1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Names open ModPath open Globnames open CErrors open Util open Miniml open Table open Mlutil (*S Functions upon ML modules. *) (** Note: a syntax like [(F M) with ...] is actually legal, see for instance bug #4720. Hence the code below tries to handle [MTsig], maybe not in a perfect way, but that should be enough for the use of [se_iter] below. *) let rec msid_of_mt = function | MTident mp -> mp | MTsig(mp,_) -> mp | MTwith(mt,_)-> msid_of_mt mt | MTfunsig _ -> assert false (* A functor cannot be inside a MTwith *) (*s Apply some functions upon all [ml_decl] and [ml_spec] found in a [ml_structure]. *) let se_iter do_decl do_spec do_mp = let rec mt_iter = function | MTident mp -> do_mp mp | MTfunsig (_,mt,mt') -> mt_iter mt; mt_iter mt' | MTwith (mt,ML_With_type(idl,l,t))-> let mp_mt = msid_of_mt mt in let l',idl' = List.sep_last idl in let mp_w = List.fold_left (fun mp l -> MPdot(mp,Label.of_id l)) mp_mt idl' in let r = ConstRef (Constant.make2 mp_w (Label.of_id l')) in mt_iter mt; do_spec (Stype(r,l,Some t)) | MTwith (mt,ML_With_module(idl,mp))-> let mp_mt = msid_of_mt mt in let mp_w = List.fold_left (fun mp l -> MPdot(mp,Label.of_id l)) mp_mt idl in mt_iter mt; do_mp mp_w; do_mp mp | MTsig (_, sign) -> List.iter spec_iter sign and spec_iter = function | (_,Spec s) -> do_spec s | (_,Smodule mt) -> mt_iter mt | (_,Smodtype mt) -> mt_iter mt in let rec se_iter = function | (_,SEdecl d) -> do_decl d | (_,SEmodule m) -> me_iter m.ml_mod_expr; mt_iter m.ml_mod_type | (_,SEmodtype m) -> mt_iter m and me_iter = function | MEident mp -> do_mp mp | MEfunctor (_,mt,me) -> me_iter me; mt_iter mt | MEapply (me,me') -> me_iter me; me_iter me' | MEstruct (msid, sel) -> List.iter se_iter sel in se_iter let struct_iter do_decl do_spec do_mp s = List.iter (function (_,sel) -> List.iter (se_iter do_decl do_spec do_mp) sel) s (*s Apply some fonctions upon all references in [ml_type], [ml_ast], [ml_decl], [ml_spec] and [ml_structure]. *) type do_ref = global_reference -> unit let record_iter_references do_term = function | Record l -> List.iter (Option.iter do_term) l | _ -> () let type_iter_references do_type t = let rec iter = function | Tglob (r,l) -> do_type r; List.iter iter l | Tarr (a,b) -> iter a; iter b | _ -> () in iter t let patt_iter_references do_cons p = let rec iter = function | Pcons (r,l) -> do_cons r; List.iter iter l | Pusual r -> do_cons r | Ptuple l -> List.iter iter l | Prel _ | Pwild -> () in iter p let ast_iter_references do_term do_cons do_type a = let rec iter a = ast_iter iter a; match a with | MLglob r -> do_term r | MLcons (_,r,_) -> do_cons r | MLcase (ty,_,v) -> type_iter_references do_type ty; Array.iter (fun (_,p,_) -> patt_iter_references do_cons p) v | MLrel _ | MLlam _ | MLapp _ | MLletin _ | MLtuple _ | MLfix _ | MLexn _ | MLdummy _ | MLaxiom | MLmagic _ -> () in iter a let ind_iter_references do_term do_cons do_type kn ind = let type_iter = type_iter_references do_type in let cons_iter cp l = do_cons (ConstructRef cp); List.iter type_iter l in let packet_iter ip p = do_type (IndRef ip); if lang () == Ocaml then (match ind.ind_equiv with | Miniml.Equiv kne -> do_type (IndRef (MutInd.make1 kne, snd ip)); | _ -> ()); Array.iteri (fun j -> cons_iter (ip,j+1)) p.ip_types in if lang () == Ocaml then record_iter_references do_term ind.ind_kind; Array.iteri (fun i -> packet_iter (kn,i)) ind.ind_packets let decl_iter_references do_term do_cons do_type = let type_iter = type_iter_references do_type and ast_iter = ast_iter_references do_term do_cons do_type in function | Dind (kn,ind) -> ind_iter_references do_term do_cons do_type kn ind | Dtype (r,_,t) -> do_type r; type_iter t | Dterm (r,a,t) -> do_term r; ast_iter a; type_iter t | Dfix(rv,c,t) -> Array.iter do_term rv; Array.iter ast_iter c; Array.iter type_iter t let spec_iter_references do_term do_cons do_type = function | Sind (kn,ind) -> ind_iter_references do_term do_cons do_type kn ind | Stype (r,_,ot) -> do_type r; Option.iter (type_iter_references do_type) ot | Sval (r,t) -> do_term r; type_iter_references do_type t (*s Searching occurrences of a particular term (no lifting done). *) exception Found let rec ast_search f a = if f a then raise Found else ast_iter (ast_search f) a let decl_ast_search f = function | Dterm (_,a,_) -> ast_search f a | Dfix (_,c,_) -> Array.iter (ast_search f) c | _ -> () let struct_ast_search f s = try struct_iter (decl_ast_search f) (fun _ -> ()) (fun _ -> ()) s; false with Found -> true let rec type_search f = function | Tarr (a,b) -> type_search f a; type_search f b | Tglob (r,l) -> List.iter (type_search f) l | u -> if f u then raise Found let decl_type_search f = function | Dind (_,{ind_packets=p}) -> Array.iter (fun {ip_types=v} -> Array.iter (List.iter (type_search f)) v) p | Dterm (_,_,u) -> type_search f u | Dfix (_,_,v) -> Array.iter (type_search f) v | Dtype (_,_,u) -> type_search f u let spec_type_search f = function | Sind (_,{ind_packets=p}) -> Array.iter (fun {ip_types=v} -> Array.iter (List.iter (type_search f)) v) p | Stype (_,_,ot) -> Option.iter (type_search f) ot | Sval (_,u) -> type_search f u let struct_type_search f s = try struct_iter (decl_type_search f) (spec_type_search f) (fun _ -> ()) s; false with Found -> true (*s Generating the signature. *) let rec msig_of_ms = function | [] -> [] | (l,SEdecl (Dind (kn,i))) :: ms -> (l,Spec (Sind (kn,i))) :: (msig_of_ms ms) | (l,SEdecl (Dterm (r,_,t))) :: ms -> (l,Spec (Sval (r,t))) :: (msig_of_ms ms) | (l,SEdecl (Dtype (r,v,t))) :: ms -> (l,Spec (Stype (r,v,Some t))) :: (msig_of_ms ms) | (l,SEdecl (Dfix (rv,_,tv))) :: ms -> let msig = ref (msig_of_ms ms) in for i = Array.length rv - 1 downto 0 do msig := (l,Spec (Sval (rv.(i),tv.(i))))::!msig done; !msig | (l,SEmodule m) :: ms -> (l,Smodule m.ml_mod_type) :: (msig_of_ms ms) | (l,SEmodtype m) :: ms -> (l,Smodtype m) :: (msig_of_ms ms) let signature_of_structure s = List.map (fun (mp,ms) -> mp,msig_of_ms ms) s let rec mtyp_of_mexpr = function | MEfunctor (id,ty,e) -> MTfunsig (id,ty, mtyp_of_mexpr e) | MEstruct (mp,str) -> MTsig (mp, msig_of_ms str) | _ -> assert false (*s Searching one [ml_decl] in a [ml_structure] by its [global_reference] *) let is_modular = function | SEdecl _ -> false | SEmodule _ | SEmodtype _ -> true let rec search_structure l m = function | [] -> raise Not_found | (lab,d)::_ when Label.equal lab l && (is_modular d : bool) == m -> d | _::fields -> search_structure l m fields let get_decl_in_structure r struc = try let base_mp,ll = labels_of_ref r in if not (at_toplevel base_mp) then error_not_visible r; let sel = List.assoc_f ModPath.equal base_mp struc in let rec go ll sel = match ll with | [] -> assert false | l :: ll -> match search_structure l (not (List.is_empty ll)) sel with | SEdecl d -> d | SEmodtype m -> assert false | SEmodule m -> match m.ml_mod_expr with | MEstruct (_,sel) -> go ll sel | _ -> error_not_visible r in go ll sel with Not_found -> anomaly (Pp.str "reference not found in extracted structure.") (*s Optimization of a [ml_structure]. *) (* Some transformations of ML terms. [optimize_struct] simplify all beta redexes (when the argument does not occur, it is just thrown away; when it occurs exactly once it is substituted; otherwise a let-in redex is created for clarity) and iota redexes, plus some other optimizations. *) let dfix_to_mlfix rv av i = let rec make_subst n s = if n < 0 then s else make_subst (n-1) (Refmap'.add rv.(n) (n+1) s) in let s = make_subst (Array.length rv - 1) Refmap'.empty in let rec subst n t = match t with | MLglob ((ConstRef kn) as refe) -> (try MLrel (n + (Refmap'.find refe s)) with Not_found -> t) | _ -> ast_map_lift subst n t in let ids = Array.map (fun r -> Label.to_id (label_of_r r)) rv in let c = Array.map (subst 0) av in MLfix(i, ids, c) (* [optim_se] applies the [normalize] function everywhere and does the inlining of code. The inlined functions are kept for the moment in order to preserve the global interface, later [depcheck_se] will get rid of them if possible *) let rec optim_se top to_appear s = function | [] -> [] | (l,SEdecl (Dterm (r,a,t))) :: lse -> let a = normalize (ast_glob_subst !s a) in let i = inline r a in if i then s := Refmap'.add r a !s; let d = match dump_unused_vars (optimize_fix a) with | MLfix (0, _, [|c|]) -> Dfix ([|r|], [|ast_subst (MLglob r) c|], [|t|]) | a -> Dterm (r, a, t) in (l,SEdecl d) :: (optim_se top to_appear s lse) | (l,SEdecl (Dfix (rv,av,tv))) :: lse -> let av = Array.map (fun a -> normalize (ast_glob_subst !s a)) av in (* This fake body ensures that no fixpoint will be auto-inlined. *) let fake_body = MLfix (0,[||],[||]) in for i = 0 to Array.length rv - 1 do if inline rv.(i) fake_body then s := Refmap'.add rv.(i) (dfix_to_mlfix rv av i) !s done; let av' = Array.map dump_unused_vars av in (l,SEdecl (Dfix (rv, av', tv))) :: (optim_se top to_appear s lse) | (l,SEmodule m) :: lse -> let m = { m with ml_mod_expr = optim_me to_appear s m.ml_mod_expr} in (l,SEmodule m) :: (optim_se top to_appear s lse) | se :: lse -> se :: (optim_se top to_appear s lse) and optim_me to_appear s = function | MEstruct (msid, lse) -> MEstruct (msid, optim_se false to_appear s lse) | MEident mp as me -> me | MEapply (me, me') -> MEapply (optim_me to_appear s me, optim_me to_appear s me') | MEfunctor (mbid,mt,me) -> MEfunctor (mbid,mt, optim_me to_appear s me) (* After these optimisations, some dependencies may not be needed anymore. For non-library extraction, we recompute a minimal set of dependencies for first-level definitions (no module pruning yet). *) let base_r = function | ConstRef c as r -> r | IndRef (kn,_) -> IndRef (kn,0) | ConstructRef ((kn,_),_) -> IndRef (kn,0) | _ -> assert false let reset_needed, add_needed, add_needed_mp, found_needed, is_needed = let needed = ref Refset'.empty and needed_mps = ref MPset.empty in ((fun () -> needed := Refset'.empty; needed_mps := MPset.empty), (fun r -> needed := Refset'.add (base_r r) !needed), (fun mp -> needed_mps := MPset.add mp !needed_mps), (fun r -> needed := Refset'.remove (base_r r) !needed), (fun r -> let r = base_r r in Refset'.mem r !needed || MPset.mem (modpath_of_r r) !needed_mps)) let declared_refs = function | Dind (kn,_) -> [IndRef (kn,0)] | Dtype (r,_,_) -> [r] | Dterm (r,_,_) -> [r] | Dfix (rv,_,_) -> Array.to_list rv (* Computes the dependencies of a declaration, except in case of custom extraction. *) let compute_deps_decl = function | Dind (kn,ind) -> (* Todo Later : avoid dependencies when Extract Inductive *) ind_iter_references add_needed add_needed add_needed kn ind | Dtype (r,ids,t) -> if not (is_custom r) then type_iter_references add_needed t | Dterm (r,u,t) -> type_iter_references add_needed t; if not (is_custom r) then ast_iter_references add_needed add_needed add_needed u | Dfix _ as d -> decl_iter_references add_needed add_needed add_needed d let compute_deps_spec = function | Sind (kn,ind) -> (* Todo Later : avoid dependencies when Extract Inductive *) ind_iter_references add_needed add_needed add_needed kn ind | Stype (r,ids,t) -> if not (is_custom r) then Option.iter (type_iter_references add_needed) t | Sval (r,t) -> type_iter_references add_needed t let rec depcheck_se = function | [] -> [] | ((l,SEdecl d) as t) :: se -> let se' = depcheck_se se in let refs = declared_refs d in let refs' = List.filter is_needed refs in if List.is_empty refs' then (List.iter remove_info_axiom refs; List.iter remove_opaque refs; se') else begin List.iter found_needed refs'; (* Hack to avoid extracting unused part of a Dfix *) match d with | Dfix (rv,trms,tys) when (List.for_all is_custom refs') -> let trms' = Array.make (Array.length rv) (MLexn "UNUSED") in ((l,SEdecl (Dfix (rv,trms',tys))) :: se') | _ -> (compute_deps_decl d; t::se') end | t :: se -> let se' = depcheck_se se in se_iter compute_deps_decl compute_deps_spec add_needed_mp t; t :: se' let rec depcheck_struct = function | [] -> [] | (mp,lse)::struc -> let struc' = depcheck_struct struc in let lse' = depcheck_se lse in if List.is_empty lse' then struc' else (mp,lse')::struc' exception RemainingImplicit of kill_reason let check_for_remaining_implicits struc = let check = function | MLdummy (Kimplicit _ as k) -> raise (RemainingImplicit k) | _ -> false in try ignore (struct_ast_search check struc) with RemainingImplicit k -> err_or_warn_remaining_implicit k let optimize_struct to_appear struc = let subst = ref (Refmap'.empty : ml_ast Refmap'.t) in let opt_struc = List.map (fun (mp,lse) -> (mp, optim_se true (fst to_appear) subst lse)) struc in let mini_struc = if library () then List.filter (fun (_,lse) -> not (List.is_empty lse)) opt_struc else begin reset_needed (); List.iter add_needed (fst to_appear); List.iter add_needed_mp (snd to_appear); depcheck_struct opt_struc end in let () = check_for_remaining_implicits mini_struc in mini_struc