r = function
  | CONV -> None
  | CUMUL -> Some l2r

let occur_rigidly (evk,_ as ev) evd t =
  let rec aux t =
    match EConstr.kind evd t with
    | App (f, c) -> if aux f then Array.exists aux c else false
    | Construct _ | Ind _ | Sort _ | Meta _ | Fix _ | CoFix _ -> true
    | Proj (p, c) -> not (aux c)
    | Evar (evk',_) -> if Evar.equal evk evk' then raise Occur else false
    | Cast (p, _, _) -> aux p
    | Lambda _ | LetIn _ -> false
    | Const _ -> false
    | Prod (_, b, t) -> ignore(aux b || aux t); true
    | Rel _ | Var _ -> false
    | Case (_,_,c,_) -> if eq_constr evd (mkEvar ev) c then raise Occur else false
  in try ignore(aux t); false with Occur -> true

(* [check_conv_record env sigma (t1,stack1) (t2,stack2)] tries to decompose 
   the problem (t1 stack1) = (t2 stack2) into a problem

     stack1 = params1@[c1]@extra_args1
     stack2 = us2@extra_args2
     t1 params1 c1 = proji params (c xs)
     t2 us2 = head us
     extra_args1 = extra_args2

   by finding a record R and an object c := [xs:bs](Build_R params v1..vn)
   with vi = (head us), for which we know that the i-th projection proji
   satisfies

      proji params (c xs) = head us

   Rem: such objects, usable for conversion, are defined in the objdef
   table; practically, it amounts to "canonically" equip t2 into a
   object c in structure R (since, if c1 were not an evar, the
   projection would have been reduced) *)

let check_conv_record env sigma (t1,sk1) (t2,sk2) =
  let (proji, u), arg = Termops.global_app_of_constr sigma t1 in
  let canon_s,sk2_effective =
    try
      match EConstr.kind sigma t2 with
        Prod (_,a,b) -> (* assert (l2=[]); *)
          let _, a, b = destProd sigma t2 in
          if noccurn sigma 1 b then
            lookup_canonical_conversion (proji, Prod_cs),
            (Stack.append_app [|a;pop b|] Stack.empty)
          else raise Not_found
      | Sort s ->
        let s = ESorts.kind sigma s in
        lookup_canonical_conversion
          (proji, Sort_cs (Sorts.family s)),[]
      | Proj (p, c) ->
        let c2 = Globnames.ConstRef (Projection.constant p) in
        let c = Retyping.expand_projection env sigma p c [] in
        let _, args = destApp sigma c in
        let sk2 = Stack.append_app args sk2 in
        lookup_canonical_conversion (proji, Const_cs c2), sk2
      | _ ->
        let (c2, _) = Termops.global_of_constr sigma t2 in
          lookup_canonical_conversion (proji, Const_cs c2),sk2
    with Not_found ->
      let (c, cs) = lookup_canonical_conversion (proji,Default_cs) in 
        (c,cs),[]
  in
  let t', { o_DEF = c; o_CTX = ctx; o_INJ=n; o_TABS = bs;
        o_TPARAMS = params; o_NPARAMS = nparams; o_TCOMPS = us } = canon_s in
  let us = List.map EConstr.of_constr us in
  let params = List.map EConstr.of_constr params in
  let params1, c1, extra_args1 =
    match arg with
    | Some c -> (* A primitive projection applied to c *)
      let ty = Retyping.get_type_of ~lax:true env sigma c in
      let (i,u), ind_args = 
        try Inductiveops.find_mrectype env sigma ty
        with _ -> raise Not_found
      in Stack.append_app_list ind_args Stack.empty, c, sk1
    | None ->
      match Stack.strip_n_app nparams sk1 with
      | Some (params1, c1, extra_args1) -> params1, c1, extra_args1
      | _ -> raise Not_found in
  let us2,extra_args2 =
    let l_us = List.length us in
      if Int.equal l_us 0 then Stack.empty,sk2_effective
      else match (Stack.strip_n_app (l_us-1) sk2_effective) with
      | None -> raise Not_found
      | Some (l',el,s') -> (l'@Stack.append_app [|el|] Stack.empty,s') in
  let u, ctx' = Universes.fresh_instance_from ctx None in
  let subst = Univ.make_inverse_instance_subst u in
  let c = EConstr.of_constr c in
  let c' = subst_univs_level_constr subst c in
  let t' = EConstr.of_constr t' in
  let t' = subst_univs_level_constr subst t' in
  let bs' = List.map (EConstr.of_constr %> subst_univs_level_constr subst) bs in
  let h, _ = decompose_app_vect sigma t' in
    ctx',(h, t2),c',bs',(Stack.append_app_list params Stack.empty,params1),
    (Stack.append_app_list us Stack.empty,us2),(extra_args1,extra_args2),c1,
    (n, Stack.zip sigma (t2,sk2))

(* Precondition: one of the terms of the pb is an uninstantiated evar,
 * possibly applied to arguments. *)

let rec ise_try evd = function
    [] -> assert false
  | [f] -> f evd
  | f1::l ->
      match f1 evd with
      | Success _ as x -> x
      | UnifFailure _ -> ise_try evd l

let ise_and evd l =
  let rec ise_and i = function
      [] -> assert false
    | [f] -> f i
    | f1::l ->
        match f1 i with
        | Success i' -> ise_and i' l
        | UnifFailure _ as x -> x in
  ise_and evd l

let ise_exact ise x1 x2 =
  match ise x1 x2 with
  | None, out -> out
  | _, (UnifFailure _ as out) -> out
  | Some _, Success i -> UnifFailure (i,NotSameArgSize)

let ise_array2 evd f v1 v2 =
  let rec allrec i = function
    | -1 -> Success i
    | n ->
        match f i v1.(n) v2.(n) with
        | Success i' -> allrec i' (n-1)
        | UnifFailure _ as x -> x in
  let lv1 = Array.length v1 in
  if Int.equal lv1 (Array.length v2) then allrec evd (pred lv1)
  else UnifFailure (evd,NotSameArgSize)

(* Applicative node of stack are read from the outermost to the innermost
   but are unified the other way. *)
let rec ise_app_stack2 env f evd sk1 sk2 =
  match sk1,sk2 with
  | Stack.App node1 :: q1, Stack.App node2 :: q2 ->
     let (t1,l1) = Stack.decomp_node_last node1 q1 in
     let (t2,l2) = Stack.decomp_node_last node2 q2 in
     begin match ise_app_stack2 env f evd l1 l2 with
           |(_,UnifFailure _) as x -> x
           |x,Success i' -> x,f env i' CONV t1 t2
     end
  | _, _ -> (sk1,sk2), Success evd

let push_rec_types pfix env =
  let (i, c, t) = pfix in
  let inj c = EConstr.Unsafe.to_constr c in
  push_rec_types (i, Array.map inj c, Array.map inj t) env

(* This function tries to unify 2 stacks element by element. It works
   from the end to the beginning. If it unifies a non empty suffix of
   stacks but not the entire stacks, the first part of the answer is
   Some(the remaining prefixes to tackle)) *)
let ise_stack2 no_app env evd f sk1 sk2 =
  let rec ise_stack2 deep i sk1 sk2 =
    let fail x = if deep then Some (List.rev sk1, List.rev sk2), Success i
      else None, x in
    match sk1, sk2 with
    | [], [] -> None, Success i
    | Stack.Case (_,t1,c1,_)::q1, Stack.Case (_,t2,c2,_)::q2 ->
      (match f env i CONV t1 t2 with
      | Success i' ->
        (match ise_array2 i' (fun ii -> f env ii CONV) c1 c2 with
        | Success i'' -> ise_stack2 true i'' q1 q2
        | UnifFailure _ as x -> fail x)
      | UnifFailure _ as x -> fail x)
    | Stack.Proj (n1,a1,p1,_)::q1, Stack.Proj (n2,a2,p2,_)::q2 ->
       if Constant.equal (Projection.constant p1) (Projection.constant p2)
       then ise_stack2 true i q1 q2
       else fail (UnifFailure (i, NotSameHead))
    | Stack.Fix (((li1, i1),(_,tys1,bds1 as recdef1)),a1,_)::q1,
      Stack.Fix (((li2, i2),(_,tys2,bds2)),a2,_)::q2 ->
      if Int.equal i1 i2 && Array.equal Int.equal li1 li2 then
        match ise_and i [
          (fun i -> ise_array2 i (fun ii -> f env ii CONV) tys1 tys2);
          (fun i -> ise_array2 i (fun ii -> f (push_rec_types recdef1 env) ii CONV) bds1 bds2);
          (fun i -> ise_exact (ise_stack2 false i) a1 a2)] with
        | Success i' -> ise_stack2 true i' q1 q2
        | UnifFailure _ as x -> fail x
      else fail (UnifFailure (i,NotSameHead))
    | Stack.Update _ :: _, _ | Stack.Shift _ :: _, _
    | _, Stack.Update _ :: _ | _, Stack.Shift _ :: _ -> assert false
    | Stack.App _ :: _, Stack.App _ :: _ ->
       if no_app && deep then fail ((*dummy*)UnifFailure(i,NotSameHead)) else
         begin match ise_app_stack2 env f i sk1 sk2 with
               |_,(UnifFailure _ as x) -> fail x
               |(l1, l2), Success i' -> ise_stack2 true i' l1 l2
         end
    |_, _ -> fail (UnifFailure (i,(* Maybe improve: *) NotSameHead))
  in ise_stack2 false evd (List.rev sk1) (List.rev sk2)

(* Make sure that the matching suffix is the all stack *)
let exact_ise_stack2 env evd f sk1 sk2 =
  let rec ise_stack2 i sk1 sk2 =
    match sk1, sk2 with
    | [], [] -> Success i
    | Stack.Case (_,t1,c1,_)::q1, Stack.Case (_,t2,c2,_)::q2 ->
      ise_and i [
      (fun i -> ise_stack2 i q1 q2);
      (fun i -> ise_array2 i (fun ii -> f env ii CONV) c1 c2);
      (fun i -> f env i CONV t1 t2)]
    | Stack.Fix (((li1, i1),(_,tys1,bds1 as recdef1)),a1,_)::q1,
      Stack.Fix (((li2, i2),(_,tys2,bds2)),a2,_)::q2 ->
      if Int.equal i1 i2 && Array.equal Int.equal li1 li2 then
        ise_and i [
          (fun i -> ise_stack2 i q1 q2);
          (fun i -> ise_array2 i (fun ii -> f env ii CONV) tys1 tys2);
          (fun i -> ise_array2 i (fun ii -> f (push_rec_types recdef1 env) ii CONV) bds1 bds2);
          (fun i -> ise_stack2 i a1 a2)]
      else UnifFailure (i,NotSameHead)
    | Stack.Proj (n1,a1,p1,_)::q1, Stack.Proj (n2,a2,p2,_)::q2 ->
       if Constant.equal (Projection.constant p1) (Projection.constant p2)
       then ise_stack2 i q1 q2
       else (UnifFailure (i, NotSameHead))
    | Stack.Update _ :: _, _ | Stack.Shift _ :: _, _
    | _, Stack.Update _ :: _ | _, Stack.Shift _ :: _ -> assert false
    | Stack.App _ :: _, Stack.App _ :: _ ->
         begin match ise_app_stack2 env f i sk1 sk2 with
               |_,(UnifFailure _ as x) -> x
               |(l1, l2), Success i' -> ise_stack2 i' l1 l2
         end
    |_, _ -> UnifFailure (i,(* Maybe improve: *) NotSameHead)
  in
  if Reductionops.Stack.compare_shape sk1 sk2 then
    ise_stack2 evd (List.rev sk1) (List.rev sk2)
  else UnifFailure (evd, (* Dummy *) NotSameHead)

let check_leq_inductives evd cumi u u' =
  let u = EConstr.EInstance.kind evd u in
  let u' = EConstr.EInstance.kind evd u' in
  let length_ind_instance =
    Univ.AUContext.size (Univ.ACumulativityInfo.univ_context cumi)
  in
  let ind_sbcst =  Univ.ACumulativityInfo.subtyp_context cumi in
  if not ((length_ind_instance = Univ.Instance.length u) &&
          (length_ind_instance = Univ.Instance.length u')) then
     anomaly (Pp.str "Invalid inductive subtyping encountered!")
  else
    begin
     let comp_subst = (Univ.Instance.append u u') in
     let comp_cst =  Univ.AUContext.instantiate comp_subst ind_sbcst in
     Evd.add_constraints evd comp_cst
    end

let rec evar_conv_x ts env evd pbty term1 term2 =
  let term1 = whd_head_evar evd term1 in
  let term2 = whd_head_evar evd term2 in
  (* Maybe convertible but since reducing can erase evars which [evar_apprec]
     could have found, we do it only if the terms are free of evar.
     Note: incomplete heuristic... *)
  let ground_test =
    if is_ground_term evd term1 && is_ground_term evd term2 then (
      let e =
        try
          let evd, b = infer_conv ~catch_incon:false ~pb:pbty ~ts:(fst ts)
            env evd term1 term2
          in
            if b then Success evd
            else UnifFailure (evd, ConversionFailed (env,term1,term2))
        with Univ.UniverseInconsistency e -> UnifFailure (evd, UnifUnivInconsistency e)
      in
        match e with
        | UnifFailure (evd, e) when not (is_ground_env evd env) -> None
        | _ -> Some e)
    else None
  in
  match ground_test with
    | Some result -> result
    | None ->
      (* Until pattern-unification is used consistently, use nohdbeta to not
           destroy beta-redexes that can be used for 1st-order unification *)
        let term1 = apprec_nohdbeta (fst ts) env evd term1 in
        let term2 = apprec_nohdbeta (fst ts) env evd term2 in
        let default () = 
          evar_eqappr_x ts env evd pbty
            (whd_nored_state evd (term1,Stack.empty), Cst_stack.empty)
            (whd_nored_state evd (term2,Stack.empty), Cst_stack.empty)
        in
          begin match EConstr.kind evd term1, EConstr.kind evd term2 with
          | Evar ev, _ when Evd.is_undefined evd (fst ev) ->
            (match solve_simple_eqn (evar_conv_x ts) env evd
              (position_problem true pbty,ev, term2) with
              | UnifFailure (_,OccurCheck _) -> 
                (* Eta-expansion might apply *) default ()
              | x -> x)
          | _, Evar ev when Evd.is_undefined evd (fst ev) ->
            (match solve_simple_eqn (evar_conv_x ts) env evd
              (position_problem false pbty,ev, term1) with
              | UnifFailure (_, OccurCheck _) ->
                (* Eta-expansion might apply *) default () 
              | x -> x)
          | _ -> default ()
        end

and evar_eqappr_x ?(rhs_is_already_stuck = false) ts env evd pbty
    ((term1,sk1 as appr1),csts1) ((term2,sk2 as appr2),csts2) =
  let quick_fail i = (* not costly, loses info *)
    UnifFailure (i, NotSameHead)
  in
  let miller_pfenning on_left fallback ev lF tM evd =
    match is_unification_pattern_evar env evd ev lF tM with
      | None -> fallback ()
      | Some l1' -> (* Miller-Pfenning's patterns unification *)
        let t2 = tM in
        let t2 = solve_pattern_eqn env evd l1' t2 in
          solve_simple_eqn (evar_conv_x ts) env evd
            (position_problem on_left pbty,ev,t2) 
  in
  let consume_stack on_left (termF,skF) (termO,skO) evd =
    let switch f a b = if on_left then f a b else f b a in
    let not_only_app = Stack.not_purely_applicative skO in
    match switch (ise_stack2 not_only_app env evd (evar_conv_x ts)) skF skO with
      |Some (l,r), Success i' when on_left && (not_only_app || List.is_empty l) ->
        switch (evar_conv_x ts env i' pbty) (Stack.zip evd (termF,l)) (Stack.zip evd (termO,r))
      |Some (r,l), Success i' when not on_left && (not_only_app || List.is_empty l) ->
        switch (evar_conv_x ts env i' pbty) (Stack.zip evd (termF,l)) (Stack.zip evd (termO,r))
      |None, Success i' -> switch (evar_conv_x ts env i' pbty) termF termO
      |_, (UnifFailure _ as x) -> x
      |Some _, _ -> UnifFailure (evd,NotSameArgSize) in
  let eta env evd onleft sk term sk' term' =
    assert (match sk with [] -> true | _ -> false);
    let (na,c1,c'1) = destLambda evd term in
    let c = nf_evar evd c1 in
    let env' = push_rel (RelDecl.LocalAssum (na,c)) env in
    let out1 = whd_betaiota_deltazeta_for_iota_state
      (fst ts) env' evd Cst_stack.empty (c'1, Stack.empty) in
    let out2 = whd_nored_state evd
      (Stack.zip evd (term', sk' @ [Stack.Shift 1]), Stack.append_app [|EConstr.mkRel 1|] Stack.empty), 
      Cst_stack.empty in
    if onleft then evar_eqappr_x ts env' evd CONV out1 out2
    else evar_eqappr_x ts env' evd CONV out2 out1
  in
  let rigids env evd sk term sk' term' =
    let check_strict () =
      let univs = EConstr.eq_constr_universes evd term term' in
      match univs with
      | Some univs ->
        begin
          let cstrs = Universes.to_constraints (Evd.universes evd) univs in
          try Success (Evd.add_constraints evd cstrs)
          with Univ.UniverseInconsistency p -> UnifFailure (evd, UnifUnivInconsistency p)
        end
      | None ->
        UnifFailure (evd, NotSameHead)
    in
    let first_try_strict_check cond u u' try_subtyping_constraints =
      if cond then
        let univs = EConstr.eq_constr_universes evd term term' in
        match univs with
        | Some univs ->
          begin
            let cstrs = Universes.to_constraints (Evd.universes evd) univs in
            try Success (Evd.add_constraints evd cstrs)
            with Univ.UniverseInconsistency p -> try_subtyping_constraints ()
          end
        | None ->
          UnifFailure (evd, NotSameHead)
      else
        UnifFailure (evd, NotSameHead)
    in
    let compare_heads evd = 
      match EConstr.kind evd term, EConstr.kind evd term' with
      | Const (c, u), Const (c', u') ->
        check_strict ()
      | Ind (ind, u), Ind (ind', u') ->
        let check_subtyping_constraints () =
          let nparamsaplied = Stack.args_size sk in
          let nparamsaplied' = Stack.args_size sk' in
          begin
            let mind = Environ.lookup_mind (fst ind) env in
            match mind.Declarations.mind_universes with
            | Declarations.Monomorphic_ind _ | Declarations.Polymorphic_ind _ ->
              UnifFailure (evd, NotSameHead)
            | Declarations.Cumulative_ind cumi ->
              begin
                let num_param_arity =
                  mind.Declarations.mind_nparams + 
                  mind.Declarations.mind_packets.(snd ind).Declarations.mind_nrealargs
                in
                if not (num_param_arity = nparamsaplied
                        && num_param_arity = nparamsaplied') then
                  UnifFailure (evd, NotSameHead)
                else
                  begin
                    let evd' = check_leq_inductives evd cumi u u' in
                    Success (check_leq_inductives evd' cumi u' u)
                  end
              end
          end
        in
        first_try_strict_check (Names.eq_ind ind ind') u u' check_subtyping_constraints
      | Construct (cons, u), Construct (cons', u') ->
        let check_subtyping_constraints () =
          let ind, ind' = fst cons, fst cons' in
          let j, j' = snd cons, snd cons' in
          let nparamsaplied = Stack.args_size sk in
          let nparamsaplied' = Stack.args_size sk' in
          let mind = Environ.lookup_mind (fst ind) env in
          match mind.Declarations.mind_universes with
          | Declarations.Monomorphic_ind _ | Declarations.Polymorphic_ind _ ->
            UnifFailure (evd, NotSameHead)
          | Declarations.Cumulative_ind cumi ->
            begin
              let num_cnstr_args =
                let nparamsctxt =
                  mind.Declarations.mind_nparams + 
                  mind.Declarations.mind_packets.(snd ind).Declarations.mind_nrealargs
                in
                nparamsctxt + 
                mind.Declarations.mind_packets.(snd ind).
                  Declarations.mind_consnrealargs.(j - 1)
              in
              if not (num_cnstr_args = nparamsaplied 
                      && num_cnstr_args = nparamsaplied') then
                UnifFailure (evd, NotSameHead)
              else
                begin
                  let evd' = check_leq_inductives evd cumi u u' in
                  Success (check_leq_inductives evd' cumi u' u)
                end
            end
        in
        first_try_strict_check (Names.eq_constructor cons cons') u u' check_subtyping_constraints
      | _, _ -> anomaly (Pp.str "")
    in
    ise_and evd [(fun i ->
                try compare_heads i
                with Univ.UniverseInconsistency p -> UnifFailure (i, UnifUnivInconsistency p));
                 (fun i -> exact_ise_stack2 env i (evar_conv_x ts) sk sk')]
  in
  let flex_maybeflex on_left ev ((termF,skF as apprF),cstsF) ((termM, skM as apprM),cstsM) vM =
    let switch f a b = if on_left then f a b else f b a in
    let not_only_app = Stack.not_purely_applicative skM in
    let f1 i =
      match Stack.list_of_app_stack skF with
      | None -> quick_fail evd
      | Some lF -> 
        let tM = Stack.zip evd apprM in
          miller_pfenning on_left
            (fun () -> if not_only_app then (* Postpone the use of an heuristic *)
              switch (fun x y -> Success (add_conv_pb (pbty,env,x,y) i)) (Stack.zip evd apprF) tM
            else quick_fail i)
          ev lF tM i
    and consume (termF,skF as apprF) (termM,skM as apprM) i = 
      if not (Stack.is_empty skF && Stack.is_empty skM) then
        consume_stack on_left apprF apprM i
      else quick_fail i
    and delta i =
      switch (evar_eqappr_x ts env i pbty) (apprF,cstsF)
             (whd_betaiota_deltazeta_for_iota_state
                  (fst ts) env i cstsM (vM,skM))
    in    
    let default i = ise_try i [f1; consume apprF apprM; delta]
    in
      match EConstr.kind evd termM with
      | Proj (p, c) when not (Stack.is_empty skF) ->
        (* Might be ?X args = p.c args', and we have to eta-expand the 
           primitive projection if |args| >= |args'|+1. *)
        let nargsF = Stack.args_size skF and nargsM = Stack.args_size skM in
          begin
            (* ?X argsF' ~= (p.c ..) argsM' -> ?X ~= (p.c ..), no need to expand *)
            if nargsF <= nargsM then default evd
            else 
              let f =
                try 
                  let termM' = Retyping.expand_projection env evd p c [] in
                  let apprM', cstsM' = 
                    whd_betaiota_deltazeta_for_iota_state
                      (fst ts) env evd cstsM (termM',skM)
                  in
                  let delta' i = 
                    switch (evar_eqappr_x ts env i pbty) (apprF,cstsF) (apprM',cstsM') 
                  in
                    fun i -> ise_try i [f1; consume apprF apprM'; delta']
                with Retyping.RetypeError _ ->
                (* Happens thanks to w_unify building ill-typed terms *) 
                  default
              in f evd
          end
      | _ -> default evd
  in
  let flex_rigid on_left ev (termF, skF as apprF) (termR, skR as apprR) =
    let switch f a b = if on_left then f a b else f b a in
    let eta evd =
      match EConstr.kind evd termR with
      | Lambda _ when (* if ever problem is ill-typed: *) List.is_empty skR ->
         eta env evd false skR termR skF termF
      | Construct u -> eta_constructor ts env evd skR u skF termF
      | _ -> UnifFailure (evd,NotSameHead)
    in
    match Stack.list_of_app_stack skF with
    | None ->
        ise_try evd [consume_stack on_left apprF apprR; eta]
    | Some lF ->
        let tR = Stack.zip evd apprR in
          miller_pfenning on_left
            (fun () ->
              ise_try evd 
                [eta;(* Postpone the use of an heuristic *)
                 (fun i -> 
                   if not (occur_rigidly ev i tR) then
                     let i,tF =
                       if isRel i tR || isVar i tR then
                         (* Optimization so as to generate candidates *)
                         let i,ev = evar_absorb_arguments env i ev lF in
                         i,mkEvar ev
                       else
                         i,Stack.zip evd apprF in
                     switch (fun x y -> Success (add_conv_pb (pbty,env,x,y) i))
                       tF tR
                   else
                     UnifFailure (evd,OccurCheck (fst ev,tR)))])
            ev lF tR evd
  in
  let app_empty = match sk1, sk2 with [], [] -> true | _ -> false in
  (* Evar must be undefined since we have flushed evars *)
  let () = if !debug_unification then
             let open Pp in
             Feedback.msg_notice (v 0 (pr_state appr1 ++ cut () ++ pr_state appr2 ++ cut ())) in
  match (flex_kind_of_term (fst ts) env evd term1 sk1, 
         flex_kind_of_term (fst ts) env evd term2 sk2) with
    | Flexible (sp1,al1 as ev1), Flexible (sp2,al2 as ev2) ->
        (* sk1[?ev1] =? sk2[?ev2] *)
        let f1 i =
          (* Try first-order unification *)
          match ise_stack2 false env i (evar_conv_x ts) sk1 sk2 with
          | None, Success i' ->
            (* We do have sk1[] = sk2[]: we now unify ?ev1 and ?ev2 *)
            (* Note that ?ev1 and ?ev2, may have been instantiated in the meantime *)
            let ev1' = whd_evar i' (mkEvar ev1) in
              if isEvar i' ev1' then
                solve_simple_eqn (evar_conv_x ts) env i'
                  (position_problem true pbty,destEvar i' ev1', term2)
              else 
                evar_eqappr_x ts env evd pbty 
                  ((ev1', sk1), csts1) ((term2, sk2), csts2)
          | Some (r,[]), Success i' ->
            (* We have sk1'[] = sk2[] for some sk1' s.t. sk1[]=sk1'[r[]] *)
            (* we now unify r[?ev1] and ?ev2 *)
            let ev2' = whd_evar i' (mkEvar ev2) in
              if isEvar i' ev2' then
                solve_simple_eqn (evar_conv_x ts) env i'
                  (position_problem false pbty,destEvar i' ev2',Stack.zip evd (term1,r))
              else 
                evar_eqappr_x ts env evd pbty 
                  ((ev2', sk1), csts1) ((term2, sk2), csts2)
          | Some ([],r), Success i' ->
            (* Symmetrically *)
            (* We have sk1[] = sk2'[] for some sk2' s.t. sk2[]=sk2'[r[]] *)
            (* we now unify ?ev1 and r[?ev2] *)
            let ev1' = whd_evar i' (mkEvar ev1) in
              if isEvar i' ev1' then
                solve_simple_eqn (evar_conv_x ts) env i'
                  (position_problem true pbty,destEvar i' ev1',Stack.zip evd (term2,r))
              else evar_eqappr_x ts env evd pbty 
                ((ev1', sk1), csts1) ((term2, sk2), csts2)
          | None, (UnifFailure _ as x) ->
             (* sk1 and sk2 have no common outer part *)
             if Stack.not_purely_applicative sk2 then
               (* Ad hoc compatibility with 8.4 which treated non-app as rigid *)
               flex_rigid true ev1 appr1 appr2
             else
             if Stack.not_purely_applicative sk1 then
               (* Ad hoc compatibility with 8.4 which treated non-app as rigid *)
               flex_rigid false ev2 appr2 appr1
             else
               (* We could instead try Miller unification, then
                  postpone to see if other equations help, as in:
                  [Check fun a b : unit => (eqᵣefl : _ a = _ a b)] *)
               x
          | Some _, Success _ ->
             (* sk1 and sk2 have a common outer part *)
             if Stack.not_purely_applicative sk2 then
               (* Ad hoc compatibility with 8.4 which treated non-app as rigid *)
               flex_rigid true ev1 appr1 appr2
             else
             if Stack.not_purely_applicative sk1 then
               (* Ad hoc compatibility with 8.4 which treated non-app as rigid *)
               flex_rigid false ev2 appr2 appr1
             else
               (* We could instead try Miller unification, then
                  postpone to see if other equations help, as in:
                  [Check fun a b c : unit => (eqᵣefl : _ a b = _ c a b)] *)
               UnifFailure (i,NotSameArgSize)
          | _, _ -> anomaly (Pp.str "Unexpected result from ise_stack2.")

        and f2 i =
          if Evar.equal sp1 sp2 then
            match ise_stack2 false env i (evar_conv_x ts) sk1 sk2 with
            |None, Success i' ->
              Success (solve_refl (fun env i pbty a1 a2 ->
                is_success (evar_conv_x ts env i pbty a1 a2))
                env i' (position_problem true pbty) sp1 al1 al2)
            |_, (UnifFailure _ as x) -> x
            |Some _, _ -> UnifFailure (i,NotSameArgSize)
          else UnifFailure (i,NotSameHead)
        in
        ise_try evd [f1; f2]

    | Flexible ev1, MaybeFlexible v2 ->
      flex_maybeflex true ev1 (appr1,csts1) (appr2,csts2) v2

    | MaybeFlexible v1, Flexible ev2 -> 
      flex_maybeflex false ev2 (appr2,csts2) (appr1,csts1) v1

    | MaybeFlexible v1, MaybeFlexible v2 -> begin
        match EConstr.kind evd term1, EConstr.kind evd term2 with
        | LetIn (na1,b1,t1,c'1), LetIn (na2,b2,t2,c'2) ->
        let f1 i = (* FO *)
          ise_and i
            [(fun i -> ise_try i
               [(fun i -> evar_conv_x ts env i CUMUL t1 t2);
                (fun i -> evar_conv_x ts env i CUMUL t2 t1)]);
             (fun i -> evar_conv_x ts env i CONV b1 b2);
             (fun i ->
               let b = nf_evar i b1 in
               let t = nf_evar i t1 in
               let na = Nameops.Name.pick na1 na2 in
               evar_conv_x ts (push_rel (RelDecl.LocalDef (na,b,t)) env) i pbty c'1 c'2);
             (fun i -> exact_ise_stack2 env i (evar_conv_x ts) sk1 sk2)]
        and f2 i =
          let out1 = whd_betaiota_deltazeta_for_iota_state (fst ts) env i csts1 (v1,sk1)
          and out2 = whd_betaiota_deltazeta_for_iota_state (fst ts) env i csts2 (v2,sk2)
          in evar_eqappr_x ts env i pbty out1 out2
        in
        ise_try evd [f1; f2]

        | Proj (p, c), Proj (p', c') 
          when Constant.equal (Projection.constant p) (Projection.constant p') ->
          let f1 i = 
            ise_and i 
            [(fun i -> evar_conv_x ts env i CONV c c');
             (fun i -> exact_ise_stack2 env i (evar_conv_x ts) sk1 sk2)]
          and f2 i =
            let out1 = whd_betaiota_deltazeta_for_iota_state (fst ts) env i csts1 (v1,sk1)
            and out2 = whd_betaiota_deltazeta_for_iota_state (fst ts) env i csts2 (v2,sk2)
            in evar_eqappr_x ts env i pbty out1 out2
          in
            ise_try evd [f1; f2]
              
        (* Catch the p.c ~= p c' cases *)
        | Proj (p,c), Const (p',u) when Constant.equal (Projection.constant p) p' ->
          let res = 
            try Some (destApp evd (Retyping.expand_projection env evd p c []))
            with Retyping.RetypeError _ -> None
          in
            (match res with 
            | Some (f1,args1) -> 
              evar_eqappr_x ts env evd pbty ((f1,Stack.append_app args1 sk1),csts1) 
                (appr2,csts2)
            | None -> UnifFailure (evd,NotSameHead))
              
        | Const (p,u), Proj (p',c') when Constant.equal p (Projection.constant p') ->
          let res = 
            try Some (destApp evd (Retyping.expand_projection env evd p' c' []))
            with Retyping.RetypeError _ -> None
          in 
            (match res with
            | Some (f2,args2) ->
              evar_eqappr_x ts env evd pbty (appr1,csts1) ((f2,Stack.append_app args2 sk2),csts2)
            | None -> UnifFailure (evd,NotSameHead))
              
        | _, _ ->
        let f1 i = 
          (* Gather the universe constraints that would make term1 and term2 equal.
             If these only involve unifications of flexible universes to other universes,
             allow this identification (first-order unification of universes). Otherwise
             fallback to unfolding.
          *)
          let univs = EConstr.eq_constr_universes evd term1 term2 in
          match univs with
          | Some univs ->
              ise_and i [(fun i -> 
                try Success (Evd.add_universe_constraints i univs)
                with UniversesDiffer -> UnifFailure (i,NotSameHead)
                | Univ.UniverseInconsistency p -> UnifFailure (i, UnifUnivInconsistency p));
                         (fun i -> exact_ise_stack2 env i (evar_conv_x ts) sk1 sk2)]
          | None ->
            UnifFailure (i,NotSameHead)
        and f2 i =
          (try 
             if not (snd ts) then raise Not_found
             else conv_record ts env i
               (try check_conv_record env i appr1 appr2
                with Not_found -> check_conv_record env i appr2 appr1)
           with Not_found -> UnifFailure (i,NoCanonicalStructure))
        and f3 i =
          (* heuristic: unfold second argument first, exception made
             if the first argument is a beta-redex (expand a constant
             only if necessary) or the second argument is potentially
             usable as a canonical projection or canonical value *)
          let rec is_unnamed (hd, args) = match EConstr.kind i hd with
            | (Var _|Construct _|Ind _|Const _|Prod _|Sort _) ->
              Stack.not_purely_applicative args
            | (CoFix _|Meta _|Rel _)-> true
            | Evar _ -> Stack.not_purely_applicative args
            (* false (* immediate solution without Canon Struct *)*)
            | Lambda _ -> assert (match args with [] -> true | _ -> false); true
            | LetIn (_,b,_,c) -> is_unnamed
             (fst (whd_betaiota_deltazeta_for_iota_state
                      (fst ts) env i Cst_stack.empty (subst1 b c, args)))
            | Fix _ -> true (* Partially applied fix can be the result of a whd call *)
            | Proj (p, _) -> Projection.unfolded p || Stack.not_purely_applicative args
            | Case _ | App _| Cast _ -> assert false in
          let rhs_is_stuck_and_unnamed () =
            let applicative_stack = fst (Stack.strip_app sk2) in
            is_unnamed
              (fst (whd_betaiota_deltazeta_for_iota_state
                      (fst ts) env i Cst_stack.empty (v2, applicative_stack))) in
          let rhs_is_already_stuck =
            rhs_is_already_stuck || rhs_is_stuck_and_unnamed () in

          if (EConstr.isLambda i term1 || rhs_is_already_stuck)
            && (not (Stack.not_purely_applicative sk1)) then
            evar_eqappr_x ~rhs_is_already_stuck ts env i pbty
              (whd_betaiota_deltazeta_for_iota_state
                 (fst ts) env i (Cst_stack.add_cst term1 csts1) (v1,sk1))
              (appr2,csts2)
          else
            evar_eqappr_x ts env i pbty (appr1,csts1)
              (whd_betaiota_deltazeta_for_iota_state
                 (fst ts) env i (Cst_stack.add_cst term2 csts2) (v2,sk2))
        in
        ise_try evd [f1; f2; f3]
    end

    | Rigid, Rigid when EConstr.isLambda evd term1 && EConstr.isLambda evd term2 ->
        let (na1,c1,c'1) = EConstr.destLambda evd term1 in
        let (na2,c2,c'2) = EConstr.destLambda evd term2 in
        assert app_empty;
        ise_and evd
          [(fun i -> evar_conv_x ts env i CONV c1 c2);
           (fun i ->
             let c = nf_evar i c1 in
             let na = Nameops.Name.pick na1 na2 in
             evar_conv_x ts (push_rel (RelDecl.LocalAssum (na,c)) env) i CONV c'1 c'2)]

    | Flexible ev1, Rigid -> flex_rigid true ev1 appr1 appr2
    | Rigid, Flexible ev2 -> flex_rigid false ev2 appr2 appr1

    | MaybeFlexible v1, Rigid ->
        let f3 i =
          (try 
             if not (snd ts) then raise Not_found
             else conv_record ts env i (check_conv_record env i appr1 appr2)
           with Not_found -> UnifFailure (i,NoCanonicalStructure))
        and f4 i =
          evar_eqappr_x ts env i pbty
            (whd_betaiota_deltazeta_for_iota_state
               (fst ts) env i (Cst_stack.add_cst term1 csts1) (v1,sk1))
            (appr2,csts2)
        in
          ise_try evd [f3; f4]

    | Rigid, MaybeFlexible v2 ->
        let f3 i =
          (try
             if not (snd ts) then raise Not_found
             else conv_record ts env i (check_conv_record env i appr2 appr1)
           with Not_found -> UnifFailure (i,NoCanonicalStructure))
        and f4 i =
          evar_eqappr_x ts env i pbty (appr1,csts1)
            (whd_betaiota_deltazeta_for_iota_state
               (fst ts) env i (Cst_stack.add_cst term2 csts2) (v2,sk2))
        in
          ise_try evd [f3; f4]

    (* Eta-expansion *)
    | Rigid, _ when isLambda evd term1 && (* if ever ill-typed: *) List.is_empty sk1 ->
        eta env evd true sk1 term1 sk2 term2

    | _, Rigid when isLambda evd term2 && (* if ever ill-typed: *) List.is_empty sk2 ->
        eta env evd false sk2 term2 sk1 term1

    | Rigid, Rigid -> begin
        match EConstr.kind evd term1, EConstr.kind evd term2 with

        | Sort s1, Sort s2 when app_empty ->
            (try
              let s1 = ESorts.kind evd s1 in
              let s2 = ESorts.kind evd s2 in
               let evd' =
                 if pbty == CONV
                 then Evd.set_eq_sort env evd s1 s2
                 else Evd.set_leq_sort env evd s1 s2
               in Success evd'
             with Univ.UniverseInconsistency p ->
               UnifFailure (evd,UnifUnivInconsistency p)
             | e when CErrors.noncritical e -> UnifFailure (evd,NotSameHead))

        | Prod (n1,c1,c'1), Prod (n2,c2,c'2) when app_empty ->
            ise_and evd
              [(fun i -> evar_conv_x ts env i CONV c1 c2);
               (fun i ->
                  let c = nf_evar i c1 in
                 let na = Nameops.Name.pick n1 n2 in
                 evar_conv_x ts (push_rel (RelDecl.LocalAssum (na,c)) env) i pbty c'1 c'2)]

        | Rel x1, Rel x2 ->
            if Int.equal x1 x2 then
              exact_ise_stack2 env evd (evar_conv_x ts) sk1 sk2
            else UnifFailure (evd,NotSameHead)

        | Var var1, Var var2 ->
            if Id.equal var1 var2 then
              exact_ise_stack2 env evd (evar_conv_x ts) sk1 sk2
            else UnifFailure (evd,NotSameHead)

        | Const _, Const _
        | Ind _, Ind _ 
        | Construct _, Construct _ ->
          rigids env evd sk1 term1 sk2 term2

        | Construct u, _ ->
          eta_constructor ts env evd sk1 u sk2 term2
            
        | _, Construct u ->
          eta_constructor ts env evd sk2 u sk1 term1

        | Fix ((li1, i1),(_,tys1,bds1 as recdef1)), Fix ((li2, i2),(_,tys2,bds2)) -> (* Partially applied fixs *)
          if Int.equal i1 i2 && Array.equal Int.equal li1 li2 then
            ise_and evd [
              (fun i -> ise_array2 i (fun i' -> evar_conv_x ts env i' CONV) tys1 tys2);
              (fun i -> ise_array2 i (fun i' -> evar_conv_x ts (push_rec_types recdef1 env) i' CONV) bds1 bds2);
              (fun i -> exact_ise_stack2 env i (evar_conv_x ts) sk1 sk2)]
          else UnifFailure (evd, NotSameHead)

        | CoFix (i1,(_,tys1,bds1 as recdef1)), CoFix (i2,(_,tys2,bds2)) ->
            if Int.equal i1 i2  then
              ise_and evd
                [(fun i -> ise_array2 i
                    (fun i -> evar_conv_x ts env i CONV) tys1 tys2);
                 (fun i -> ise_array2 i
                     (fun i -> evar_conv_x ts (push_rec_types recdef1 env) i CONV)
                     bds1 bds2);
                 (fun i -> exact_ise_stack2 env i
                     (evar_conv_x ts) sk1 sk2)]
            else UnifFailure (evd,NotSameHead)

        | (Meta _, _) | (_, Meta _) ->
          begin match ise_stack2 true env evd (evar_conv_x ts) sk1 sk2 with
          |_, (UnifFailure _ as x) -> x
          |None, Success i' -> evar_conv_x ts env i' CONV term1 term2
          |Some (sk1',sk2'), Success i' -> evar_conv_x ts env i' CONV (Stack.zip i' (term1,sk1')) (Stack.zip i' (term2,sk2'))
          end

        | (Ind _ | Sort _ | Prod _ | CoFix _ | Fix _ | Rel _ | Var _ | Const _), _ ->
          UnifFailure (evd,NotSameHead)
        | _, (Ind _ | Sort _ | Prod _ | CoFix _ | Fix _ | Rel _ | Var _ | Const _) ->
          UnifFailure (evd,NotSameHead)

        | (App _ | Cast _ | Case _ | Proj _), _ -> assert false
        | (LetIn _| Evar _), _ -> assert false
        | (Lambda _), _ -> assert false

      end

and conv_record trs env evd (ctx,(h,h2),c,bs,(params,params1),(us,us2),(sk1,sk2),c1,(n,t2)) =
  (* Tries to unify the states

        (proji params1 c1 | sk1)   =   (proji params2 (c (?xs:bs)) | sk2)

     and the terms

        h us  =  h2 us2

     where

     c = the constant for the canonical structure (i.e. some term of the form
         fun (xs:bs) => Build_R params v1 .. vi-1 (h us) vi+1 .. vn)
     bs = the types of the parameters of the canonical structure
     c1 = the main argument of the canonical projection
     sk1, sk2 = the surrounding stacks of the conversion problem
     params1, params2 = the params of the projection (empty if a primitive proj)

     knowing that

       (proji params1 c1 | sk1)   =   (h2 us2 | sk2)

     had to be initially resolved
  *)
  let evd = Evd.merge_context_set Evd.univ_flexible evd ctx in
  if Reductionops.Stack.compare_shape sk1 sk2 then
    let (evd',ks,_,test) =
      List.fold_left
        (fun (i,ks,m,test) b ->
          if match n with Some n -> Int.equal m n | None -> false then
            let ty = Retyping.get_type_of env i t2 in
            let test i = evar_conv_x trs env i CUMUL ty (substl ks b) in
              (i,t2::ks, m-1, test)
          else
            let dloc = Loc.tag Evar_kinds.InternalHole in
            let (i', ev) = Evarutil.new_evar env i ~src:dloc (substl ks b) in
            (i', ev :: ks, m - 1,test))
        (evd,[],List.length bs,fun i -> Success i) bs
    in
    let app = mkApp (c, Array.rev_of_list ks) in
    ise_and evd'
      [(fun i ->
        exact_ise_stack2 env i
          (fun env' i' cpb x1 x -> evar_conv_x trs env' i' cpb x1 (substl ks x))
          params1 params);
       (fun i ->
         exact_ise_stack2 env i
           (fun env' i' cpb u1 u -> evar_conv_x trs env' i' cpb u1 (substl ks u))
           us2 us);
       (fun i -> evar_conv_x trs env i CONV c1 app);
       (fun i -> exact_ise_stack2 env i (evar_conv_x trs) sk1 sk2);
       test;
       (fun i -> evar_conv_x trs env i CONV h2
         (fst (decompose_app_vect i (substl ks h))))]
  else UnifFailure(evd,(*dummy*)NotSameHead)

and eta_constructor ts env evd sk1 ((ind, i), u) sk2 term2 =
  let mib = lookup_mind (fst ind) env in
    match mib.Declarations.mind_record with
    | Some (Some (id, projs, pbs)) when mib.Declarations.mind_finite == Decl_kinds.BiFinite -> 
      let pars = mib.Declarations.mind_nparams in
        (try 
           let l1' = Stack.tail pars sk1 in
           let l2' = 
             let term = Stack.zip evd (term2,sk2) in 
               List.map (fun p -> EConstr.mkProj (Projection.make p false, term)) (Array.to_list projs)
           in
             exact_ise_stack2 env evd (evar_conv_x (fst ts, false)) l1' 
               (Stack.append_app_list l2' Stack.empty)
         with 
         | Invalid_argument _ ->
           (* Stack.tail: partially applied constructor *)
           UnifFailure(evd,NotSameHead))
    | _ -> UnifFailure (evd,NotSameHead)

let evar_conv_x ts = evar_conv_x (ts, true)

(* Profiling *)
let evar_conv_x =
  if Flags.profile then
    let evar_conv_xkey = CProfile.declare_profile "evar_conv_x" in
      CProfile.profile6 evar_conv_xkey evar_conv_x
  else evar_conv_x

let evar_conv_hook_get, evar_conv_hook_set = Hook.make ~default:evar_conv_x ()

let evar_conv_x ts = Hook.get evar_conv_hook_get ts

let set_evar_conv f = Hook.set evar_conv_hook_set f


(* We assume here |l1| <= |l2| *)

let first_order_unification ts env evd (ev1,l1) (term2,l2) =
  let (deb2,rest2) = Array.chop (Array.length l2-Array.length l1) l2 in
  ise_and evd
    (* First compare extra args for better failure message *)
    [(fun i -> ise_array2 i (fun i -> evar_conv_x ts env i CONV) rest2 l1);
    (fun i ->
      (* Then instantiate evar unless already done by unifying args *)
      let t2 = mkApp(term2,deb2) in
      if is_defined i (fst ev1) then
        evar_conv_x ts env i CONV t2 (mkEvar ev1)
      else
        solve_simple_eqn ~choose:true (evar_conv_x ts) env i (None,ev1,t2))]

let choose_less_dependent_instance evk evd term args =
  let evi = Evd.find_undefined evd evk in
  let subst = make_pure_subst evi args in
  let subst' = List.filter (fun (id,c) -> EConstr.eq_constr evd c term) subst in
  match subst' with
  | [] -> None
  | (id, _) :: _ -> Some (Evd.define evk (Constr.mkVar id) evd)

let apply_on_subterm env evdref f c t =
  let rec applyrec (env,(k,c) as acc) t =
    (* By using eq_constr, we make an approximation, for instance, we *)
    (* could also be interested in finding a term u convertible to t *)
    (* such that c occurs in u *)
    let eq_constr c1 c2 = match EConstr.eq_constr_universes !evdref c1 c2 with
    | None -> false
    | Some cstr ->
      try ignore (Evd.add_universe_constraints !evdref cstr); true
      with UniversesDiffer -> false
    in
    if eq_constr c t then f k
    else
      match EConstr.kind !evdref t with
      | Evar (evk,args) ->
          let ctx = evar_filtered_context (Evd.find_undefined !evdref evk) in
          let g decl a = if is_local_assum decl then applyrec acc a else a in
          mkEvar (evk, Array.of_list (List.map2 g ctx (Array.to_list args)))
      | _ ->
        map_constr_with_binders_left_to_right !evdref
          (fun d (env,(k,c)) -> (push_rel d env, (k+1,lift 1 c)))
          applyrec acc t
  in
  applyrec (env,(0,c)) t

let filter_possible_projections evd c ty ctxt args =
  (* Since args in the types will be replaced by holes, we count the
     fv of args to have a well-typed filter; don't know how necessary
    it is however to have a well-typed filter here *)
  let fv1 = free_rels evd (mkApp (c,args)) (* Hack: locally untyped *) in
  let fv2 = collect_vars evd (mkApp (c,args)) in
  let len = Array.length args in
  let tyvars = collect_vars evd ty in
  List.map_i (fun i decl ->
    let () = assert (i < len) in
    let a = Array.unsafe_get args i in
    (match decl with
     | NamedDecl.LocalAssum _ -> false
     | NamedDecl.LocalDef (_,c,_) -> not (isRel evd (EConstr.of_constr c) || isVar evd (EConstr.of_constr c))) ||
    a == c ||
    (* Here we make an approximation, for instance, we could also be *)
    (* interested in finding a term u convertible to c such that a occurs *)
    (* in u *)
    isRel evd a && Int.Set.mem (destRel evd a) fv1 ||
    isVar evd a && Id.Set.mem (destVar evd a) fv2 ||
    Id.Set.mem (NamedDecl.get_id decl) tyvars)
    0 ctxt

let solve_evars = ref (fun _ -> failwith "solve_evars not installed")
let set_solve_evars f = solve_evars := f

(* We solve the problem env_rhs |- ?e[u1..un] = rhs knowing
 * x1:T1 .. xn:Tn |- ev : ty
 * by looking for a maximal well-typed abtraction over u1..un in rhs
 *
 * We first build C[e11..e1p1,..,en1..enpn] obtained from rhs by replacing
 * all occurrences of u1..un by evars eij of type Ti' where itself Ti' has
 * been obtained from the type of ui by also replacing all occurrences of
 * u1..ui-1 by evars.
 *
 * Then, we use typing to infer the relations between the different
 * occurrences. If some occurrence is still unconstrained after typing,
 * we instantiate successively the unresolved occurrences of un by xn,
 * of un-1 by xn-1, etc [the idea comes from Chung-Kil Hur, that he
 * used for his Heq plugin; extensions to several arguments based on a
 * proposition from Dan Grayson]
 *)

exception TypingFailed of evar_map

let second_order_matching ts env_rhs evd (evk,args) argoccs rhs =
  try
  let evi = Evd.find_undefined evd evk in
  let env_evar = evar_filtered_env evi in
  let sign = named_context_val env_evar in
  let ctxt = evar_filtered_context evi in
  let instance = List.map mkVar (List.map NamedDecl.get_id ctxt) in

  let rec make_subst = function
  | decl'::ctxt', c::l, occs::occsl when isVarId evd (NamedDecl.get_id decl') c ->
      begin match occs with
      | Some _ ->
        user_err Pp.(str "Cannot force abstraction on identity instance.")
      | None ->
        make_subst (ctxt',l,occsl)
      end
  | decl'::ctxt', c::l, occs::occsl ->
      let id = NamedDecl.get_id decl' in
      let t = EConstr.of_constr (NamedDecl.get_type decl') in
      let evs = ref [] in
      let ty = Retyping.get_type_of env_rhs evd c in
      let filter' = filter_possible_projections evd c ty ctxt args in
      (id,t,c,ty,evs,Filter.make filter',occs) :: make_subst (ctxt',l,occsl)
  | _, _, [] -> []
  | _ -> anomaly (Pp.str "Signature or instance are shorter than the occurrences list.") in

  let rec set_holes evdref rhs = function
  | (id,_,c,cty,evsref,filter,occs)::subst ->
      let set_var k =
        match occs with
        | Some Locus.AllOccurrences -> mkVar id
        | Some _ -> user_err Pp.(str "Selection of specific occurrences not supported")
        | None ->
        let evty = set_holes evdref cty subst in
        let instance = Filter.filter_list filter instance in
        let evd = !evdref in
        let (evd, ev) = new_evar_instance sign evd evty ~filter instance in
        evdref := evd;
        evsref := (fst (destEvar !evdref ev),evty)::!evsref;
        ev in
      set_holes evdref (apply_on_subterm env_rhs evdref set_var c rhs) subst
  | [] -> rhs in

  let subst = make_subst (ctxt,Array.to_list args,argoccs) in

  let evdref = ref evd in
  let rhs = set_holes evdref rhs subst in
  let evd = !evdref in

  (* We instantiate the evars of which the value is forced by typing *)
  let evd,rhs =
    let evdref = ref evd in
    try let c = !solve_evars env_evar evdref rhs in !evdref,c
    with e when Pretype_errors.precatchable_exception e ->
      (* Could not revert all subterms *)
      raise (TypingFailed !evdref) in

  let rec abstract_free_holes evd = function
  | (id,idty,c,_,evsref,_,_)::l ->
      let rec force_instantiation evd = function
      | (evk,evty)::evs ->
          let evd =
            if is_undefined evd evk then
              (* We force abstraction over this unconstrained occurrence *)
              (* and we use typing to propagate this instantiation *)
              (* This is an arbitrary choice *)
              let evd = Evd.define evk (Constr.mkVar id) evd in
              match evar_conv_x ts env_evar evd CUMUL idty evty with
              | UnifFailure _ -> user_err Pp.(str "Cannot find an instance")
              | Success evd ->
              match reconsider_unif_constraints (evar_conv_x ts) evd with
              | UnifFailure _ -> user_err Pp.(str "Cannot find an instance")
              | Success evd ->
              evd
            else
              evd
          in
          force_instantiation evd evs
      | [] ->
          abstract_free_holes evd l
      in
      force_instantiation evd !evsref
  | [] ->
    let evd = 
      try Evarsolve.check_evar_instance evd evk rhs
            (evar_conv_x full_transparent_state)
      with IllTypedInstance _ -> raise (TypingFailed evd)
    in
      Evd.define evk (EConstr.Unsafe.to_constr rhs) evd 
  in
  abstract_free_holes evd subst, true
  with TypingFailed evd -> evd, false

let to_pb (pb, env, t1, t2) =
  (pb, env, EConstr.Unsafe.to_constr t1, EConstr.Unsafe.to_constr t2)

let second_order_matching_with_args ts env evd pbty ev l t =
(*
  let evd,ev = evar_absorb_arguments env evd ev l in
  let argoccs = Array.map_to_list (fun _ -> None) (snd ev) in
  let evd, b = second_order_matching ts env evd ev argoccs t in
  if b then Success evd
  else UnifFailure (evd, ConversionFailed (env,mkApp(mkEvar ev,l),t))
  if b then Success evd else
 *)
  let pb = to_pb (pbty,env,mkApp(mkEvar ev,l),t) in
  UnifFailure (evd, CannotSolveConstraint (pb,ProblemBeyondCapabilities))

let apply_conversion_problem_heuristic ts env evd pbty t1 t2 =
  let t1 = apprec_nohdbeta ts env evd (whd_head_evar evd t1) in
  let t2 = apprec_nohdbeta ts env evd (whd_head_evar evd t2) in
  let (term1,l1 as appr1) = try destApp evd t1 with DestKO -> (t1, [||]) in
  let (term2,l2 as appr2) = try destApp evd t2 with DestKO -> (t2, [||]) in
  let () = if !debug_unification then
             let open Pp in
             Feedback.msg_notice (v 0 (str "Heuristic:" ++ spc () ++ print_constr t1
                                       ++ cut () ++ print_constr t2 ++ cut ())) in
  let app_empty = Array.is_empty l1 && Array.is_empty l2 in
  match EConstr.kind evd term1, EConstr.kind evd term2 with
  | Evar (evk1,args1), (Rel _|Var _) when app_empty
      && List.for_all (fun a -> EConstr.eq_constr evd a term2 || isEvar evd a)
        (remove_instance_local_defs evd evk1 args1) ->
      (* The typical kind of constraint coming from pattern-matching return
         type inference *)
      (match choose_less_dependent_instance evk1 evd term2 args1 with
      | Some evd -> Success evd
      | None ->
         let reason = ProblemBeyondCapabilities in
         UnifFailure (evd, CannotSolveConstraint (to_pb (pbty,env,t1,t2),reason)))
  | (Rel _|Var _), Evar (evk2,args2) when app_empty
      && List.for_all (fun a -> EConstr.eq_constr evd a term1 || isEvar evd a)
        (remove_instance_local_defs evd evk2 args2) ->
      (* The typical kind of constraint coming from pattern-matching return
         type inference *)
      (match choose_less_dependent_instance evk2 evd term1 args2 with
      | Some evd -> Success evd
      | None ->
         let reason = ProblemBeyondCapabilities in
         UnifFailure (evd, CannotSolveConstraint (to_pb (pbty,env,t1,t2),reason)))
  | Evar (evk1,args1), Evar (evk2,args2) when Evar.equal evk1 evk2 ->
      let f env evd pbty x y = is_fconv ~reds:ts pbty env evd x y in
      Success (solve_refl ~can_drop:true f env evd
                 (position_problem true pbty) evk1 args1 args2)
  | Evar ev1, Evar ev2 when app_empty ->
      Success (solve_evar_evar ~force:true
        (evar_define (evar_conv_x ts) ~choose:true) (evar_conv_x ts) env evd
        (position_problem true pbty) ev1 ev2)
  | Evar ev1,_ when Array.length l1 <= Array.length l2 ->
      (* On "?n t1 .. tn = u u1 .. u(n+p)", try first-order unification *)
      (* and otherwise second-order matching *)
      ise_try evd
        [(fun evd -> first_order_unification ts env evd (ev1,l1) appr2);
         (fun evd ->
           second_order_matching_with_args ts env evd pbty ev1 l1 t2)]
  | _,Evar ev2 when Array.length l2 <= Array.length l1 ->
      (* On "u u1 .. u(n+p) = ?n t1 .. tn", try first-order unification *)
      (* and otherwise second-order matching *)
      ise_try evd
        [(fun evd -> first_order_unification ts env evd (ev2,l2) appr1);
         (fun evd ->
           second_order_matching_with_args ts env evd pbty ev2 l2 t1)]
  | Evar ev1,_ ->
      (* Try second-order pattern-matching *)
      second_order_matching_with_args ts env evd pbty ev1 l1 t2
  | _,Evar ev2 ->
      (* Try second-order pattern-matching *)
      second_order_matching_with_args ts env evd pbty ev2 l2 t1
  | _ ->
      (* Some head evar have been instantiated, or unknown kind of problem *)
      evar_conv_x ts env evd pbty t1 t2

let error_cannot_unify env evd pb ?reason t1 t2 =
  Pretype_errors.error_cannot_unify
    ?loc:(loc_of_conv_pb evd pb) env
    evd ?reason (t1, t2)

let check_problems_are_solved env evd =
  match snd (extract_all_conv_pbs evd) with
  | (pbty,env,t1,t2) as pb::_ -> error_cannot_unify env evd pb (EConstr.of_constr t1) (EConstr.of_constr t2)
  | _ -> ()

exception MaxUndefined of (Evar.t * evar_info * Constr.t list)

let max_undefined_with_candidates evd =
  let fold evk evi () = match evi.evar_candidates with
  | None -> ()
  | Some l -> raise (MaxUndefined (evk, evi, l))
  in
  (** [fold_right] traverses the undefined map in decreasing order of indices.
  The evar with candidates of maximum index is thus the first evar with
  candidates found by a [fold_right] traversal. This has a significant impact on
  performance. *)
  try
    let () = Evar.Map.fold_right fold (Evd.undefined_map evd) () in
    None
  with MaxUndefined ans ->
    Some ans

let rec solve_unconstrained_evars_with_candidates ts evd =
  (* max_undefined is supposed to return the most recent, hence
     possibly most dependent evar *)
  match max_undefined_with_candidates evd with
  | None -> evd
  | Some (evk,ev_info,l) ->
      let rec aux = function
      | [] -> user_err Pp.(str "Unsolvable existential variables.")
      | a::l ->
          try
            let conv_algo = evar_conv_x ts in
            let evd = check_evar_instance evd evk (EConstr.of_constr a) conv_algo in
            let evd = Evd.define evk a evd in
            match reconsider_unif_constraints conv_algo evd with
            | Success evd -> solve_unconstrained_evars_with_candidates ts evd
            | UnifFailure _ -> aux l
          with
          | IllTypedInstance _ -> aux l
          | e when Pretype_errors.precatchable_exception e -> aux l in
      (* List.rev is there to favor most dependent solutions *)
      (* and favor progress when used with the refine tactics *)
      let evd = aux (List.rev l) in
      solve_unconstrained_evars_with_candidates ts evd

let solve_unconstrained_impossible_cases env evd =
  Evd.fold_undefined (fun evk ev_info evd' ->
    match ev_info.evar_source with
    | loc,Evar_kinds.ImpossibleCase ->
      let j, ctx = coq_unit_judge () in
      let evd' = Evd.merge_context_set Evd.univ_flexible_alg ?loc evd' ctx in
      let ty = j_type j in
      let conv_algo = evar_conv_x full_transparent_state in
      let evd' = check_evar_instance evd' evk ty conv_algo in
        Evd.define evk (EConstr.Unsafe.to_constr ty) evd' 
    | _ -> evd') evd evd

let solve_unif_constraints_with_heuristics env
    ?(ts=Conv_oracle.get_transp_state (Environ.oracle env)) evd =
  let evd = solve_unconstrained_evars_with_candidates ts evd in
  let rec aux evd pbs progress stuck =
    match pbs with
    | (pbty,env,t1,t2 as pb) :: pbs ->
        let t1 = EConstr.of_constr t1 in
        let t2 = EConstr.of_constr t2 in
        (match apply_conversion_problem_heuristic ts env evd pbty t1 t2 with
        | Success evd' ->
            let (evd', rest) = extract_all_conv_pbs evd' in
            begin match rest with
            | [] -> aux evd' pbs true stuck
            | _ -> (* Unification got actually stuck, postpone *)
              aux evd pbs progress (pb :: stuck)
            end
        | UnifFailure (evd,reason) ->
           error_cannot_unify env evd pb ~reason t1 t2)
    | _ -> 
        if progress then aux evd stuck false []
        else 
          match stuck with
          | [] -> (* We're finished *) evd
          | (pbty,env,t1,t2 as pb) :: _ ->
            let t1 = EConstr.of_constr t1 in
            let t2 = EConstr.of_constr t2 in
             (* There remains stuck problems *)
             error_cannot_unify env evd pb t1 t2
  in
  let (evd,pbs) = extract_all_conv_pbs evd in
  let heuristic_solved_evd = aux evd pbs false [] in
  check_problems_are_solved env heuristic_solved_evd;
  solve_unconstrained_impossible_cases env heuristic_solved_evd

let consider_remaining_unif_problems = solve_unif_constraints_with_heuristics

(* Main entry points *)

exception UnableToUnify of evar_map * unification_error

let default_transparent_state env = full_transparent_state
(* Conv_oracle.get_transp_state (Environ.oracle env) *)

let the_conv_x env ?(ts=default_transparent_state env) t1 t2 evd =
  match evar_conv_x ts env evd CONV  t1 t2 with
  | Success evd' -> evd'
  | UnifFailure (evd',e) -> raise (UnableToUnify (evd',e))

let the_conv_x_leq env ?(ts=default_transparent_state env) t1 t2 evd =
  match evar_conv_x ts env evd CUMUL t1 t2 with
  | Success evd' -> evd'
  | UnifFailure (evd',e) -> raise (UnableToUnify (evd',e))

let e_conv env ?(ts=default_transparent_state env) evdref t1 t2 =
  match evar_conv_x ts env !evdref CONV t1 t2 with
  | Success evd' -> evdref := evd'; true
  | _ -> false

let e_cumul env ?(ts=default_transparent_state env) evdref t1 t2 =
  match evar_conv_x ts env !evdref CUMUL t1 t2 with
  | Success evd' -> evdref := evd'; true
  | _ -> false