1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* This file is the interface between the c-c algorithm and Coq *) open Evd open Names open Inductiveops open Declarations open Constr open EConstr open Vars open Tactics open Typing open Ccalgo open Ccproof open Pp open Util open Proofview.Notations module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration let reference dir s = lazy (Coqlib.coq_reference "CC" dir s) let _f_equal = reference ["Init";"Logic"] "f_equal" let _eq_rect = reference ["Init";"Logic"] "eq_rect" let _refl_equal = reference ["Init";"Logic"] "eq_refl" let _sym_eq = reference ["Init";"Logic"] "eq_sym" let _trans_eq = reference ["Init";"Logic"] "eq_trans" let _eq = reference ["Init";"Logic"] "eq" let _False = reference ["Init";"Logic"] "False" let _True = reference ["Init";"Logic"] "True" let _I = reference ["Init";"Logic"] "I" let whd env sigma t = Reductionops.clos_whd_flags CClosure.betaiotazeta env sigma t let whd_delta env sigma t = Reductionops.clos_whd_flags CClosure.all env sigma t (* decompose member of equality in an applicative format *) (** FIXME: evar leak *) let sf_of env sigma c = e_sort_of env (ref sigma) c let rec decompose_term env sigma t= match EConstr.kind sigma (whd env sigma t) with App (f,args)-> let tf=decompose_term env sigma f in let targs=Array.map (decompose_term env sigma) args in Array.fold_left (fun s t->Appli (s,t)) tf targs | Prod (_,a,_b) when noccurn sigma 1 _b -> let b = Termops.pop _b in let sort_b = sf_of env sigma b in let sort_a = sf_of env sigma a in Appli(Appli(Product (sort_a,sort_b) , decompose_term env sigma a), decompose_term env sigma b) | Construct c -> let (((mind,i_ind),i_con),u)= c in let u = EInstance.kind sigma u in let canon_mind = MutInd.make1 (MutInd.canonical mind) in let canon_ind = canon_mind,i_ind in let (oib,_)=Global.lookup_inductive (canon_ind) in let nargs=constructor_nallargs_env env (canon_ind,i_con) in Constructor {ci_constr= ((canon_ind,i_con),u); ci_arity=nargs; ci_nhyps=nargs-oib.mind_nparams} | Ind c -> let (mind,i_ind),u = c in let u = EInstance.kind sigma u in let canon_mind = MutInd.make1 (MutInd.canonical mind) in let canon_ind = canon_mind,i_ind in (Symb (Constr.mkIndU (canon_ind,u))) | Const (c,u) -> let u = EInstance.kind sigma u in let canon_const = Constant.make1 (Constant.canonical c) in (Symb (Constr.mkConstU (canon_const,u))) | Proj (p, c) -> let canon_const kn = Constant.make1 (Constant.canonical kn) in let p' = Projection.map canon_const p in let c = Retyping.expand_projection env sigma p' c [] in decompose_term env sigma c | _ -> let t = Termops.strip_outer_cast sigma t in if closed0 sigma t then Symb (EConstr.to_constr sigma t) else raise Not_found (* decompose equality in members and type *) open Termops let atom_of_constr env sigma term = let wh = whd_delta env sigma term in let kot = EConstr.kind sigma wh in match kot with App (f,args)-> if is_global sigma (Lazy.force _eq) f && Int.equal (Array.length args) 3 then `Eq (args.(0), decompose_term env sigma args.(1), decompose_term env sigma args.(2)) else `Other (decompose_term env sigma term) | _ -> `Other (decompose_term env sigma term) let rec pattern_of_constr env sigma c = match EConstr.kind sigma (whd env sigma c) with App (f,args)-> let pf = decompose_term env sigma f in let pargs,lrels = List.split (Array.map_to_list (pattern_of_constr env sigma) args) in PApp (pf,List.rev pargs), List.fold_left Int.Set.union Int.Set.empty lrels | Prod (_,a,_b) when noccurn sigma 1 _b -> let b = Termops.pop _b in let pa,sa = pattern_of_constr env sigma a in let pb,sb = pattern_of_constr env sigma b in let sort_b = sf_of env sigma b in let sort_a = sf_of env sigma a in PApp(Product (sort_a,sort_b), [pa;pb]),(Int.Set.union sa sb) | Rel i -> PVar i,Int.Set.singleton i | _ -> let pf = decompose_term env sigma c in PApp (pf,[]),Int.Set.empty let non_trivial = function PVar _ -> false | _ -> true let patterns_of_constr env sigma nrels term= let f,args= try destApp sigma (whd_delta env sigma term) with DestKO -> raise Not_found in if is_global sigma (Lazy.force _eq) f && Int.equal (Array.length args) 3 then let patt1,rels1 = pattern_of_constr env sigma args.(1) and patt2,rels2 = pattern_of_constr env sigma args.(2) in let valid1 = if not (Int.equal (Int.Set.cardinal rels1) nrels) then Creates_variables else if non_trivial patt1 then Normal else Trivial (EConstr.to_constr sigma args.(0)) and valid2 = if not (Int.equal (Int.Set.cardinal rels2) nrels) then Creates_variables else if non_trivial patt2 then Normal else Trivial (EConstr.to_constr sigma args.(0)) in if valid1 != Creates_variables || valid2 != Creates_variables then nrels,valid1,patt1,valid2,patt2 else raise Not_found else raise Not_found let rec quantified_atom_of_constr env sigma nrels term = match EConstr.kind sigma (whd_delta env sigma term) with Prod (id,atom,ff) -> if is_global sigma (Lazy.force _False) ff then let patts=patterns_of_constr env sigma nrels atom in `Nrule patts else quantified_atom_of_constr (EConstr.push_rel (RelDecl.LocalAssum (id,atom)) env) sigma (succ nrels) ff | _ -> let patts=patterns_of_constr env sigma nrels term in `Rule patts let litteral_of_constr env sigma term= match EConstr.kind sigma (whd_delta env sigma term) with | Prod (id,atom,ff) -> if is_global sigma (Lazy.force _False) ff then match (atom_of_constr env sigma atom) with `Eq(t,a,b) -> `Neq(t,a,b) | `Other(p) -> `Nother(p) else begin try quantified_atom_of_constr (EConstr.push_rel (RelDecl.LocalAssum (id,atom)) env) sigma 1 ff with Not_found -> `Other (decompose_term env sigma term) end | _ -> atom_of_constr env sigma term (* store all equalities from the context *) let make_prb gls depth additionnal_terms = let open Tacmach.New in let env=pf_env gls in let sigma=project gls in let state = empty depth {it = Proofview.Goal.goal (Proofview.Goal.assume gls); sigma } in let pos_hyps = ref [] in let neg_hyps =ref [] in List.iter (fun c -> let t = decompose_term env sigma c in ignore (add_term state t)) additionnal_terms; List.iter (fun decl -> let id = NamedDecl.get_id decl in begin let cid=Constr.mkVar id in match litteral_of_constr env sigma (NamedDecl.get_type decl) with `Eq (t,a,b) -> add_equality state cid a b | `Neq (t,a,b) -> add_disequality state (Hyp cid) a b | `Other ph -> List.iter (fun (cidn,nh) -> add_disequality state (HeqnH (cid,cidn)) ph nh) !neg_hyps; pos_hyps:=(cid,ph):: !pos_hyps | `Nother nh -> List.iter (fun (cidp,ph) -> add_disequality state (HeqnH (cidp,cid)) ph nh) !pos_hyps; neg_hyps:=(cid,nh):: !neg_hyps | `Rule patts -> add_quant state id true patts | `Nrule patts -> add_quant state id false patts end) (Proofview.Goal.hyps gls); begin match atom_of_constr env sigma (pf_concl gls) with `Eq (t,a,b) -> add_disequality state Goal a b | `Other g -> List.iter (fun (idp,ph) -> add_disequality state (HeqG idp) ph g) !pos_hyps end; state (* indhyps builds the array of arrays of constructor hyps for (ind largs) *) let build_projection intype (cstr:pconstructor) special default gls= let open Tacmach.New in let ci= (snd(fst cstr)) in let sigma = project gls in let body=Equality.build_selector (pf_env gls) sigma ci (mkRel 1) intype special default in let id=pf_get_new_id (Id.of_string "t") gls in sigma, mkLambda(Name id,intype,body) (* generate an adhoc tactic following the proof tree *) let app_global f args k = Tacticals.New.pf_constr_of_global (Lazy.force f) >>= fun fc -> k (mkApp (fc, args)) let rec gen_holes env sigma t n accu = if Int.equal n 0 then (sigma, List.rev accu) else match EConstr.kind sigma t with | Prod (_, u, t) -> let (sigma, ev) = Evarutil.new_evar env sigma u in let t = EConstr.Vars.subst1 ev t in gen_holes env sigma t (pred n) (ev :: accu) | _ -> assert false let app_global_with_holes f args n = Proofview.Goal.enter begin fun gl -> Tacticals.New.pf_constr_of_global (Lazy.force f) >>= fun fc -> let env = Proofview.Goal.env gl in let concl = Proofview.Goal.concl gl in Refine.refine ~typecheck:false begin fun sigma -> let t = Tacmach.New.pf_get_type_of gl fc in let t = Termops.prod_applist sigma t (Array.to_list args) in let ans = mkApp (fc, args) in let (sigma, holes) = gen_holes env sigma t n [] in let ans = applist (ans, holes) in let evdref = ref sigma in let () = Typing.e_check env evdref ans concl in (!evdref, ans) end end let assert_before n c = Proofview.Goal.enter begin fun gl -> let evm, _ = Tacmach.New.pf_apply type_of gl c in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evm) (assert_before n c) end let refresh_type env evm ty = Evarsolve.refresh_universes ~status:Evd.univ_flexible ~refreshset:true (Some false) env evm ty let refresh_universes ty k = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let evm = Tacmach.New.project gl in let evm, ty = refresh_type env evm ty in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evm) (k ty) end let constr_of_term c = EConstr.of_constr (constr_of_term c) let rec proof_tac p : unit Proofview.tactic = Proofview.Goal.enter begin fun gl -> let type_of t = Tacmach.New.pf_unsafe_type_of gl t in try (* type_of can raise exceptions *) match p.p_rule with Ax c -> exact_check (EConstr.of_constr c) | SymAx c -> let c = EConstr.of_constr c in let l=constr_of_term p.p_lhs and r=constr_of_term p.p_rhs in refresh_universes (type_of l) (fun typ -> app_global _sym_eq [|typ;r;l;c|] exact_check) | Refl t -> let lr = constr_of_term t in refresh_universes (type_of lr) (fun typ -> app_global _refl_equal [|typ;constr_of_term t|] exact_check) | Trans (p1,p2)-> let t1 = constr_of_term p1.p_lhs and t2 = constr_of_term p1.p_rhs and t3 = constr_of_term p2.p_rhs in refresh_universes (type_of t2) (fun typ -> let prf = app_global_with_holes _trans_eq [|typ;t1;t2;t3;|] 2 in Tacticals.New.tclTHENS prf [(proof_tac p1);(proof_tac p2)]) | Congr (p1,p2)-> let tf1=constr_of_term p1.p_lhs and tx1=constr_of_term p2.p_lhs and tf2=constr_of_term p1.p_rhs and tx2=constr_of_term p2.p_rhs in refresh_universes (type_of tf1) (fun typf -> refresh_universes (type_of tx1) (fun typx -> refresh_universes (type_of (mkApp (tf1,[|tx1|]))) (fun typfx -> let id = Tacmach.New.pf_get_new_id (Id.of_string "f") gl in let appx1 = mkLambda(Name id,typf,mkApp(mkRel 1,[|tx1|])) in let lemma1 = app_global_with_holes _f_equal [|typf;typfx;appx1;tf1;tf2|] 1 in let lemma2 = app_global_with_holes _f_equal [|typx;typfx;tf2;tx1;tx2|] 1 in let prf = app_global_with_holes _trans_eq [|typfx; mkApp(tf1,[|tx1|]); mkApp(tf2,[|tx1|]); mkApp(tf2,[|tx2|])|] 2 in Tacticals.New.tclTHENS prf [Tacticals.New.tclTHEN lemma1 (proof_tac p1); Tacticals.New.tclFIRST [Tacticals.New.tclTHEN lemma2 (proof_tac p2); reflexivity; Tacticals.New.tclZEROMSG (Pp.str "I don't know how to handle dependent equality")]]))) | Inject (prf,cstr,nargs,argind) -> let ti=constr_of_term prf.p_lhs in let tj=constr_of_term prf.p_rhs in let default=constr_of_term p.p_lhs in let special=mkRel (1+nargs-argind) in refresh_universes (type_of ti) (fun intype -> refresh_universes (type_of default) (fun outtype -> let sigma, proj = build_projection intype cstr special default gl in let injt= app_global_with_holes _f_equal [|intype;outtype;proj;ti;tj|] 1 in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Tacticals.New.tclTHEN injt (proof_tac prf)))) with e when Proofview.V82.catchable_exception e -> Proofview.tclZERO e end let refute_tac c t1 t2 p = Proofview.Goal.enter begin fun gl -> let tt1=constr_of_term t1 and tt2=constr_of_term t2 in let hid = Tacmach.New.pf_get_new_id (Id.of_string "Heq") gl in let false_t=mkApp (c,[|mkVar hid|]) in let k intype = let neweq= app_global _eq [|intype;tt1;tt2|] in Tacticals.New.tclTHENS (neweq (assert_before (Name hid))) [proof_tac p; simplest_elim false_t] in refresh_universes (Tacmach.New.pf_unsafe_type_of gl tt1) k end let refine_exact_check c = Proofview.Goal.enter begin fun gl -> let evm, _ = Tacmach.New.pf_apply type_of gl c in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evm) (exact_check c) end let convert_to_goal_tac c t1 t2 p = Proofview.Goal.enter begin fun gl -> let tt1=constr_of_term t1 and tt2=constr_of_term t2 in let k sort = let neweq= app_global _eq [|sort;tt1;tt2|] in let e = Tacmach.New.pf_get_new_id (Id.of_string "e") gl in let x = Tacmach.New.pf_get_new_id (Id.of_string "X") gl in let identity=mkLambda (Name x,sort,mkRel 1) in let endt = app_global _eq_rect [|sort;tt1;identity;c;tt2;mkVar e|] in Tacticals.New.tclTHENS (neweq (assert_before (Name e))) [proof_tac p; endt refine_exact_check] in refresh_universes (Tacmach.New.pf_unsafe_type_of gl tt2) k end let convert_to_hyp_tac c1 t1 c2 t2 p = Proofview.Goal.enter begin fun gl -> let tt2=constr_of_term t2 in let h = Tacmach.New.pf_get_new_id (Id.of_string "H") gl in let false_t=mkApp (c2,[|mkVar h|]) in Tacticals.New.tclTHENS (assert_before (Name h) tt2) [convert_to_goal_tac c1 t1 t2 p; simplest_elim false_t] end (* Essentially [assert (Heq : lhs = rhs) by proof_tac p; discriminate Heq] *) let discriminate_tac cstru p = Proofview.Goal.enter begin fun gl -> let lhs=constr_of_term p.p_lhs and rhs=constr_of_term p.p_rhs in let env = Proofview.Goal.env gl in let evm = Tacmach.New.project gl in let evm, intype = refresh_type env evm (Tacmach.New.pf_unsafe_type_of gl lhs) in let hid = Tacmach.New.pf_get_new_id (Id.of_string "Heq") gl in let neweq=app_global _eq [|intype;lhs;rhs|] in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS evm) (Tacticals.New.tclTHENS (neweq (assert_before (Name hid))) [proof_tac p; Equality.discrHyp hid]) end (* wrap everything *) let build_term_to_complete uf pac = let cinfo = get_constructor_info uf pac.cnode in let real_args = List.rev_map (fun i -> constr_of_term (term uf i)) pac.args in let (kn, u) = cinfo.ci_constr in (applist (mkConstructU (kn, EInstance.make u), real_args), pac.arity) let cc_tactic depth additionnal_terms = Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in Coqlib.check_required_library Coqlib.logic_module_name; let _ = debug (fun () -> Pp.str "Reading subgoal ...") in let state = make_prb gl depth additionnal_terms in let _ = debug (fun () -> Pp.str "Problem built, solving ...") in let sol = execute true state in let _ = debug (fun () -> Pp.str "Computation completed.") in let uf=forest state in match sol with None -> Tacticals.New.tclFAIL 0 (str "congruence failed") | Some reason -> debug (fun () -> Pp.str "Goal solved, generating proof ..."); match reason with Discrimination (i,ipac,j,jpac) -> let p=build_proof uf (`Discr (i,ipac,j,jpac)) in let cstr=(get_constructor_info uf ipac.cnode).ci_constr in discriminate_tac cstr p | Incomplete -> let open Glob_term in let env = Proofview.Goal.env gl in let terms_to_complete = List.map (build_term_to_complete uf) (epsilons uf) in let hole = DAst.make @@ GHole (Evar_kinds.InternalHole, Misctypes.IntroAnonymous, None) in let pr_missing (c, missing) = let c = Detyping.detype Detyping.Now ~lax:true false Id.Set.empty env sigma c in let holes = List.init missing (fun _ -> hole) in Printer.pr_glob_constr_env env (DAst.make @@ GApp (c, holes)) in Feedback.msg_info (Pp.str "Goal is solvable by congruence but some arguments are missing."); Feedback.msg_info (Pp.str " Try " ++ hov 8 begin str "\"congruence with (" ++ prlist_with_sep (fun () -> str ")" ++ spc () ++ str "(") pr_missing terms_to_complete ++ str ")\"," end ++ Pp.str " replacing metavariables by arbitrary terms."); Tacticals.New.tclFAIL 0 (str "Incomplete") | Contradiction dis -> let p=build_proof uf (`Prove (dis.lhs,dis.rhs)) in let ta=term uf dis.lhs and tb=term uf dis.rhs in match dis.rule with Goal -> proof_tac p | Hyp id -> refute_tac (EConstr.of_constr id) ta tb p | HeqG id -> let id = EConstr.of_constr id in convert_to_goal_tac id ta tb p | HeqnH (ida,idb) -> let ida = EConstr.of_constr ida in let idb = EConstr.of_constr idb in convert_to_hyp_tac ida ta idb tb p end let cc_fail = Tacticals.New.tclZEROMSG (Pp.str "congruence failed.") let congruence_tac depth l = Tacticals.New.tclORELSE (Tacticals.New.tclTHEN (Tacticals.New.tclREPEAT introf) (cc_tactic depth l)) cc_fail (* Beware: reflexivity = constructor 1 = apply refl_equal might be slow now, let's rather do something equivalent to a "simple apply refl_equal" *) (* The [f_equal] tactic. It mimics the use of lemmas [f_equal], [f_equal2], etc. This isn't particularly related with congruence, apart from the fact that congruence is called internally. *) let mk_eq f c1 c2 k = Tacticals.New.pf_constr_of_global (Lazy.force f) >>= fun fc -> Proofview.Goal.enter begin fun gl -> let open Tacmach.New in let evm, ty = pf_apply type_of gl c1 in let evm, ty = Evarsolve.refresh_universes (Some false) (pf_env gl) evm ty in let term = mkApp (fc, [| ty; c1; c2 |]) in let evm, _ = type_of (pf_env gl) evm term in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evm) (k term) end let f_equal = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let cut_eq c1 c2 = try (* type_of can raise an exception *) Tacticals.New.tclTHENS (mk_eq _eq c1 c2 Tactics.cut) [Proofview.tclUNIT ();Tacticals.New.tclTRY ((app_global _refl_equal [||]) apply)] with e when Proofview.V82.catchable_exception e -> Proofview.tclZERO e in Proofview.tclORELSE begin match EConstr.kind sigma concl with | App (r,[|_;t;t'|]) when is_global sigma (Lazy.force _eq) r -> begin match EConstr.kind sigma t, EConstr.kind sigma t' with | App (f,v), App (f',v') when Int.equal (Array.length v) (Array.length v') -> let rec cuts i = if i < 0 then Tacticals.New.tclTRY (congruence_tac 1000 []) else Tacticals.New.tclTHENFIRST (cut_eq v.(i) v'.(i)) (cuts (i-1)) in cuts (Array.length v - 1) | _ -> Proofview.tclUNIT () end | _ -> Proofview.tclUNIT () end begin function (e, info) -> match e with | Pretype_errors.PretypeError _ | Type_errors.TypeError _ -> Proofview.tclUNIT () | e -> Proofview.tclZERO ~info e end end