1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* This module instantiates the structure of generic de Bruijn terms to Coq *) open CErrors open Util open Names open Esubst open Cic (* Sorts. *) let family_of_sort = function | Prop Null -> InProp | Prop Pos -> InSet | Type _ -> InType let family_equal = (==) let sort_of_univ u = if Univ.is_type0m_univ u then Prop Null else if Univ.is_type0_univ u then Prop Pos else Type u (********************************************************************) (* Constructions as implemented *) (********************************************************************) let rec strip_outer_cast c = match c with | Cast (c,_,_) -> strip_outer_cast c | _ -> c let collapse_appl c = match c with | App (f,cl) -> let rec collapse_rec f cl2 = match (strip_outer_cast f) with | App (g,cl1) -> collapse_rec g (Array.append cl1 cl2) | _ -> App (f,cl2) in collapse_rec f cl | _ -> c let decompose_app c = match collapse_appl c with | App (f,cl) -> (f, Array.to_list cl) | _ -> (c,[]) let applist (f,l) = App (f, Array.of_list l) (****************************************************************************) (* Functions for dealing with constr terms *) (****************************************************************************) (*********************) (* Occurring *) (*********************) let iter_constr_with_binders g f n c = match c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> () | Cast (c,_,t) -> f n c; f n t | Prod (_,t,c) -> f n t; f (g n) c | Lambda (_,t,c) -> f n t; f (g n) c | LetIn (_,b,t,c) -> f n b; f n t; f (g n) c | App (c,l) -> f n c; Array.iter (f n) l | Evar (_,l) -> Array.iter (f n) l | Case (_,p,c,bl) -> f n p; f n c; Array.iter (f n) bl | Fix (_,(_,tl,bl)) -> Array.iter (f n) tl; Array.iter (f (iterate g (Array.length tl) n)) bl | CoFix (_,(_,tl,bl)) -> Array.iter (f n) tl; Array.iter (f (iterate g (Array.length tl) n)) bl | Proj (p, c) -> f n c exception LocalOccur (* (closedn n M) raises FreeVar if a variable of height greater than n occurs in M, returns () otherwise *) let closedn n c = let rec closed_rec n c = match c with | Rel m -> if m>n then raise LocalOccur | _ -> iter_constr_with_binders succ closed_rec n c in try closed_rec n c; true with LocalOccur -> false (* [closed0 M] is true iff [M] is a (de Bruijn) closed term *) let closed0 = closedn 0 (* (noccurn n M) returns true iff (Rel n) does NOT occur in term M *) let noccurn n term = let rec occur_rec n c = match c with | Rel m -> if Int.equal m n then raise LocalOccur | _ -> iter_constr_with_binders succ occur_rec n c in try occur_rec n term; true with LocalOccur -> false (* (noccur_between n m M) returns true iff (Rel p) does NOT occur in term M for n <= p < n+m *) let noccur_between n m term = let rec occur_rec n c = match c with | Rel(p) -> if n<=p && p<n+m then raise LocalOccur | _ -> iter_constr_with_binders succ occur_rec n c in try occur_rec n term; true with LocalOccur -> false (* Checking function for terms containing existential variables. The function [noccur_with_meta] considers the fact that each existential variable (as well as each isevar) in the term appears applied to its local context, which may contain the CoFix variables. These occurrences of CoFix variables are not considered *) let noccur_with_meta n m term = let rec occur_rec n c = match c with | Rel p -> if n<=p && p<n+m then raise LocalOccur | App(f,cl) -> (match f with | (Cast (Meta _,_,_)| Meta _) -> () | _ -> iter_constr_with_binders succ occur_rec n c) | Evar (_, _) -> () | _ -> iter_constr_with_binders succ occur_rec n c in try (occur_rec n term; true) with LocalOccur -> false (*********************) (* Lifting *) (*********************) let map_constr_with_binders g f l c = match c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> c | Cast (c,k,t) -> Cast (f l c, k, f l t) | Prod (na,t,c) -> Prod (na, f l t, f (g l) c) | Lambda (na,t,c) -> Lambda (na, f l t, f (g l) c) | LetIn (na,b,t,c) -> LetIn (na, f l b, f l t, f (g l) c) | App (c,al) -> App (f l c, Array.map (f l) al) | Evar (e,al) -> Evar (e, Array.map (f l) al) | Case (ci,p,c,bl) -> Case (ci, f l p, f l c, Array.map (f l) bl) | Fix (ln,(lna,tl,bl)) -> let l' = iterate g (Array.length tl) l in Fix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl)) | CoFix(ln,(lna,tl,bl)) -> let l' = iterate g (Array.length tl) l in CoFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl)) | Proj (p, c) -> Proj (p, f l c) (* The generic lifting function *) let rec exliftn el c = match c with | Rel i -> Rel(reloc_rel i el) | _ -> map_constr_with_binders el_lift exliftn el c (* Lifting the binding depth across k bindings *) let liftn k n = match el_liftn (pred n) (el_shft k el_id) with | ELID -> (fun c -> c) | el -> exliftn el let lift k = liftn k 1 (*********************) (* Substituting *) (*********************) (* (subst1 M c) substitutes M for Rel(1) in c we generalise it to (substl [M1,...,Mn] c) which substitutes in parallel M1,...,Mn for respectively Rel(1),...,Rel(n) in c *) (* 1st : general case *) type info = Closed | Open | Unknown type 'a substituend = { mutable sinfo: info; sit: 'a } let rec lift_substituend depth s = match s.sinfo with | Closed -> s.sit | Open -> lift depth s.sit | Unknown -> s.sinfo <- if closed0 s.sit then Closed else Open; lift_substituend depth s let make_substituend c = { sinfo=Unknown; sit=c } let substn_many lamv n c = let lv = Array.length lamv in if Int.equal lv 0 then c else let rec substrec depth c = match c with | Rel k -> if k<=depth then c else if k-depth <= lv then lift_substituend depth lamv.(k-depth-1) else Rel (k-lv) | _ -> map_constr_with_binders succ substrec depth c in substrec n c let substnl laml n = substn_many (Array.map make_substituend (Array.of_list laml)) n let substl laml = substnl laml 0 let subst1 lam = substl [lam] (***************************************************************************) (* Type of assumptions and contexts *) (***************************************************************************) let empty_rel_context = [] let rel_context_length = List.length let rel_context_nhyps hyps = let rec nhyps acc = function | [] -> acc | LocalAssum _ :: hyps -> nhyps (1+acc) hyps | LocalDef _ :: hyps -> nhyps acc hyps in nhyps 0 hyps let fold_rel_context f l ~init = List.fold_right f l init let fold_rel_context_outside f l ~init = List.fold_right f l init let map_rel_decl f = function | LocalAssum (n, typ) as decl -> let typ' = f typ in if typ' == typ then decl else LocalAssum (n, typ') | LocalDef (n, body, typ) as decl -> let body' = f body in let typ' = f typ in if body' == body && typ' == typ then decl else LocalDef (n, body', typ') let map_rel_context f = List.smartmap (map_rel_decl f) let extended_rel_list n hyps = let rec reln l p = function | LocalAssum _ :: hyps -> reln (Rel (n+p) :: l) (p+1) hyps | LocalDef _ :: hyps -> reln l (p+1) hyps | [] -> l in reln [] 1 hyps (* Iterate lambda abstractions *) (* compose_lam [xn:Tn;..;x1:T1] b = [x1:T1]..[xn:Tn]b *) let compose_lam l b = let rec lamrec = function | ([], b) -> b | ((v,t)::l, b) -> lamrec (l, Lambda (v,t,b)) in lamrec (l,b) (* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair ([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *) let decompose_lam = let rec lamdec_rec l c = match c with | Lambda (x,t,c) -> lamdec_rec ((x,t)::l) c | Cast (c,_,_) -> lamdec_rec l c | _ -> l,c in lamdec_rec [] (* Decompose lambda abstractions and lets, until finding n abstractions *) let decompose_lam_n_assum n = if n < 0 then user_err Pp.(str "decompose_lam_n_assum: integer parameter must be positive"); let rec lamdec_rec l n c = if Int.equal n 0 then l,c else match c with | Lambda (x,t,c) -> lamdec_rec (LocalAssum (x,t) :: l) (n-1) c | LetIn (x,b,t,c) -> lamdec_rec (LocalDef (x,b,t) :: l) n c | Cast (c,_,_) -> lamdec_rec l n c | c -> user_err Pp.(str "decompose_lam_n_assum: not enough abstractions") in lamdec_rec empty_rel_context n (* Iterate products, with or without lets *) (* Constructs either [(x:t)c] or [[x=b:t]c] *) let mkProd_or_LetIn decl c = match decl with | LocalAssum (na,t) -> Prod (na, t, c) | LocalDef (na,b,t) -> LetIn (na, b, t, c) let it_mkProd_or_LetIn = List.fold_left (fun c d -> mkProd_or_LetIn d c) let decompose_prod_assum = let rec prodec_rec l c = match c with | Prod (x,t,c) -> prodec_rec (LocalAssum (x,t) :: l) c | LetIn (x,b,t,c) -> prodec_rec (LocalDef (x,b,t) :: l) c | Cast (c,_,_) -> prodec_rec l c | _ -> l,c in prodec_rec empty_rel_context let decompose_prod_n_assum n = if n < 0 then user_err Pp.(str "decompose_prod_n_assum: integer parameter must be positive"); let rec prodec_rec l n c = if Int.equal n 0 then l,c else match c with | Prod (x,t,c) -> prodec_rec (LocalAssum (x,t) :: l) (n-1) c | LetIn (x,b,t,c) -> prodec_rec (LocalDef (x,b,t) :: l) (n-1) c | Cast (c,_,_) -> prodec_rec l n c | c -> user_err Pp.(str "decompose_prod_n_assum: not enough assumptions") in prodec_rec empty_rel_context n (***************************) (* Other term constructors *) (***************************) type arity = rel_context * sorts let mkArity (sign,s) = it_mkProd_or_LetIn (Sort s) sign let destArity = let rec prodec_rec l c = match c with | Prod (x,t,c) -> prodec_rec (LocalAssum (x,t)::l) c | LetIn (x,b,t,c) -> prodec_rec (LocalDef (x,b,t)::l) c | Cast (c,_,_) -> prodec_rec l c | Sort s -> l,s | _ -> anomaly ~label:"destArity" (Pp.str "not an arity.") in prodec_rec [] let rec isArity c = match c with | Prod (_,_,c) -> isArity c | LetIn (_,b,_,c) -> isArity (subst1 b c) | Cast (c,_,_) -> isArity c | Sort _ -> true | _ -> false (*******************************) (* alpha conversion functions *) (*******************************) (* alpha conversion : ignore print names and casts *) let compare_sorts s1 s2 = match s1, s2 with | Prop c1, Prop c2 -> begin match c1, c2 with | Pos, Pos | Null, Null -> true | Pos, Null -> false | Null, Pos -> false end | Type u1, Type u2 -> Univ.Universe.equal u1 u2 | Prop _, Type _ -> false | Type _, Prop _ -> false let eq_puniverses f (c1,u1) (c2,u2) = Univ.Instance.equal u1 u2 && f c1 c2 let compare_constr f t1 t2 = match t1, t2 with | Rel n1, Rel n2 -> Int.equal n1 n2 | Meta m1, Meta m2 -> Int.equal m1 m2 | Var id1, Var id2 -> Id.equal id1 id2 | Sort s1, Sort s2 -> compare_sorts s1 s2 | Cast (c1,_,_), _ -> f c1 t2 | _, Cast (c2,_,_) -> f t1 c2 | Prod (_,t1,c1), Prod (_,t2,c2) -> f t1 t2 && f c1 c2 | Lambda (_,t1,c1), Lambda (_,t2,c2) -> f t1 t2 && f c1 c2 | LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) -> f b1 b2 && f t1 t2 && f c1 c2 | App (c1,l1), App (c2,l2) -> if Int.equal (Array.length l1) (Array.length l2) then f c1 c2 && Array.for_all2 f l1 l2 else let (h1,l1) = decompose_app t1 in let (h2,l2) = decompose_app t2 in if Int.equal (List.length l1) (List.length l2) then f h1 h2 && List.for_all2 f l1 l2 else false | Evar (e1,l1), Evar (e2,l2) -> Int.equal e1 e2 && Array.equal f l1 l2 | Const c1, Const c2 -> eq_puniverses eq_con_chk c1 c2 | Ind c1, Ind c2 -> eq_puniverses eq_ind_chk c1 c2 | Construct ((c1,i1),u1), Construct ((c2,i2),u2) -> Int.equal i1 i2 && eq_ind_chk c1 c2 && Univ.Instance.equal u1 u2 | Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) -> f p1 p2 && f c1 c2 && Array.equal f bl1 bl2 | Fix ((ln1, i1),(_,tl1,bl1)), Fix ((ln2, i2),(_,tl2,bl2)) -> Int.equal i1 i2 && Array.equal Int.equal ln1 ln2 && Array.equal f tl1 tl2 && Array.equal f bl1 bl2 | CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) -> Int.equal ln1 ln2 && Array.equal f tl1 tl2 && Array.equal f bl1 bl2 | Proj (p1,c1), Proj(p2,c2) -> Projection.equal p1 p2 && f c1 c2 | _ -> false let rec eq_constr m n = (m == n) || compare_constr eq_constr m n let eq_constr m n = eq_constr m n (* to avoid tracing a recursive fun *) (* Universe substitutions *) let map_constr f c = map_constr_with_binders (fun x -> x) (fun _ c -> f c) 0 c let subst_instance_constr subst c = if Univ.Instance.is_empty subst then c else let f u = Univ.subst_instance_instance subst u in let rec aux t = match t with | Const (c, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (Const (c, u')) | Ind (i, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (Ind (i, u')) | Construct (c, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (Construct (c, u')) | Sort (Type u) -> let u' = Univ.subst_instance_universe subst u in if u' == u then t else (Sort (sort_of_univ u')) | _ -> map_constr aux t in aux c let subst_instance_context s ctx = if Univ.Instance.is_empty s then ctx else map_rel_context (fun x -> subst_instance_constr s x) ctx