1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (** This module is about the low-level declaration of logical objects *) open Pp open CErrors open Util open Names open Libnames open Globnames open Constr open Declarations open Entries open Libobject open Lib open Impargs open Safe_typing open Cooking open Decls open Decl_kinds (** flag for internal message display *) type internal_flag = | UserAutomaticRequest (* kernel action, a message is displayed *) | InternalTacticRequest (* kernel action, no message is displayed *) | UserIndividualRequest (* user action, a message is displayed *) (** Declaration of section variables and local definitions *) type section_variable_entry = | SectionLocalDef of Safe_typing.private_constants definition_entry | SectionLocalAssum of types Univ.in_universe_context_set * polymorphic * bool (** Implicit status *) type variable_declaration = DirPath.t * section_variable_entry * logical_kind let cache_variable ((sp,_),o) = match o with | Inl ctx -> Global.push_context_set false ctx | Inr (id,(p,d,mk)) -> (* Constr raisonne sur les noms courts *) if variable_exists id then alreadydeclared (Id.print id ++ str " already exists"); let impl,opaq,poly,ctx = match d with (* Fails if not well-typed *) | SectionLocalAssum ((ty,ctx),poly,impl) -> let () = Global.push_named_assum ((id,ty,poly),ctx) in let impl = if impl then Implicit else Explicit in impl, true, poly, ctx | SectionLocalDef (de) -> let univs = Global.push_named_def (id,de) in let poly = match de.const_entry_universes with | Monomorphic_const_entry _ -> false | Polymorphic_const_entry _ -> true in Explicit, de.const_entry_opaque, poly, univs in Nametab.push (Nametab.Until 1) (restrict_path 0 sp) (VarRef id); add_section_variable id impl poly ctx; Dischargedhypsmap.set_discharged_hyps sp []; add_variable_data id (p,opaq,ctx,poly,mk) let discharge_variable (_,o) = match o with | Inr (id,_) -> if variable_polymorphic id then None else Some (Inl (variable_context id)) | Inl _ -> Some o type variable_obj = (Univ.ContextSet.t, Id.t * variable_declaration) union let inVariable : variable_obj -> obj = declare_object { (default_object "VARIABLE") with cache_function = cache_variable; discharge_function = discharge_variable; classify_function = (fun _ -> Dispose) } (* for initial declaration *) let declare_variable id obj = let oname = add_leaf id (inVariable (Inr (id,obj))) in declare_var_implicits id; Notation.declare_ref_arguments_scope (VarRef id); Heads.declare_head (EvalVarRef id); oname (** Declaration of constants and parameters *) type constant_obj = { cst_decl : global_declaration option; (** [None] when the declaration is a side-effect and has already been defined in the global environment. *) cst_hyps : Dischargedhypsmap.discharged_hyps; cst_kind : logical_kind; cst_locl : bool; } type constant_declaration = Safe_typing.private_constants constant_entry * logical_kind (* At load-time, the segment starting from the module name to the discharge *) (* section (if Remark or Fact) is needed to access a construction *) let load_constant i ((sp,kn), obj) = if Nametab.exists_cci sp then alreadydeclared (Id.print (basename sp) ++ str " already exists"); let con = Global.constant_of_delta_kn kn in Nametab.push (Nametab.Until i) sp (ConstRef con); add_constant_kind con obj.cst_kind (* Opening means making the name without its module qualification available *) let open_constant i ((sp,kn), obj) = (** Never open a local definition *) if obj.cst_locl then () else let con = Global.constant_of_delta_kn kn in Nametab.push (Nametab.Exactly i) sp (ConstRef con); match (Global.lookup_constant con).const_body with | (Def _ | Undef _) -> () | OpaqueDef lc -> match Opaqueproof.get_constraints (Global.opaque_tables ()) lc with | Some f when Future.is_val f -> Global.push_context_set false (Future.force f) | _ -> () let exists_name id = variable_exists id || Global.exists_objlabel (Label.of_id id) let check_exists sp = let id = basename sp in if exists_name id then alreadydeclared (Id.print id ++ str " already exists") let cache_constant ((sp,kn), obj) = let id = basename sp in let _,dir,_ = KerName.repr kn in let kn' = match obj.cst_decl with | None -> if Global.exists_objlabel (Label.of_id (basename sp)) then Constant.make1 kn else CErrors.anomaly Pp.(str"Ex seff not found: " ++ Id.print(basename sp) ++ str".") | Some decl -> let () = check_exists sp in Global.add_constant dir id decl in assert (Constant.equal kn' (Constant.make1 kn)); Nametab.push (Nametab.Until 1) sp (ConstRef (Constant.make1 kn)); let cst = Global.lookup_constant kn' in add_section_constant (Declareops.constant_is_polymorphic cst) kn' cst.const_hyps; Dischargedhypsmap.set_discharged_hyps sp obj.cst_hyps; add_constant_kind (Constant.make1 kn) obj.cst_kind let discharged_hyps kn sechyps = let (_,dir,_) = KerName.repr kn in let args = Array.to_list (instance_from_variable_context sechyps) in List.rev_map (Libnames.make_path dir) args let discharge_constant ((sp, kn), obj) = let con = Constant.make1 kn in let from = Global.lookup_constant con in let modlist = replacement_context () in let hyps,subst,uctx = section_segment_of_constant con in let new_hyps = (discharged_hyps kn hyps) @ obj.cst_hyps in let abstract = (named_of_variable_context hyps, subst, uctx) in let new_decl = GlobalRecipe{ from; info = { Opaqueproof.modlist; abstract}} in Some { obj with cst_hyps = new_hyps; cst_decl = Some new_decl; } (* Hack to reduce the size of .vo: we keep only what load/open needs *) let dummy_constant cst = { cst_decl = None; cst_hyps = []; cst_kind = cst.cst_kind; cst_locl = cst.cst_locl; } let classify_constant cst = Substitute (dummy_constant cst) let (inConstant : constant_obj -> obj) = declare_object { (default_object "CONSTANT") with cache_function = cache_constant; load_function = load_constant; open_function = open_constant; classify_function = classify_constant; subst_function = ident_subst_function; discharge_function = discharge_constant } let declare_scheme = ref (fun _ _ -> assert false) let set_declare_scheme f = declare_scheme := f let update_tables c = declare_constant_implicits c; Heads.declare_head (EvalConstRef c); Notation.declare_ref_arguments_scope (ConstRef c) let declare_constant_common id cst = let o = inConstant cst in let _, kn as oname = add_leaf id o in pull_to_head oname; let c = Global.constant_of_delta_kn kn in update_tables c; c let default_univ_entry = Monomorphic_const_entry Univ.ContextSet.empty let definition_entry ?fix_exn ?(opaque=false) ?(inline=false) ?types ?(univs=default_univ_entry) ?(eff=Safe_typing.empty_private_constants) body = { const_entry_body = Future.from_val ?fix_exn ((body,Univ.ContextSet.empty), eff); const_entry_secctx = None; const_entry_type = types; const_entry_universes = univs; const_entry_opaque = opaque; const_entry_feedback = None; const_entry_inline_code = inline} let declare_constant ?(internal = UserIndividualRequest) ?(local = false) id ?(export_seff=false) (cd, kind) = let is_poly de = match de.const_entry_universes with | Monomorphic_const_entry _ -> false | Polymorphic_const_entry _ -> true in let in_section = Lib.sections_are_opened () in let export, decl = (* We deal with side effects *) match cd with | DefinitionEntry de when export_seff || not de.const_entry_opaque || is_poly de -> (** This globally defines the side-effects in the environment. We mark exported constants as being side-effect not to redeclare them at caching time. *) let cd, export = Global.export_private_constants ~in_section cd in export, ConstantEntry (PureEntry, cd) | _ -> [], ConstantEntry (EffectEntry, cd) in let iter_eff (c, role) = let o = inConstant { cst_decl = None; cst_hyps = [] ; cst_kind = IsProof Theorem; cst_locl = false; } in let id = Label.to_id (pi3 (Constant.repr3 c)) in ignore(add_leaf id o); update_tables c; match role with | Safe_typing.Subproof -> () | Safe_typing.Schema (ind, kind) -> !declare_scheme kind [|ind,c|] in let () = List.iter iter_eff export in let cst = { cst_decl = Some decl; cst_hyps = [] ; cst_kind = kind; cst_locl = local; } in declare_constant_common id cst let declare_definition ?(internal=UserIndividualRequest) ?(opaque=false) ?(kind=Decl_kinds.Definition) ?(local = false) id ?types (body,univs) = let cb = definition_entry ?types ~univs ~opaque body in declare_constant ~internal ~local id (Entries.DefinitionEntry cb, Decl_kinds.IsDefinition kind) (** Declaration of inductive blocks *) let declare_inductive_argument_scopes kn mie = List.iteri (fun i {mind_entry_consnames=lc} -> Notation.declare_ref_arguments_scope (IndRef (kn,i)); for j=1 to List.length lc do Notation.declare_ref_arguments_scope (ConstructRef ((kn,i),j)); done) mie.mind_entry_inds let inductive_names sp kn mie = let (dp,_) = repr_path sp in let kn = Global.mind_of_delta_kn kn in let names, _ = List.fold_left (fun (names, n) ind -> let ind_p = (kn,n) in let names, _ = List.fold_left (fun (names, p) l -> let sp = Libnames.make_path dp l in ((sp, ConstructRef (ind_p,p)) :: names, p+1)) (names, 1) ind.mind_entry_consnames in let sp = Libnames.make_path dp ind.mind_entry_typename in ((sp, IndRef ind_p) :: names, n+1)) ([], 0) mie.mind_entry_inds in names let load_inductive i ((sp,kn),(_,mie)) = let names = inductive_names sp kn mie in List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until i) sp ref ) names let open_inductive i ((sp,kn),(_,mie)) = let names = inductive_names sp kn mie in List.iter (fun (sp, ref) -> Nametab.push (Nametab.Exactly i) sp ref) names let cache_inductive ((sp,kn),(dhyps,mie)) = let names = inductive_names sp kn mie in List.iter check_exists (List.map fst names); let id = basename sp in let _,dir,_ = KerName.repr kn in let kn' = Global.add_mind dir id mie in assert (MutInd.equal kn' (MutInd.make1 kn)); let mind = Global.lookup_mind kn' in add_section_kn (Declareops.inductive_is_polymorphic mind) kn' mind.mind_hyps; Dischargedhypsmap.set_discharged_hyps sp dhyps; List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until 1) sp ref) names let discharge_inductive ((sp,kn),(dhyps,mie)) = let mind = Global.mind_of_delta_kn kn in let mie = Global.lookup_mind mind in let repl = replacement_context () in let sechyps, _, _ as info = section_segment_of_mutual_inductive mind in Some (discharged_hyps kn sechyps, Discharge.process_inductive info repl mie) let dummy_one_inductive_entry mie = { mind_entry_typename = mie.mind_entry_typename; mind_entry_arity = mkProp; mind_entry_template = false; mind_entry_consnames = mie.mind_entry_consnames; mind_entry_lc = [] } (* Hack to reduce the size of .vo: we keep only what load/open needs *) let dummy_inductive_entry (_,m) = ([],{ mind_entry_params = []; mind_entry_record = None; mind_entry_finite = Decl_kinds.BiFinite; mind_entry_inds = List.map dummy_one_inductive_entry m.mind_entry_inds; mind_entry_universes = Monomorphic_ind_entry Univ.ContextSet.empty; mind_entry_private = None; }) (* reinfer subtyping constraints for inductive after section is dischared. *) let infer_inductive_subtyping (pth, mind_ent) = match mind_ent.mind_entry_universes with | Monomorphic_ind_entry _ | Polymorphic_ind_entry _ -> (pth, mind_ent) | Cumulative_ind_entry cumi -> begin let env = Global.env () in let env' = Environ.push_context (Univ.CumulativityInfo.univ_context cumi) env in (* let (env'', typed_params) = Typeops.infer_local_decls env' (mind_ent.mind_entry_params) in *) let evd = Evd.from_env env' in (pth, Inductiveops.infer_inductive_subtyping env' evd mind_ent) end type inductive_obj = Dischargedhypsmap.discharged_hyps * mutual_inductive_entry let inInductive : inductive_obj -> obj = declare_object {(default_object "INDUCTIVE") with cache_function = cache_inductive; load_function = load_inductive; open_function = open_inductive; classify_function = (fun a -> Substitute (dummy_inductive_entry a)); subst_function = ident_subst_function; discharge_function = discharge_inductive; rebuild_function = infer_inductive_subtyping } let declare_projections mind = let spec,_ = Inductive.lookup_mind_specif (Global.env ()) (mind,0) in match spec.mind_record with | Some (Some (_, kns, pjs)) -> Array.iteri (fun i kn -> let id = Label.to_id (Constant.label kn) in let entry = {proj_entry_ind = mind; proj_entry_arg = i} in let kn' = declare_constant id (ProjectionEntry entry, IsDefinition StructureComponent) in assert(Constant.equal kn kn')) kns; true,true | Some None -> true,false | None -> false,false (* for initial declaration *) let declare_mind mie = let id = match mie.mind_entry_inds with | ind::_ -> ind.mind_entry_typename | [] -> anomaly (Pp.str "cannot declare an empty list of inductives.") in let (sp,kn as oname) = add_leaf id (inInductive ([],mie)) in let mind = Global.mind_of_delta_kn kn in let isrecord,isprim = declare_projections mind in declare_mib_implicits mind; declare_inductive_argument_scopes mind mie; oname, isprim (* Declaration messages *) let pr_rank i = pr_nth (i+1) let fixpoint_message indexes l = Flags.if_verbose Feedback.msg_info (match l with | [] -> anomaly (Pp.str "no recursive definition.") | [id] -> Id.print id ++ str " is recursively defined" ++ (match indexes with | Some [|i|] -> str " (decreasing on "++pr_rank i++str " argument)" | _ -> mt ()) | l -> hov 0 (prlist_with_sep pr_comma Id.print l ++ spc () ++ str "are recursively defined" ++ match indexes with | Some a -> spc () ++ str "(decreasing respectively on " ++ prvect_with_sep pr_comma pr_rank a ++ str " arguments)" | None -> mt ())) let cofixpoint_message l = Flags.if_verbose Feedback.msg_info (match l with | [] -> anomaly (Pp.str "No corecursive definition.") | [id] -> Id.print id ++ str " is corecursively defined" | l -> hov 0 (prlist_with_sep pr_comma Id.print l ++ spc () ++ str "are corecursively defined")) let recursive_message isfix i l = (if isfix then fixpoint_message i else cofixpoint_message) l let definition_message id = Flags.if_verbose Feedback.msg_info (Id.print id ++ str " is defined") let assumption_message id = (* Changing "assumed" to "declared", "assuming" referring more to the type of the object than to the name of the object (see discussion on coqdev: "Chapter 4 of the Reference Manual", 8/10/2015) *) Flags.if_verbose Feedback.msg_info (Id.print id ++ str " is declared") (** Global universe names, in a different summary *) type universe_context_decl = polymorphic * Univ.ContextSet.t let cache_universe_context (p, ctx) = Global.push_context_set p ctx; if p then Lib.add_section_context ctx let input_universe_context : universe_context_decl -> Libobject.obj = declare_object { (default_object "Global universe context state") with cache_function = (fun (na, pi) -> cache_universe_context pi); load_function = (fun _ (_, pi) -> cache_universe_context pi); discharge_function = (fun (_, (p, _ as x)) -> if p then None else Some x); classify_function = (fun a -> Keep a) } let declare_universe_context poly ctx = Lib.add_anonymous_leaf (input_universe_context (poly, ctx)) (* Discharged or not *) type universe_decl = polymorphic * Universes.universe_binders let cache_universes (p, l) = let glob = Global.global_universe_names () in let glob', ctx = Id.Map.fold (fun id lev ((idl,lid),ctx) -> ((Id.Map.add id (p, lev) idl, Univ.LMap.add lev id lid), Univ.ContextSet.add_universe lev ctx)) l (glob, Univ.ContextSet.empty) in cache_universe_context (p, ctx); Global.set_global_universe_names glob' let input_universes : universe_decl -> Libobject.obj = declare_object { (default_object "Global universe name state") with cache_function = (fun (na, pi) -> cache_universes pi); load_function = (fun _ (_, pi) -> cache_universes pi); discharge_function = (fun (_, (p, _ as x)) -> if p then None else Some x); classify_function = (fun a -> Keep a) } let do_universe poly l = let in_section = Lib.sections_are_opened () in let () = if poly && not in_section then user_err ~hdr:"Constraint" (str"Cannot declare polymorphic universes outside sections") in let l = List.fold_left (fun acc (l, id) -> let lev = Universes.new_univ_level (Global.current_dirpath ()) in Id.Map.add id lev acc) Id.Map.empty l in Lib.add_anonymous_leaf (input_universes (poly, l)) type constraint_decl = polymorphic * Univ.constraints let cache_constraints (na, (p, c)) = let ctx = Univ.ContextSet.add_constraints c Univ.ContextSet.empty (* No declared universes here, just constraints *) in cache_universe_context (p,ctx) let discharge_constraints (_, (p, c as a)) = if p then None else Some a let input_constraints : constraint_decl -> Libobject.obj = let open Libobject in declare_object { (default_object "Global universe constraints") with cache_function = cache_constraints; load_function = (fun _ -> cache_constraints); discharge_function = discharge_constraints; classify_function = (fun a -> Keep a) } let do_constraint poly l = let open Misctypes in let u_of_id x = match x with | GProp -> Loc.tag (false, Univ.Level.prop) | GSet -> Loc.tag (false, Univ.Level.set) | GType None | GType (Some (_, Anonymous)) -> user_err ~hdr:"Constraint" (str "Cannot declare constraints on anonymous universes") | GType (Some (loc, Name id)) -> let names, _ = Global.global_universe_names () in try loc, Id.Map.find id names with Not_found -> user_err ?loc ~hdr:"Constraint" (str "Undeclared universe " ++ Id.print id) in let in_section = Lib.sections_are_opened () in let () = if poly && not in_section then user_err ~hdr:"Constraint" (str"Cannot declare polymorphic constraints outside sections") in let check_poly ?loc p loc' p' = if poly then () else if p || p' then let loc = if p then loc else loc' in user_err ?loc ~hdr:"Constraint" (str "Cannot declare a global constraint on " ++ str "a polymorphic universe, use " ++ str "Polymorphic Constraint instead") in let constraints = List.fold_left (fun acc (l, d, r) -> let ploc, (p, lu) = u_of_id l and rloc, (p', ru) = u_of_id r in check_poly ?loc:ploc p rloc p'; Univ.Constraint.add (lu, d, ru) acc) Univ.Constraint.empty l in Lib.add_anonymous_leaf (input_constraints (poly, constraints))