1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* This file implements the basic congruence-closure algorithm by *) (* Downey,Sethi and Tarjan. *) (* Plus some e-matching and constructor handling by P. Corbineau *) open CErrors open Pp open Names open Sorts open Constr open Vars open Evd open Goptions open Tacmach open Util let init_size=5 let cc_verbose=ref false let debug x = if !cc_verbose then Feedback.msg_debug (x ()) let _= let gdopt= { optdepr=false; optname="Congruence Verbose"; optkey=["Congruence";"Verbose"]; optread=(fun ()-> !cc_verbose); optwrite=(fun b -> cc_verbose := b)} in declare_bool_option gdopt (* Signature table *) module ST=struct (* l: sign -> term r: term -> sign *) module IntTable = Hashtbl.Make(Int) module IntPair = struct type t = int * int let equal (i1, j1) (i2, j2) = Int.equal i1 i2 && Int.equal j1 j2 let hash (i, j) = Hashset.Combine.combine (Int.hash i) (Int.hash j) end module IntPairTable = Hashtbl.Make(IntPair) type t = {toterm: int IntPairTable.t; tosign: (int * int) IntTable.t} let empty ()= {toterm=IntPairTable.create init_size; tosign=IntTable.create init_size} let enter t sign st= if IntPairTable.mem st.toterm sign then anomaly ~label:"enter" (Pp.str "signature already entered.") else IntPairTable.replace st.toterm sign t; IntTable.replace st.tosign t sign let query sign st=IntPairTable.find st.toterm sign let delete st t= try let sign=IntTable.find st.tosign t in IntPairTable.remove st.toterm sign; IntTable.remove st.tosign t with Not_found -> () let delete_set st s = Int.Set.iter (delete st) s end type pa_constructor= { cnode : int; arity : int; args : int list} type pa_fun= {fsym:int; fnargs:int} type pa_mark= Fmark of pa_fun | Cmark of pa_constructor module PacOrd = struct type t = pa_constructor let compare { cnode = cnode0; arity = arity0; args = args0 } { cnode = cnode1; arity = arity1; args = args1 } = let cmp = Int.compare cnode0 cnode1 in if cmp = 0 then let cmp' = Int.compare arity0 arity1 in if cmp' = 0 then List.compare Int.compare args0 args1 else cmp' else cmp end module PafOrd = struct type t = pa_fun let compare { fsym = fsym0; fnargs = fnargs0 } { fsym = fsym1; fnargs = fnargs1 } = let cmp = Int.compare fsym0 fsym1 in if cmp = 0 then Int.compare fnargs0 fnargs1 else cmp end module PacMap=Map.Make(PacOrd) module PafMap=Map.Make(PafOrd) type cinfo= {ci_constr: pconstructor; (* inductive type *) ci_arity: int; (* # args *) ci_nhyps: int} (* # projectable args *) let family_eq f1 f2 = match f1, f2 with | Prop Pos, Prop Pos | Prop Null, Prop Null | Type _, Type _ -> true | _ -> false type term= Symb of constr | Product of Sorts.t * Sorts.t | Eps of Id.t | Appli of term*term | Constructor of cinfo (* constructor arity + nhyps *) let rec term_equal t1 t2 = match t1, t2 with | Symb c1, Symb c2 -> eq_constr_nounivs c1 c2 | Product (s1, t1), Product (s2, t2) -> family_eq s1 s2 && family_eq t1 t2 | Eps i1, Eps i2 -> Id.equal i1 i2 | Appli (t1, u1), Appli (t2, u2) -> term_equal t1 t2 && term_equal u1 u2 | Constructor {ci_constr=(c1,u1); ci_arity=i1; ci_nhyps=j1}, Constructor {ci_constr=(c2,u2); ci_arity=i2; ci_nhyps=j2} -> Int.equal i1 i2 && Int.equal j1 j2 && eq_constructor c1 c2 (* FIXME check eq? *) | _ -> false open Hashset.Combine let rec hash_term = function | Symb c -> combine 1 (Constr.hash c) | Product (s1, s2) -> combine3 2 (Sorts.hash s1) (Sorts.hash s2) | Eps i -> combine 3 (Id.hash i) | Appli (t1, t2) -> combine3 4 (hash_term t1) (hash_term t2) | Constructor {ci_constr=(c,u); ci_arity=i; ci_nhyps=j} -> combine4 5 (constructor_hash c) i j type ccpattern = PApp of term * ccpattern list (* arguments are reversed *) | PVar of int type rule= Congruence | Axiom of constr * bool | Injection of int * pa_constructor * int * pa_constructor * int type from= Goal | Hyp of constr | HeqG of constr | HeqnH of constr * constr type 'a eq = {lhs:int;rhs:int;rule:'a} type equality = rule eq type disequality = from eq type patt_kind = Normal | Trivial of types | Creates_variables type quant_eq = { qe_hyp_id: Id.t; qe_pol: bool; qe_nvars:int; qe_lhs: ccpattern; qe_lhs_valid:patt_kind; qe_rhs: ccpattern; qe_rhs_valid:patt_kind } let swap eq : equality = let swap_rule=match eq.rule with Congruence -> Congruence | Injection (i,pi,j,pj,k) -> Injection (j,pj,i,pi,k) | Axiom (id,reversed) -> Axiom (id,not reversed) in {lhs=eq.rhs;rhs=eq.lhs;rule=swap_rule} type inductive_status = Unknown | Partial of pa_constructor | Partial_applied | Total of (int * pa_constructor) type representative= {mutable weight:int; mutable lfathers:Int.Set.t; mutable fathers:Int.Set.t; mutable inductive_status: inductive_status; class_type : types; mutable functions: Int.Set.t PafMap.t} (*pac -> term = app(constr,t) *) type cl = Rep of representative| Eqto of int*equality type vertex = Leaf| Node of (int*int) type node = {mutable clas:cl; mutable cpath: int; mutable constructors: int PacMap.t; vertex:vertex; term:term} module Constrhash = Hashtbl.Make (struct type t = constr let equal = eq_constr_nounivs let hash = Constr.hash end) module Typehash = Constrhash module Termhash = Hashtbl.Make (struct type t = term let equal = term_equal let hash = hash_term end) module Identhash = Hashtbl.Make (struct type t = Id.t let equal = Id.equal let hash = Id.hash end) type forest= {mutable max_size:int; mutable size:int; mutable map: node array; axioms: (term*term) Constrhash.t; mutable epsilons: pa_constructor list; syms: int Termhash.t} type state = {uf: forest; sigtable:ST.t; mutable terms: Int.Set.t; combine: equality Queue.t; marks: (int * pa_mark) Queue.t; mutable diseq: disequality list; mutable quant: quant_eq list; mutable pa_classes: Int.Set.t; q_history: (int array) Identhash.t; mutable rew_depth:int; mutable changed:bool; by_type: Int.Set.t Typehash.t; mutable gls:Goal.goal Evd.sigma} let dummy_node = { clas=Eqto (min_int,{lhs=min_int;rhs=min_int;rule=Congruence}); cpath=min_int; constructors=PacMap.empty; vertex=Leaf; term=Symb (mkRel min_int) } let empty_forest() = { max_size=init_size; size=0; map=Array.make init_size dummy_node; epsilons=[]; axioms=Constrhash.create init_size; syms=Termhash.create init_size } let empty depth gls:state = { uf= empty_forest (); terms=Int.Set.empty; combine=Queue.create (); marks=Queue.create (); sigtable=ST.empty (); diseq=[]; quant=[]; pa_classes=Int.Set.empty; q_history=Identhash.create init_size; rew_depth=depth; by_type=Constrhash.create init_size; changed=false; gls=gls } let forest state = state.uf let compress_path uf i j = uf.map.(j).cpath<-i let rec find_aux uf visited i= let j = uf.map.(i).cpath in if j<0 then let _ = List.iter (compress_path uf i) visited in i else find_aux uf (i::visited) j let find uf i= find_aux uf [] i let get_representative uf i= match uf.map.(i).clas with Rep r -> r | _ -> anomaly ~label:"get_representative" (Pp.str "not a representative.") let get_constructors uf i= uf.map.(i).constructors let find_pac uf i pac = PacMap.find pac (get_constructors uf i) let rec find_oldest_pac uf i pac= try PacMap.find pac (get_constructors uf i) with Not_found -> match uf.map.(i).clas with Eqto (j,_) -> find_oldest_pac uf j pac | Rep _ -> raise Not_found let get_constructor_info uf i= match uf.map.(i).term with Constructor cinfo->cinfo | _ -> anomaly ~label:"get_constructor" (Pp.str "not a constructor.") let size uf i= (get_representative uf i).weight let axioms uf = uf.axioms let epsilons uf = uf.epsilons let add_lfather uf i t= let r=get_representative uf i in r.weight<-r.weight+1; r.lfathers<-Int.Set.add t r.lfathers; r.fathers <-Int.Set.add t r.fathers let add_rfather uf i t= let r=get_representative uf i in r.weight<-r.weight+1; r.fathers <-Int.Set.add t r.fathers exception Discriminable of int * pa_constructor * int * pa_constructor let append_pac t p = {p with arity=pred p.arity;args=t::p.args} let tail_pac p= {p with arity=succ p.arity;args=List.tl p.args} let fsucc paf = {paf with fnargs=succ paf.fnargs} let add_pac node pac t = if not (PacMap.mem pac node.constructors) then node.constructors<-PacMap.add pac t node.constructors let add_paf rep paf t = let already = try PafMap.find paf rep.functions with Not_found -> Int.Set.empty in rep.functions<- PafMap.add paf (Int.Set.add t already) rep.functions let term uf i=uf.map.(i).term let subterms uf i= match uf.map.(i).vertex with Node(j,k) -> (j,k) | _ -> anomaly ~label:"subterms" (Pp.str "not a node.") let signature uf i= let j,k=subterms uf i in (find uf j,find uf k) let next uf= let size=uf.size in let nsize= succ size in if Int.equal nsize uf.max_size then let newmax=uf.max_size * 3 / 2 + 1 in let newmap=Array.make newmax dummy_node in begin uf.max_size<-newmax; Array.blit uf.map 0 newmap 0 size; uf.map<-newmap end else (); uf.size<-nsize; size let new_representative typ = {weight=0; lfathers=Int.Set.empty; fathers=Int.Set.empty; inductive_status=Unknown; class_type=typ; functions=PafMap.empty} (* rebuild a constr from an applicative term *) let _A_ = Name (Id.of_string "A") let _B_ = Name (Id.of_string "A") let _body_ = mkProd(Anonymous,mkRel 2,mkRel 2) let cc_product s1 s2 = mkLambda(_A_,mkSort(s1), mkLambda(_B_,mkSort(s2),_body_)) let rec constr_of_term = function Symb s-> applist_projection s [] | Product(s1,s2) -> cc_product s1 s2 | Eps id -> mkVar id | Constructor cinfo -> mkConstructU cinfo.ci_constr | Appli (s1,s2)-> make_app [(constr_of_term s2)] s1 and make_app l=function Appli (s1,s2)->make_app ((constr_of_term s2)::l) s1 | other -> applist_proj other l and applist_proj c l = match c with | Symb s -> applist_projection s l | _ -> Term.applistc (constr_of_term c) l and applist_projection c l = match Constr.kind c with | Const c when Environ.is_projection (fst c) (Global.env()) -> let p = Projection.make (fst c) false in (match l with | [] -> (* Expand the projection *) let ty = Typeops.type_of_constant_in (Global.env ()) c in (* FIXME constraints *) let pb = Environ.lookup_projection p (Global.env()) in let ctx,_ = Term.decompose_prod_n_assum (pb.Declarations.proj_npars + 1) ty in Term.it_mkLambda_or_LetIn (mkProj(p,mkRel 1)) ctx | hd :: tl -> Term.applistc (mkProj (p, hd)) tl) | _ -> Term.applistc c l let rec canonize_name sigma c = let c = EConstr.Unsafe.to_constr c in let func c = canonize_name sigma (EConstr.of_constr c) in match Constr.kind c with | Const (kn,u) -> let canon_const = Constant.make1 (Constant.canonical kn) in (mkConstU (canon_const,u)) | Ind ((kn,i),u) -> let canon_mind = MutInd.make1 (MutInd.canonical kn) in (mkIndU ((canon_mind,i),u)) | Construct (((kn,i),j),u) -> let canon_mind = MutInd.make1 (MutInd.canonical kn) in mkConstructU (((canon_mind,i),j),u) | Prod (na,t,ct) -> mkProd (na,func t, func ct) | Lambda (na,t,ct) -> mkLambda (na, func t,func ct) | LetIn (na,b,t,ct) -> mkLetIn (na, func b,func t,func ct) | App (ct,l) -> mkApp (func ct,Array.smartmap func l) | Proj(p,c) -> let p' = Projection.map (fun kn -> Constant.make1 (Constant.canonical kn)) p in (mkProj (p', func c)) | _ -> c (* rebuild a term from a pattern and a substitution *) let build_subst uf subst = Array.map (fun i -> try term uf i with e when CErrors.noncritical e -> anomaly (Pp.str "incomplete matching.")) subst let rec inst_pattern subst = function PVar i -> subst.(pred i) | PApp (t, args) -> List.fold_right (fun spat f -> Appli (f,inst_pattern subst spat)) args t let pr_idx_term uf i = str "[" ++ int i ++ str ":=" ++ Termops.print_constr (EConstr.of_constr (constr_of_term (term uf i))) ++ str "]" let pr_term t = str "[" ++ Termops.print_constr (EConstr.of_constr (constr_of_term t)) ++ str "]" let rec add_term state t= let uf=state.uf in try Termhash.find uf.syms t with Not_found -> let b=next uf in let trm = constr_of_term t in let typ = pf_unsafe_type_of state.gls (EConstr.of_constr trm) in let typ = canonize_name (project state.gls) typ in let new_node= match t with Symb _ | Product (_,_) -> let paf = {fsym=b; fnargs=0} in Queue.add (b,Fmark paf) state.marks; {clas= Rep (new_representative typ); cpath= -1; constructors=PacMap.empty; vertex= Leaf; term= t} | Eps id -> {clas= Rep (new_representative typ); cpath= -1; constructors=PacMap.empty; vertex= Leaf; term= t} | Appli (t1,t2) -> let i1=add_term state t1 and i2=add_term state t2 in add_lfather uf (find uf i1) b; add_rfather uf (find uf i2) b; state.terms<-Int.Set.add b state.terms; {clas= Rep (new_representative typ); cpath= -1; constructors=PacMap.empty; vertex= Node(i1,i2); term= t} | Constructor cinfo -> let paf = {fsym=b; fnargs=0} in Queue.add (b,Fmark paf) state.marks; let pac = {cnode= b; arity= cinfo.ci_arity; args=[]} in Queue.add (b,Cmark pac) state.marks; {clas=Rep (new_representative typ); cpath= -1; constructors=PacMap.empty; vertex=Leaf; term=t} in uf.map.(b)<-new_node; Termhash.add uf.syms t b; Typehash.replace state.by_type typ (Int.Set.add b (try Typehash.find state.by_type typ with Not_found -> Int.Set.empty)); b let add_equality state c s t= let i = add_term state s in let j = add_term state t in Queue.add {lhs=i;rhs=j;rule=Axiom(c,false)} state.combine; Constrhash.add state.uf.axioms c (s,t) let add_disequality state from s t = let i = add_term state s in let j = add_term state t in state.diseq<-{lhs=i;rhs=j;rule=from}::state.diseq let add_quant state id pol (nvars,valid1,patt1,valid2,patt2) = state.quant<- {qe_hyp_id= id; qe_pol= pol; qe_nvars=nvars; qe_lhs= patt1; qe_lhs_valid=valid1; qe_rhs= patt2; qe_rhs_valid=valid2}::state.quant let is_redundant state id args = try let norm_args = Array.map (find state.uf) args in let prev_args = Identhash.find_all state.q_history id in List.exists (fun old_args -> Util.Array.for_all2 (fun i j -> Int.equal i (find state.uf j)) norm_args old_args) prev_args with Not_found -> false let add_inst state (inst,int_subst) = Control.check_for_interrupt (); if state.rew_depth > 0 then if is_redundant state inst.qe_hyp_id int_subst then debug (fun () -> str "discarding redundant (dis)equality") else begin Identhash.add state.q_history inst.qe_hyp_id int_subst; let subst = build_subst (forest state) int_subst in let prfhead= mkVar inst.qe_hyp_id in let args = Array.map constr_of_term subst in let _ = Array.rev args in (* highest deBruijn index first *) let prf= mkApp(prfhead,args) in let s = inst_pattern subst inst.qe_lhs and t = inst_pattern subst inst.qe_rhs in state.changed<-true; state.rew_depth<-pred state.rew_depth; if inst.qe_pol then begin debug (fun () -> (str "Adding new equality, depth="++ int state.rew_depth) ++ fnl () ++ (str " [" ++ Termops.print_constr (EConstr.of_constr prf) ++ str " : " ++ pr_term s ++ str " == " ++ pr_term t ++ str "]")); add_equality state prf s t end else begin debug (fun () -> (str "Adding new disequality, depth="++ int state.rew_depth) ++ fnl () ++ (str " [" ++ Termops.print_constr (EConstr.of_constr prf) ++ str " : " ++ pr_term s ++ str " <> " ++ pr_term t ++ str "]")); add_disequality state (Hyp prf) s t end end let link uf i j eq = (* links i -> j *) let node=uf.map.(i) in node.clas<-Eqto (j,eq); node.cpath<-j let rec down_path uf i l= match uf.map.(i).clas with Eqto (j,eq) ->down_path uf j (((i,j),eq)::l) | Rep _ ->l let eq_pair (i1, j1) (i2, j2) = Int.equal i1 i2 && Int.equal j1 j2 let rec min_path=function ([],l2)->([],l2) | (l1,[])->(l1,[]) | (((c1,t1)::q1),((c2,t2)::q2)) when eq_pair c1 c2 -> min_path (q1,q2) | cpl -> cpl let join_path uf i j= assert (Int.equal (find uf i) (find uf j)); min_path (down_path uf i [],down_path uf j []) let union state i1 i2 eq= debug (fun () -> str "Linking " ++ pr_idx_term state.uf i1 ++ str " and " ++ pr_idx_term state.uf i2 ++ str "."); let r1= get_representative state.uf i1 and r2= get_representative state.uf i2 in link state.uf i1 i2 eq; Constrhash.replace state.by_type r1.class_type (Int.Set.remove i1 (try Constrhash.find state.by_type r1.class_type with Not_found -> Int.Set.empty)); let f= Int.Set.union r1.fathers r2.fathers in r2.weight<-Int.Set.cardinal f; r2.fathers<-f; r2.lfathers<-Int.Set.union r1.lfathers r2.lfathers; ST.delete_set state.sigtable r1.fathers; state.terms<-Int.Set.union state.terms r1.fathers; PacMap.iter (fun pac b -> Queue.add (b,Cmark pac) state.marks) state.uf.map.(i1).constructors; PafMap.iter (fun paf -> Int.Set.iter (fun b -> Queue.add (b,Fmark paf) state.marks)) r1.functions; match r1.inductive_status,r2.inductive_status with Unknown,_ -> () | Partial pac,Unknown -> r2.inductive_status<-Partial pac; state.pa_classes<-Int.Set.remove i1 state.pa_classes; state.pa_classes<-Int.Set.add i2 state.pa_classes | Partial _ ,(Partial _ |Partial_applied) -> state.pa_classes<-Int.Set.remove i1 state.pa_classes | Partial_applied,Unknown -> r2.inductive_status<-Partial_applied | Partial_applied,Partial _ -> state.pa_classes<-Int.Set.remove i2 state.pa_classes; r2.inductive_status<-Partial_applied | Total cpl,Unknown -> r2.inductive_status<-Total cpl; | Total (i,pac),Total _ -> Queue.add (i,Cmark pac) state.marks | _,_ -> () let merge eq state = (* merge and no-merge *) debug (fun () -> str "Merging " ++ pr_idx_term state.uf eq.lhs ++ str " and " ++ pr_idx_term state.uf eq.rhs ++ str "."); let uf=state.uf in let i=find uf eq.lhs and j=find uf eq.rhs in if not (Int.equal i j) then if (size uf i)<(size uf j) then union state i j eq else union state j i (swap eq) let update t state = (* update 1 and 2 *) debug (fun () -> str "Updating term " ++ pr_idx_term state.uf t ++ str "."); let (i,j) as sign = signature state.uf t in let (u,v) = subterms state.uf t in let rep = get_representative state.uf i in begin match rep.inductive_status with Partial _ -> rep.inductive_status <- Partial_applied; state.pa_classes <- Int.Set.remove i state.pa_classes | _ -> () end; PacMap.iter (fun pac _ -> Queue.add (t,Cmark (append_pac v pac)) state.marks) (get_constructors state.uf i); PafMap.iter (fun paf _ -> Queue.add (t,Fmark (fsucc paf)) state.marks) rep.functions; try let s = ST.query sign state.sigtable in Queue.add {lhs=t;rhs=s;rule=Congruence} state.combine with Not_found -> ST.enter t sign state.sigtable let process_function_mark t rep paf state = add_paf rep paf t; state.terms<-Int.Set.union rep.lfathers state.terms let process_constructor_mark t i rep pac state = add_pac state.uf.map.(i) pac t; match rep.inductive_status with Total (s,opac) -> if not (Int.equal pac.cnode opac.cnode) then (* Conflict *) raise (Discriminable (s,opac,t,pac)) else (* Match *) let cinfo = get_constructor_info state.uf pac.cnode in let rec f n oargs args= if n > 0 then match (oargs,args) with s1::q1,s2::q2-> Queue.add {lhs=s1;rhs=s2;rule=Injection(s,opac,t,pac,n)} state.combine; f (n-1) q1 q2 | _-> anomaly ~label:"add_pacs" (Pp.str "weird error in injection subterms merge.") in f cinfo.ci_nhyps opac.args pac.args | Partial_applied | Partial _ -> (* add_pac state.uf.map.(i) pac t; *) state.terms<-Int.Set.union rep.lfathers state.terms | Unknown -> if Int.equal pac.arity 0 then rep.inductive_status <- Total (t,pac) else begin (* add_pac state.uf.map.(i) pac t; *) state.terms<-Int.Set.union rep.lfathers state.terms; rep.inductive_status <- Partial pac; state.pa_classes<- Int.Set.add i state.pa_classes end let process_mark t m state = debug (fun () -> str "Processing mark for term " ++ pr_idx_term state.uf t ++ str "."); let i=find state.uf t in let rep=get_representative state.uf i in match m with Fmark paf -> process_function_mark t rep paf state | Cmark pac -> process_constructor_mark t i rep pac state type explanation = Discrimination of (int*pa_constructor*int*pa_constructor) | Contradiction of disequality | Incomplete let check_disequalities state = let uf=state.uf in let rec check_aux = function | dis::q -> let (info, ans) = if Int.equal (find uf dis.lhs) (find uf dis.rhs) then (str "Yes", Some dis) else (str "No", check_aux q) in let _ = debug (fun () -> str "Checking if " ++ pr_idx_term state.uf dis.lhs ++ str " = " ++ pr_idx_term state.uf dis.rhs ++ str " ... " ++ info) in ans | [] -> None in check_aux state.diseq let one_step state = try let eq = Queue.take state.combine in merge eq state; true with Queue.Empty -> try let (t,m) = Queue.take state.marks in process_mark t m state; true with Queue.Empty -> try let t = Int.Set.choose state.terms in state.terms<-Int.Set.remove t state.terms; update t state; true with Not_found -> false let __eps__ = Id.of_string "_eps_" let new_state_var typ state = let id = pf_get_new_id __eps__ state.gls in let {it=gl ; sigma=sigma} = state.gls in let gls = Goal.V82.new_goal_with sigma gl [Context.Named.Declaration.LocalAssum (id,typ)] in state.gls<- gls; id let complete_one_class state i= match (get_representative state.uf i).inductive_status with Partial pac -> let rec app t typ n = if n<=0 then t else let _,etyp,rest= destProd typ in let id = new_state_var etyp state in app (Appli(t,Eps id)) (substl [mkVar id] rest) (n-1) in let _c = pf_unsafe_type_of state.gls (EConstr.of_constr (constr_of_term (term state.uf pac.cnode))) in let _c = EConstr.Unsafe.to_constr _c in let _args = List.map (fun i -> constr_of_term (term state.uf i)) pac.args in let typ = Term.prod_applist _c (List.rev _args) in let ct = app (term state.uf i) typ pac.arity in state.uf.epsilons <- pac :: state.uf.epsilons; ignore (add_term state ct) | _ -> anomaly (Pp.str "wrong incomplete class.") let complete state = Int.Set.iter (complete_one_class state) state.pa_classes type matching_problem = {mp_subst : int array; mp_inst : quant_eq; mp_stack : (ccpattern*int) list } let make_fun_table state = let uf= state.uf in let funtab=ref PafMap.empty in Array.iteri (fun i inode -> if i < uf.size then match inode.clas with Rep rep -> PafMap.iter (fun paf _ -> let elem = try PafMap.find paf !funtab with Not_found -> Int.Set.empty in funtab:= PafMap.add paf (Int.Set.add i elem) !funtab) rep.functions | _ -> ()) state.uf.map; !funtab let do_match state res pb_stack = let mp=Stack.pop pb_stack in match mp.mp_stack with [] -> res:= (mp.mp_inst,mp.mp_subst) :: !res | (patt,cl)::remains -> let uf=state.uf in match patt with PVar i -> if mp.mp_subst.(pred i)<0 then begin mp.mp_subst.(pred i)<- cl; (* no aliasing problem here *) Stack.push {mp with mp_stack=remains} pb_stack end else if Int.equal mp.mp_subst.(pred i) cl then Stack.push {mp with mp_stack=remains} pb_stack else (* mismatch for non-linear variable in pattern *) () | PApp (f,[]) -> begin try let j=Termhash.find uf.syms f in if Int.equal (find uf j) cl then Stack.push {mp with mp_stack=remains} pb_stack with Not_found -> () end | PApp(f, ((last_arg::rem_args) as args)) -> try let j=Termhash.find uf.syms f in let paf={fsym=j;fnargs=List.length args} in let rep=get_representative uf cl in let good_terms = PafMap.find paf rep.functions in let aux i = let (s,t) = signature state.uf i in Stack.push {mp with mp_subst=Array.copy mp.mp_subst; mp_stack= (PApp(f,rem_args),s) :: (last_arg,t) :: remains} pb_stack in Int.Set.iter aux good_terms with Not_found -> () let paf_of_patt syms = function PVar _ -> invalid_arg "paf_of_patt: pattern is trivial" | PApp (f,args) -> {fsym=Termhash.find syms f; fnargs=List.length args} let init_pb_stack state = let syms= state.uf.syms in let pb_stack = Stack.create () in let funtab = make_fun_table state in let aux inst = begin let good_classes = match inst.qe_lhs_valid with Creates_variables -> Int.Set.empty | Normal -> begin try let paf= paf_of_patt syms inst.qe_lhs in PafMap.find paf funtab with Not_found -> Int.Set.empty end | Trivial typ -> begin try Typehash.find state.by_type typ with Not_found -> Int.Set.empty end in Int.Set.iter (fun i -> Stack.push {mp_subst = Array.make inst.qe_nvars (-1); mp_inst=inst; mp_stack=[inst.qe_lhs,i]} pb_stack) good_classes end; begin let good_classes = match inst.qe_rhs_valid with Creates_variables -> Int.Set.empty | Normal -> begin try let paf= paf_of_patt syms inst.qe_rhs in PafMap.find paf funtab with Not_found -> Int.Set.empty end | Trivial typ -> begin try Typehash.find state.by_type typ with Not_found -> Int.Set.empty end in Int.Set.iter (fun i -> Stack.push {mp_subst = Array.make inst.qe_nvars (-1); mp_inst=inst; mp_stack=[inst.qe_rhs,i]} pb_stack) good_classes end in List.iter aux state.quant; pb_stack let find_instances state = let pb_stack= init_pb_stack state in let res =ref [] in let _ = debug (fun () -> str "Running E-matching algorithm ... "); try while true do Control.check_for_interrupt (); do_match state res pb_stack done; anomaly (Pp.str "get out of here!") with Stack.Empty -> () in !res let rec execute first_run state = debug (fun () -> str "Executing ... "); try while Control.check_for_interrupt (); one_step state do () done; match check_disequalities state with None -> if not(Int.Set.is_empty state.pa_classes) then begin debug (fun () -> str "First run was incomplete, completing ... "); complete state; execute false state end else if state.rew_depth>0 then let l=find_instances state in List.iter (add_inst state) l; if state.changed then begin state.changed <- false; execute true state end else begin debug (fun () -> str "Out of instances ... "); None end else begin debug (fun () -> str "Out of depth ... "); None end | Some dis -> Some begin if first_run then Contradiction dis else Incomplete end with Discriminable(s,spac,t,tpac) -> Some begin if first_run then Discrimination (s,spac,t,tpac) else Incomplete end