1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* Recursive polynomials: R[x1]...[xn]. *) open Util open Utile (* 1. Coefficients: R *) module type Coef = sig type t val equal : t -> t -> bool val lt : t -> t -> bool val le : t -> t -> bool val abs : t -> t val plus : t -> t -> t val mult : t -> t -> t val sub : t -> t -> t val opp : t -> t val div : t -> t -> t val modulo : t -> t -> t val puis : t -> int -> t val pgcd : t -> t -> t val hash : t -> int val of_num : Num.num -> t val to_string : t -> string end module type S = sig type coef type variable = int type t = Pint of coef | Prec of variable * t array val of_num : Num.num -> t val x : variable -> t val monome : variable -> int -> t val is_constantP : t -> bool val is_zero : t -> bool val max_var_pol : t -> variable val max_var_pol2 : t -> variable val max_var : t array -> variable val equal : t -> t -> bool val norm : t -> t val deg : variable -> t -> int val deg_total : t -> int val copyP : t -> t val coef : variable -> int -> t -> t val plusP : t -> t -> t val content : t -> coef val div_int : t -> coef -> t val vire_contenu : t -> t val vars : t -> variable list val int_of_Pint : t -> coef val multx : int -> variable -> t -> t val multP : t -> t -> t val deriv : variable -> t -> t val oppP : t -> t val moinsP : t -> t -> t val puisP : t -> int -> t val ( @@ ) : t -> t -> t val ( -- ) : t -> t -> t val ( ^^ ) : t -> int -> t val coefDom : variable -> t -> t val coefConst : variable -> t -> t val remP : variable -> t -> t val coef_int_tete : t -> coef val normc : t -> t val coef_constant : t -> coef val univ : bool ref val string_of_var : int -> string val nsP : int ref val to_string : t -> string val printP : t -> unit val print_tpoly : t array -> unit val print_lpoly : t list -> unit val quo_rem_pol : t -> t -> variable -> t * t val div_pol : t -> t -> variable -> t val divP : t -> t -> t val div_pol_rat : t -> t -> bool val pseudo_div : t -> t -> variable -> t * t * int * t val pgcdP : t -> t -> t val pgcd_pol : t -> t -> variable -> t val content_pol : t -> variable -> t val pgcd_coef_pol : t -> t -> variable -> t val pgcd_pol_rec : t -> t -> variable -> t val gcd_sub_res : t -> t -> variable -> t val gcd_sub_res_rec : t -> t -> t -> t -> int -> variable -> t val lazard_power : t -> t -> int -> variable -> t val hash : t -> int module Hashpol : Hashtbl.S with type key=t end (*********************************************************************** 2. Type of polynomials, operations. *) module Make (C:Coef) = struct type coef = C.t let coef_of_int i = C.of_num (Num.Int i) let coef0 = coef_of_int 0 let coef1 = coef_of_int 1 type variable = int type t = Pint of coef (* constant polynomial *) | Prec of variable * (t array) (* coefficients, increasing degree *) (* by default, operations work with normalized polynomials: - variables are positive integers - coefficients of a polynomial in x only use variables < x - no zero coefficient at beginning - no Prec(x,a) where a is constant in x *) (* constant polynomials *) let of_num x = Pint (C.of_num x) let cf0 = of_num (Num.Int 0) let cf1 = of_num (Num.Int 1) (* nth variable *) let x n = Prec (n,[|cf0;cf1|]) (* create v^n *) let monome v n = match n with 0->Pint coef1; |_->let tmp = Array.make (n+1) (Pint coef0) in tmp.(n)<-(Pint coef1); Prec (v, tmp) let is_constantP = function Pint _ -> true | Prec _ -> false let int_of_Pint = function Pint x -> x | _ -> failwith "non" let is_zero p = match p with Pint n -> if C.equal n coef0 then true else false |_-> false let max_var_pol p = match p with Pint _ -> 0 |Prec(x,_) -> x (* p not normalized *) let rec max_var_pol2 p = match p with Pint _ -> 0 |Prec(v,c)-> Array.fold_right (fun q m -> max (max_var_pol2 q) m) c v let max_var l = Array.fold_right (fun p m -> max (max_var_pol2 p) m) l 0 (* equality between polynomials *) let rec equal p q = match (p,q) with (Pint a,Pint b) -> C.equal a b |(Prec(x,p1),Prec(y,q1)) -> (Int.equal x y) && Array.for_all2 equal p1 q1 | (_,_) -> false (* normalize polynomial: remove head zeros, coefficients are normalized if constant, returns the coefficient *) let norm p = match p with Pint _ -> p |Prec (x,a)-> let d = (Array.length a -1) in let n = ref d in while !n>0 && (equal a.(!n) (Pint coef0)) do n:=!n-1; done; if !n<0 then Pint coef0 else if Int.equal !n 0 then a.(0) else if Int.equal !n d then p else (let b=Array.make (!n+1) (Pint coef0) in for i=0 to !n do b.(i)<-a.(i);done; Prec(x,b)) (* degree in v, v >= max var of p *) let deg v p = match p with Prec(x,p1) when Int.equal x v -> Array.length p1 -1 |_ -> 0 (* total degree *) let rec deg_total p = match p with Prec (x,p1) -> let d = ref 0 in Array.iteri (fun i q -> d:= (max !d (i+(deg_total q)))) p1; !d |_ -> 0 let rec copyP p = match p with Pint i -> Pint i |Prec(x,q) -> Prec(x,Array.map copyP q) (* coefficient of degree i in v, v >= max var of p *) let coef v i p = match p with Prec (x,p1) when Int.equal x v -> if i<(Array.length p1) then p1.(i) else Pint coef0 |_ -> if Int.equal i 0 then p else Pint coef0 (* addition *) let rec plusP p q = let res = (match (p,q) with (Pint a,Pint b) -> Pint (C.plus a b) |(Pint a, Prec (y,q1)) -> let q2=Array.map copyP q1 in q2.(0)<- plusP p q1.(0); Prec (y,q2) |(Prec (x,p1),Pint b) -> let p2=Array.map copyP p1 in p2.(0)<- plusP p1.(0) q; Prec (x,p2) |(Prec (x,p1),Prec (y,q1)) -> if x<y then (let q2=Array.map copyP q1 in q2.(0)<- plusP p q1.(0); Prec (y,q2)) else if x>y then (let p2=Array.map copyP p1 in p2.(0)<- plusP p1.(0) q; Prec (x,p2)) else (let n=max (deg x p) (deg x q) in let r=Array.make (n+1) (Pint coef0) in for i=0 to n do r.(i)<- plusP (coef x i p) (coef x i q); done; Prec(x,r))) in norm res (* content, positive integer *) let rec content p = match p with Pint a -> C.abs a | Prec (x ,p1) -> Array.fold_left C.pgcd coef0 (Array.map content p1) let rec div_int p a= match p with Pint b -> Pint (C.div b a) | Prec(x,p1) -> Prec(x,Array.map (fun x -> div_int x a) p1) let vire_contenu p = let c = content p in if C.equal c coef0 then p else div_int p c (* sorted list of variables of a polynomial *) let rec vars=function Pint _->[] | Prec (x,l)->(List.flatten ([x]::(List.map vars (Array.to_list l)))) (* multiply p by v^n, v >= max_var p *) let multx n v p = match p with Prec (x,p1) when Int.equal x v -> let p2= Array.make ((Array.length p1)+n) (Pint coef0) in for i=0 to (Array.length p1)-1 do p2.(i+n)<-p1.(i); done; Prec (x,p2) |_ -> if equal p (Pint coef0) then (Pint coef0) else (let p2=Array.make (n+1) (Pint coef0) in p2.(n)<-p; Prec (v,p2)) (* product *) let rec multP p q = match (p,q) with (Pint a,Pint b) -> Pint (C.mult a b) |(Pint a, Prec (y,q1)) -> if C.equal a coef0 then Pint coef0 else let q2 = Array.map (fun z-> multP p z) q1 in Prec (y,q2) |(Prec (x,p1), Pint b) -> if C.equal b coef0 then Pint coef0 else let p2 = Array.map (fun z-> multP z q) p1 in Prec (x,p2) |(Prec (x,p1), Prec(y,q1)) -> if x<y then (let q2 = Array.map (fun z-> multP p z) q1 in Prec (y,q2)) else if x>y then (let p2 = Array.map (fun z-> multP z q) p1 in Prec (x,p2)) else Array.fold_left plusP (Pint coef0) (Array.mapi (fun i z-> (multx i x (multP z q))) p1) (* derive p with variable v, v >= max_var p *) let deriv v p = match p with Pint a -> Pint coef0 | Prec(x,p1) when Int.equal x v -> let d = Array.length p1 -1 in if Int.equal d 1 then p1.(1) else (let p2 = Array.make d (Pint coef0) in for i=0 to d-1 do p2.(i)<- multP (Pint (coef_of_int (i+1))) p1.(i+1); done; Prec (x,p2)) | Prec(x,p1)-> Pint coef0 (* opposite *) let rec oppP p = match p with Pint a -> Pint (C.opp a) |Prec(x,p1) -> Prec(x,Array.map oppP p1) let moinsP p q=plusP p (oppP q) let rec puisP p n = match n with 0 -> cf1 |_ -> (multP p (puisP p (n-1))) (* infix notations *) (*let (++) a b = plusP a b *) let (@@) a b = multP a b let (--) a b = moinsP a b let (^^) a b = puisP a b (* leading coefficient in v, v>= max_var p *) let coefDom v p= coef v (deg v p) p let coefConst v p = coef v 0 p (* tail of a polynomial *) let remP v p = moinsP p (multP (coefDom v p) (puisP (x v) (deg v p))) (* first interger coefficient of p *) let rec coef_int_tete p = let v = max_var_pol p in if v>0 then coef_int_tete (coefDom v p) else (match p with | Pint a -> a |_ -> assert false) (* divide by the content and make the head int coef positive *) let normc p = let p = vire_contenu p in let a = coef_int_tete p in if C.le coef0 a then p else oppP p (* constant coef of normalized polynomial *) let rec coef_constant p = match p with Pint a->a |Prec(_,q)->coef_constant q.(0) (*********************************************************************** 3. Printing polynomials. *) (* if univ = false, we use x,y,z,a,b,c,d... as variables, else x1,x2,... *) let univ=ref true let string_of_var x= if !univ then "u"^(string_of_int x) else if x<=3 then String.make 1 (Char.chr(x+(Char.code 'w'))) else String.make 1 (Char.chr(x-4+(Char.code 'a'))) let nsP = ref 0 let rec string_of_Pcut p = if (!nsP)<=0 then "..." else match p with |Pint a-> nsP:=(!nsP)-1; if C.le coef0 a then C.to_string a else "("^(C.to_string a)^")" |Prec (x,t)-> let v=string_of_var x and s=ref "" and sp=ref "" in let st0 = string_of_Pcut t.(0) in if not (String.equal st0 "0") then s:=st0; let fin = ref false in for i=(Array.length t)-1 downto 1 do if (!nsP)<0 then (sp:="..."; if not (!fin) then s:=(!s)^"+"^(!sp); fin:=true) else ( let si=string_of_Pcut t.(i) in sp:=""; if Int.equal i 1 then ( if not (String.equal si "0") then (nsP:=(!nsP)-1; if String.equal si "1" then sp:=v else (if (String.contains si '+') then sp:="("^si^")*"^v else sp:=si^"*"^v))) else ( if not (String.equal si "0") then (nsP:=(!nsP)-1; if String.equal si "1" then sp:=v^"^"^(string_of_int i) else (if (String.contains si '+') then sp:="("^si^")*"^v^"^"^(string_of_int i) else sp:=si^"*"^v^"^"^(string_of_int i)))); if not (String.is_empty !sp) && not (!fin) then (nsP:=(!nsP)-1; if String.is_empty !s then s:=!sp else s:=(!s)^"+"^(!sp))); done; if String.is_empty !s then (nsP:=(!nsP)-1; (s:="0")); !s let to_string p = nsP:=20; string_of_Pcut p let printP p = Format.printf "@[%s@]" (to_string p) let print_tpoly lp = let s = ref "\n{ " in Array.iter (fun p -> s:=(!s)^(to_string p)^"\n") lp; prt0 ((!s)^"}") let print_lpoly lp = print_tpoly (Array.of_list lp) (*********************************************************************** 4. Exact division of polynomials. *) (* return (s,r) s.t. p = s*q+r *) let rec quo_rem_pol p q x = if Int.equal x 0 then (match (p,q) with |(Pint a, Pint b) -> if C.equal (C.modulo a b) coef0 then (Pint (C.div a b), cf0) else failwith "div_pol1" |_ -> assert false) else let m = deg x q in let b = coefDom x q in let q1 = remP x q in (* q = b*x^m+q1 *) let r = ref p in let s = ref cf0 in let continue =ref true in while (!continue) && (not (equal !r cf0)) do let n = deg x !r in if n<m then continue:=false else ( let a = coefDom x !r in let p1 = remP x !r in (* r = a*x^n+p1 *) let c = div_pol a b (x-1) in (* a = c*b *) let s1 = c @@ ((monome x (n-m))) in s:= plusP (!s) s1; r:= p1 -- (s1 @@ q1); ) done; (!s,!r) (* returns quotient p/q if q divides p, else fails *) and div_pol p q x = let (s,r) = quo_rem_pol p q x in if equal r cf0 then s else failwith ("div_pol:\n" ^"p:"^(to_string p)^"\n" ^"q:"^(to_string q)^"\n" ^"r:"^(to_string r)^"\n" ^"x:"^(string_of_int x)^"\n" ) let divP p q= let x = max (max_var_pol p) (max_var_pol q) in div_pol p q x let div_pol_rat p q= let x = max (max_var_pol p) (max_var_pol q) in try let r = puisP (Pint(coef_int_tete q)) (1+(deg x p)-(deg x q)) in let _ = div_pol (multP p r) q x in true with Failure _ -> false (*********************************************************************** 5. Pseudo-division and gcd with subresultants. *) (* pseudo division : q = c*x^m+q1 retruns (r,c,d,s) s.t. c^d*p = s*q + r. *) let pseudo_div p q x = match q with Pint _ -> (cf0, q,1, p) | Prec (v,q1) when not (Int.equal x v) -> (cf0, q,1, p) | Prec (v,q1) -> ( (* pr "pseudo_division: c^d*p = s*q + r";*) let delta = ref 0 in let r = ref p in let c = coefDom x q in let q1 = remP x q in let d' = deg x q in let s = ref cf0 in while (deg x !r)>=(deg x q) do let d = deg x !r in let a = coefDom x !r in let r1=remP x !r in let u = a @@ ((monome x (d-d'))) in r:=(c @@ r1) -- (u @@ q1); s:=plusP (c @@ (!s)) u; delta := (!delta) + 1; done; (* pr ("deg d: "^(string_of_int (!delta))^", deg c: "^(string_of_int (deg_total c))); pr ("deg r:"^(string_of_int (deg_total !r))); *) (!r,c,!delta, !s) ) (* gcd with subresultants *) let rec pgcdP p q = let x = max (max_var_pol p) (max_var_pol q) in pgcd_pol p q x and pgcd_pol p q x = pgcd_pol_rec p q x and content_pol p x = match p with Prec(v,p1) when Int.equal v x -> Array.fold_left (fun a b -> pgcd_pol_rec a b (x-1)) cf0 p1 | _ -> p and pgcd_coef_pol c p x = match p with Prec(v,p1) when Int.equal x v -> Array.fold_left (fun a b -> pgcd_pol_rec a b (x-1)) c p1 |_ -> pgcd_pol_rec c p (x-1) and pgcd_pol_rec p q x = match (p,q) with (Pint a,Pint b) -> Pint (C.pgcd (C.abs a) (C.abs b)) |_ -> if equal p cf0 then q else if equal q cf0 then p else if Int.equal (deg x q) 0 then pgcd_coef_pol q p x else if Int.equal (deg x p) 0 then pgcd_coef_pol p q x else ( let a = content_pol p x in let b = content_pol q x in let c = pgcd_pol_rec a b (x-1) in pr (string_of_int x); let p1 = div_pol p c x in let q1 = div_pol q c x in let r = gcd_sub_res p1 q1 x in let cr = content_pol r x in let res = c @@ (div_pol r cr x) in res ) (* Sub-résultants: ai*Ai = Qi*Ai+1 + bi*Ai+2 deg Ai+2 < deg Ai+1 Ai = ci*X^ni + ... di = ni - ni+1 ai = (- ci+1)^(di + 1) b1 = 1 bi = ci*si^di si i>1 s1 = 1 si+1 = ((ci+1)^di*si)/si^di *) and gcd_sub_res p q x = if equal q cf0 then p else let d = deg x p in let d' = deg x q in if d<d' then gcd_sub_res q p x else let delta = d-d' in let c' = coefDom x q in let r = snd (quo_rem_pol (((oppP c')^^(delta+1))@@p) (oppP q) x) in gcd_sub_res_rec q r (c'^^delta) c' d' x and gcd_sub_res_rec p q s c d x = if equal q cf0 then p else ( let d' = deg x q in let c' = coefDom x q in let delta = d-d' in let r = snd (quo_rem_pol (((oppP c')^^(delta+1))@@p) (oppP q) x) in let s'= lazard_power c' s delta x in gcd_sub_res_rec q (div_pol r (c @@ (s^^delta)) x) s' c' d' x ) and lazard_power c s d x = let res = ref c in for _i = 1 to d - 1 do res:= div_pol ((!res)@@c) s x; done; !res (* memoizations *) let rec hash = function Pint a -> (C.hash a) | Prec (v,p) -> Array.fold_right (fun q h -> h + hash q) p 0 module Hashpol = Hashtbl.Make( struct type poly = t type t = poly let equal = equal let hash = hash end) end