1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
open CErrors open Sorts open Util open Names open Constr open EConstr open Pp open Indfun_common open Libnames open Globnames open Glob_term open Declarations open Misctypes open Decl_kinds module RelDecl = Context.Rel.Declaration let is_rec_info sigma scheme_info = let test_branche min acc decl = acc || ( let new_branche = it_mkProd_or_LetIn mkProp (fst (decompose_prod_assum sigma (RelDecl.get_type decl))) in let free_rels_in_br = Termops.free_rels sigma new_branche in let max = min + scheme_info.Tactics.npredicates in Int.Set.exists (fun i -> i >= min && i< max) free_rels_in_br ) in List.fold_left_i test_branche 1 false (List.rev scheme_info.Tactics.branches) let choose_dest_or_ind scheme_info args = Proofview.tclBIND Proofview.tclEVARMAP (fun sigma -> Tactics.induction_destruct (is_rec_info sigma scheme_info) false args) let functional_induction with_clean c princl pat = let res = fun g -> let sigma = Tacmach.project g in let f,args = decompose_app sigma c in let princ,bindings, princ_type,g' = match princl with | None -> (* No principle is given let's find the good one *) begin match EConstr.kind sigma f with | Const (c',u) -> let princ_option = let finfo = (* we first try to find out a graph on f *) try find_Function_infos c' with Not_found -> user_err (str "Cannot find induction information on "++ Printer.pr_leconstr_env (Tacmach.pf_env g) sigma (mkConst c') ) in match Tacticals.elimination_sort_of_goal g with | InProp -> finfo.prop_lemma | InSet -> finfo.rec_lemma | InType -> finfo.rect_lemma in let princ,g' = (* then we get the principle *) try let g',princ = Tacmach.pf_eapply (Evd.fresh_global) g (Globnames.ConstRef (Option.get princ_option )) in princ,g' with Option.IsNone -> (*i If there is not default lemma defined then, we cross our finger and try to find a lemma named f_ind (or f_rec, f_rect) i*) let princ_name = Indrec.make_elimination_ident (Label.to_id (Constant.label c')) (Tacticals.elimination_sort_of_goal g) in try let princ_ref = const_of_id princ_name in let (a,b) = Tacmach.pf_eapply (Evd.fresh_global) g princ_ref in (b,a) (* mkConst(const_of_id princ_name ),g (\* FIXME *\) *) with Not_found -> (* This one is neither defined ! *) user_err (str "Cannot find induction principle for " ++ Printer.pr_leconstr_env (Tacmach.pf_env g) sigma (mkConst c') ) in let princ = EConstr.of_constr princ in (princ,NoBindings,Tacmach.pf_unsafe_type_of g' princ,g') | _ -> raise (UserError(None,str "functional induction must be used with a function" )) end | Some ((princ,binding)) -> princ,binding,Tacmach.pf_unsafe_type_of g princ,g in let sigma = Tacmach.project g' in let princ_infos = Tactics.compute_elim_sig (Tacmach.project g') princ_type in let args_as_induction_constr = let c_list = if princ_infos.Tactics.farg_in_concl then [c] else [] in let encoded_pat_as_patlist = List.make (List.length args + List.length c_list - 1) None @ [pat] in List.map2 (fun c pat -> ((None,Tacexpr.ElimOnConstr (fun env sigma -> (sigma,(c,NoBindings)) )),(None,pat),None)) (args@c_list) encoded_pat_as_patlist in let princ' = Some (princ,bindings) in let princ_vars = List.fold_right (fun a acc -> try Id.Set.add (destVar sigma a) acc with DestKO -> acc) args Id.Set.empty in let old_idl = List.fold_right Id.Set.add (Tacmach.pf_ids_of_hyps g) Id.Set.empty in let old_idl = Id.Set.diff old_idl princ_vars in let subst_and_reduce g = if with_clean then let idl = List.filter (fun id -> not (Id.Set.mem id old_idl)) (Tacmach.pf_ids_of_hyps g) in let flag = Genredexpr.Cbv {Redops.all_flags with Genredexpr.rDelta = false; } in Tacticals.tclTHEN (Tacticals.tclMAP (fun id -> Tacticals.tclTRY (Proofview.V82.of_tactic (Equality.subst_gen (do_rewrite_dependent ()) [id]))) idl ) (Proofview.V82.of_tactic (Tactics.reduce flag Locusops.allHypsAndConcl)) g else Tacticals.tclIDTAC g in Tacticals.tclTHEN (Proofview.V82.of_tactic (choose_dest_or_ind princ_infos (args_as_induction_constr,princ'))) subst_and_reduce g' in res let rec abstract_glob_constr c = function | [] -> c | Constrexpr.CLocalDef (x,b,t)::bl -> Constrexpr_ops.mkLetInC(x,b,t,abstract_glob_constr c bl) | Constrexpr.CLocalAssum (idl,k,t)::bl -> List.fold_right (fun x b -> Constrexpr_ops.mkLambdaC([x],k,t,b)) idl (abstract_glob_constr c bl) | Constrexpr.CLocalPattern _::bl -> assert false let interp_casted_constr_with_implicits env sigma impls c = Constrintern.intern_gen Pretyping.WithoutTypeConstraint env ~impls c (* Construct a fixpoint as a Glob_term and not as a constr *) let build_newrecursive lnameargsardef = let env0 = Global.env() in let sigma = Evd.from_env env0 in let (rec_sign,rec_impls) = List.fold_left (fun (env,impls) (((_,recname),_),bl,arityc,_) -> let arityc = Constrexpr_ops.mkCProdN bl arityc in let arity,ctx = Constrintern.interp_type env0 sigma arityc in let evdref = ref (Evd.from_env env0) in let _, (_, impls') = Constrintern.interp_context_evars env evdref bl in let impl = Constrintern.compute_internalization_data env0 Constrintern.Recursive arity impls' in let open Context.Named.Declaration in (Environ.push_named (LocalAssum (recname,arity)) env, Id.Map.add recname impl impls)) (env0,Constrintern.empty_internalization_env) lnameargsardef in let recdef = (* Declare local notations *) let f (_,bl,_,def) = let def = abstract_glob_constr def bl in interp_casted_constr_with_implicits rec_sign sigma rec_impls def in States.with_state_protection (List.map f) lnameargsardef in recdef,rec_impls let build_newrecursive l = let l' = List.map (fun ((fixna,_,bll,ar,body_opt),lnot) -> match body_opt with | Some body -> (fixna,bll,ar,body) | None -> user_err ~hdr:"Function" (str "Body of Function must be given") ) l in build_newrecursive l' let error msg = user_err Pp.(str msg) (* Checks whether or not the mutual bloc is recursive *) let is_rec names = let names = List.fold_right Id.Set.add names Id.Set.empty in let check_id id names = Id.Set.mem id names in let rec lookup names gt = match DAst.get gt with | GVar(id) -> check_id id names | GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ -> false | GCast(b,_) -> lookup names b | GRec _ -> error "GRec not handled" | GIf(b,_,lhs,rhs) -> (lookup names b) || (lookup names lhs) || (lookup names rhs) | GProd(na,_,t,b) | GLambda(na,_,t,b) -> lookup names t || lookup (Nameops.Name.fold_right Id.Set.remove na names) b | GLetIn(na,b,t,c) -> lookup names b || Option.cata (lookup names) true t || lookup (Nameops.Name.fold_right Id.Set.remove na names) c | GLetTuple(nal,_,t,b) -> lookup names t || lookup (List.fold_left (fun acc na -> Nameops.Name.fold_right Id.Set.remove na acc) names nal ) b | GApp(f,args) -> List.exists (lookup names) (f::args) | GCases(_,_,el,brl) -> List.exists (fun (e,_) -> lookup names e) el || List.exists (lookup_br names) brl and lookup_br names (_,(idl,_,rt)) = let new_names = List.fold_right Id.Set.remove idl names in lookup new_names rt in lookup names let rec local_binders_length = function (* Assume that no `{ ... } contexts occur *) | [] -> 0 | Constrexpr.CLocalDef _::bl -> 1 + local_binders_length bl | Constrexpr.CLocalAssum (idl,_,_)::bl -> List.length idl + local_binders_length bl | Constrexpr.CLocalPattern _::bl -> assert false let prepare_body ((name,_,args,types,_),_) rt = let n = local_binders_length args in (* Pp.msgnl (str "nb lambda to chop : " ++ str (string_of_int n) ++ fnl () ++Printer.pr_glob_constr rt); *) let fun_args,rt' = chop_rlambda_n n rt in (fun_args,rt') let process_vernac_interp_error e = fst (ExplainErr.process_vernac_interp_error (e, Exninfo.null)) let warn_funind_cannot_build_inversion = CWarnings.create ~name:"funind-cannot-build-inversion" ~category:"funind" (fun e' -> strbrk "Cannot build inversion information" ++ if do_observe () then (fnl() ++ CErrors.print e') else mt ()) let derive_inversion fix_names = try let evd' = Evd.from_env (Global.env ()) in (* we first transform the fix_names identifier into their corresponding constant *) let evd',fix_names_as_constant = List.fold_right (fun id (evd,l) -> let evd,c = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident id)) in let c = EConstr.of_constr c in let (cst, u) = destConst evd c in evd, (cst, EInstance.kind evd u) :: l ) fix_names (evd',[]) in (* Then we check that the graphs have been defined If one of the graphs haven't been defined we do nothing *) List.iter (fun c -> ignore (find_Function_infos (fst c))) fix_names_as_constant ; try let evd', lind = List.fold_right (fun id (evd,l) -> let evd,id = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident (mk_rel_id id))) in let id = EConstr.of_constr id in evd,(fst (destInd evd id))::l ) fix_names (evd',[]) in Invfun.derive_correctness Functional_principles_types.make_scheme functional_induction fix_names_as_constant lind; with e when CErrors.noncritical e -> let e' = process_vernac_interp_error e in warn_funind_cannot_build_inversion e' with e when CErrors.noncritical e -> let e' = process_vernac_interp_error e in warn_funind_cannot_build_inversion e' let warn_cannot_define_graph = CWarnings.create ~name:"funind-cannot-define-graph" ~category:"funind" (fun (names,error) -> strbrk "Cannot define graph(s) for " ++ h 1 names ++ error) let warn_cannot_define_principle = CWarnings.create ~name:"funind-cannot-define-principle" ~category:"funind" (fun (names,error) -> strbrk "Cannot define induction principle(s) for "++ h 1 names ++ error) let warning_error names e = let e = process_vernac_interp_error e in let e_explain e = match e with | ToShow e -> let e = process_vernac_interp_error e in spc () ++ CErrors.print e | _ -> if do_observe () then let e = process_vernac_interp_error e in (spc () ++ CErrors.print e) else mt () in match e with | Building_graph e -> let names = prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names in warn_cannot_define_graph (names,e_explain e) | Defining_principle e -> let names = prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names in warn_cannot_define_principle (names,e_explain e) | _ -> raise e let error_error names e = let e = process_vernac_interp_error e in let e_explain e = match e with | ToShow e -> spc () ++ CErrors.print e | _ -> if do_observe () then (spc () ++ CErrors.print e) else mt () in match e with | Building_graph e -> user_err (str "Cannot define graph(s) for " ++ h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++ e_explain e) | _ -> raise e let generate_principle (evd:Evd.evar_map ref) pconstants on_error is_general do_built (fix_rec_l:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) recdefs interactive_proof (continue_proof : int -> Names.Constant.t array -> EConstr.constr array -> int -> Tacmach.tactic) : unit = let names = List.map (function (((_, name),_),_,_,_,_),_ -> name) fix_rec_l in let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in let funs_args = List.map fst fun_bodies in let funs_types = List.map (function ((_,_,_,types,_),_) -> types) fix_rec_l in try (* We then register the Inductive graphs of the functions *) Glob_term_to_relation.build_inductive !evd pconstants funs_args funs_types recdefs; if do_built then begin (*i The next call to mk_rel_id is valid since we have just construct the graph Ensures by : do_built i*) let f_R_mut = Ident (Loc.tag @@ mk_rel_id (List.nth names 0)) in let ind_kn = fst (locate_with_msg (pr_reference f_R_mut++str ": Not an inductive type!") locate_ind f_R_mut) in let fname_kn (((fname,_),_,_,_,_),_) = let f_ref = Ident fname in locate_with_msg (pr_reference f_ref++str ": Not an inductive type!") locate_constant f_ref in let funs_kn = Array.of_list (List.map fname_kn fix_rec_l) in let _ = List.map_i (fun i x -> let princ = Indrec.lookup_eliminator (ind_kn,i) (InProp) in let env = Global.env () in let evd = ref (Evd.from_env env) in let evd',uprinc = Evd.fresh_global env !evd princ in let _ = evd := evd' in let princ_type = Typing.e_type_of ~refresh:true env evd (EConstr.of_constr uprinc) in let princ_type = EConstr.Unsafe.to_constr princ_type in Functional_principles_types.generate_functional_principle evd interactive_proof princ_type None None (Array.of_list pconstants) (* funs_kn *) i (continue_proof 0 [|funs_kn.(i)|]) ) 0 fix_rec_l in Array.iter (add_Function is_general) funs_kn; () end with e when CErrors.noncritical e -> on_error names e let register_struct is_rec (fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) = match fixpoint_exprl with | [(((_,fname),pl),_,bl,ret_type,body),_] when not is_rec -> let body = match body with | Some body -> body | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in Command.do_definition fname (Decl_kinds.Global,(Flags.is_universe_polymorphism ()),Decl_kinds.Definition) pl bl None body (Some ret_type) (Lemmas.mk_hook (fun _ _ -> ())); let evd,rev_pconstants = List.fold_left (fun (evd,l) ((((_,fname),_),_,_,_,_),_) -> let evd,c = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname)) in let c = EConstr.of_constr c in let (cst, u) = destConst evd c in let u = EInstance.kind evd u in evd,((cst, u) :: l) ) (Evd.from_env (Global.env ()),[]) fixpoint_exprl in evd,List.rev rev_pconstants | _ -> Command.do_fixpoint Global (Flags.is_universe_polymorphism ()) fixpoint_exprl; let evd,rev_pconstants = List.fold_left (fun (evd,l) ((((_,fname),_),_,_,_,_),_) -> let evd,c = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname)) in let c = EConstr.of_constr c in let (cst, u) = destConst evd c in let u = EInstance.kind evd u in evd,((cst, u) :: l) ) (Evd.from_env (Global.env ()),[]) fixpoint_exprl in evd,List.rev rev_pconstants let generate_correction_proof_wf f_ref tcc_lemma_ref is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation (_: int) (_:Names.Constant.t array) (_:EConstr.constr array) (_:int) : Tacmach.tactic = Functional_principles_proofs.prove_principle_for_gen (f_ref,functional_ref,eq_ref) tcc_lemma_ref is_mes rec_arg_num rec_arg_type relation let register_wf ?(is_mes=false) fname rec_impls wf_rel_expr wf_arg using_lemmas args ret_type body pre_hook = let type_of_f = Constrexpr_ops.mkCProdN args ret_type in let rec_arg_num = let names = List.map snd (Constrexpr_ops.names_of_local_assums args) in match wf_arg with | None -> if Int.equal (List.length names) 1 then 1 else error "Recursive argument must be specified" | Some wf_arg -> List.index Name.equal (Name wf_arg) names in let unbounded_eq = let f_app_args = CAst.make @@ Constrexpr.CAppExpl( (None,(Ident (Loc.tag fname)),None) , (List.map (function | _,Anonymous -> assert false | _,Name e -> (Constrexpr_ops.mkIdentC e) ) (Constrexpr_ops.names_of_local_assums args) ) ) in CAst.make @@ Constrexpr.CApp ((None,Constrexpr_ops.mkRefC (Qualid (Loc.tag (qualid_of_string "Logic.eq")))), [(f_app_args,None);(body,None)]) in let eq = Constrexpr_ops.mkCProdN args unbounded_eq in let hook ((f_ref,_) as fconst) tcc_lemma_ref (functional_ref,_) (eq_ref,_) rec_arg_num rec_arg_type nb_args relation = try pre_hook [fconst] (generate_correction_proof_wf f_ref tcc_lemma_ref is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation ); derive_inversion [fname] with e when CErrors.noncritical e -> (* No proof done *) () in Recdef.recursive_definition is_mes fname rec_impls type_of_f wf_rel_expr rec_arg_num eq hook using_lemmas let register_mes fname rec_impls wf_mes_expr wf_rel_expr_opt wf_arg using_lemmas args ret_type body = let wf_arg_type,wf_arg = match wf_arg with | None -> begin match args with | [Constrexpr.CLocalAssum ([(_,Name x)],k,t)] -> t,x | _ -> error "Recursive argument must be specified" end | Some wf_args -> try match List.find (function | Constrexpr.CLocalAssum(l,k,t) -> List.exists (function (_,Name id) -> Id.equal id wf_args | _ -> false) l | _ -> false ) args with | Constrexpr.CLocalAssum(_,k,t) -> t,wf_args | _ -> assert false with Not_found -> assert false in let wf_rel_from_mes,is_mes = match wf_rel_expr_opt with | None -> let ltof = let make_dir l = DirPath.make (List.rev_map Id.of_string l) in Libnames.Qualid (Loc.tag @@ Libnames.qualid_of_path (Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (Id.of_string "ltof"))) in let fun_from_mes = let applied_mes = Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC wf_arg]) in Constrexpr_ops.mkLambdaC ([(Loc.tag @@ Name wf_arg)],Constrexpr_ops.default_binder_kind,wf_arg_type,applied_mes) in let wf_rel_from_mes = Constrexpr_ops.mkAppC(Constrexpr_ops.mkRefC ltof,[wf_arg_type;fun_from_mes]) in wf_rel_from_mes,true | Some wf_rel_expr -> let wf_rel_with_mes = let a = Names.Id.of_string "___a" in let b = Names.Id.of_string "___b" in Constrexpr_ops.mkLambdaC( [Loc.tag @@ Name a;Loc.tag @@ Name b], Constrexpr.Default Explicit, wf_arg_type, Constrexpr_ops.mkAppC(wf_rel_expr, [ Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC a]); Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC b]) ]) ) in wf_rel_with_mes,false in register_wf ~is_mes:is_mes fname rec_impls wf_rel_from_mes (Some wf_arg) using_lemmas args ret_type body let map_option f = function | None -> None | Some v -> Some (f v) open Constrexpr let rec rebuild_bl aux bl typ = match bl,typ with | [], _ -> List.rev aux,typ | (CLocalAssum(nal,bk,_))::bl',typ -> rebuild_nal aux bk bl' nal typ | (CLocalDef(na,_,_))::bl',{ CAst.v = CLetIn(_,nat,ty,typ') } -> rebuild_bl (Constrexpr.CLocalDef(na,nat,ty)::aux) bl' typ' | _ -> assert false and rebuild_nal aux bk bl' nal typ = match nal,typ with | _,{ CAst.v = CProdN([],typ) } -> rebuild_nal aux bk bl' nal typ | [], _ -> rebuild_bl aux bl' typ | na::nal,{ CAst.v = CProdN((na'::nal',bk',nal't)::rest,typ') } -> if Name.equal (snd na) (snd na') || Name.is_anonymous (snd na') then let assum = CLocalAssum([na],bk,nal't) in let new_rest = if nal' = [] then rest else ((nal',bk',nal't)::rest) in rebuild_nal (assum::aux) bk bl' nal (CAst.make @@ CProdN(new_rest,typ')) else let assum = CLocalAssum([na'],bk,nal't) in let new_rest = if nal' = [] then rest else ((nal',bk',nal't)::rest) in rebuild_nal (assum::aux) bk bl' (na::nal) (CAst.make @@ CProdN(new_rest,typ')) | _ -> assert false let rebuild_bl aux bl typ = rebuild_bl aux bl typ let recompute_binder_list (fixpoint_exprl : (Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) = let fixl,ntns = Command.extract_fixpoint_components false fixpoint_exprl in let ((_,_,typel),_,ctx,_) = Command.interp_fixpoint fixl ntns in let constr_expr_typel = with_full_print (List.map (fun c -> Constrextern.extern_constr false (Global.env ()) (Evd.from_ctx ctx) (EConstr.of_constr c))) typel in let fixpoint_exprl_with_new_bl = List.map2 (fun ((lna,(rec_arg_opt,rec_order),bl,ret_typ,opt_body),notation_list) fix_typ -> let new_bl',new_ret_type = rebuild_bl [] bl fix_typ in (((lna,(rec_arg_opt,rec_order),new_bl',new_ret_type,opt_body),notation_list):(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list)) ) fixpoint_exprl constr_expr_typel in fixpoint_exprl_with_new_bl let do_generate_principle pconstants on_error register_built interactive_proof (fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) :unit = List.iter (fun (_,l) -> if not (List.is_empty l) then error "Function does not support notations for now") fixpoint_exprl; let _is_struct = match fixpoint_exprl with | [((_,(wf_x,Constrexpr.CWfRec wf_rel),_,_,_),_) as fixpoint_expr] -> let (((((_,name),pl),_,args,types,body)),_) as fixpoint_expr = match recompute_binder_list [fixpoint_expr] with | [e] -> e | _ -> assert false in let fixpoint_exprl = [fixpoint_expr] in let body = match body with | Some body -> body | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in let recdefs,rec_impls = build_newrecursive fixpoint_exprl in let using_lemmas = [] in let pre_hook pconstants = generate_principle (ref (Evd.from_env (Global.env ()))) pconstants on_error true register_built fixpoint_exprl recdefs true in if register_built then register_wf name rec_impls wf_rel (map_option snd wf_x) using_lemmas args types body pre_hook; false |[((_,(wf_x,Constrexpr.CMeasureRec(wf_mes,wf_rel_opt)),_,_,_),_) as fixpoint_expr] -> let (((((_,name),_),_,args,types,body)),_) as fixpoint_expr = match recompute_binder_list [fixpoint_expr] with | [e] -> e | _ -> assert false in let fixpoint_exprl = [fixpoint_expr] in let recdefs,rec_impls = build_newrecursive fixpoint_exprl in let using_lemmas = [] in let body = match body with | Some body -> body | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in let pre_hook pconstants = generate_principle (ref (Evd.from_env (Global.env ()))) pconstants on_error true register_built fixpoint_exprl recdefs true in if register_built then register_mes name rec_impls wf_mes wf_rel_opt (map_option snd wf_x) using_lemmas args types body pre_hook; true | _ -> List.iter (function ((_na,(_,ord),_args,_body,_type),_not) -> match ord with | Constrexpr.CMeasureRec _ | Constrexpr.CWfRec _ -> error ("Cannot use mutual definition with well-founded recursion or measure") | _ -> () ) fixpoint_exprl; let fixpoint_exprl = recompute_binder_list fixpoint_exprl in let fix_names = List.map (function ((((_,name),_),_,_,_,_),_) -> name) fixpoint_exprl in (* ok all the expressions are structural *) let recdefs,rec_impls = build_newrecursive fixpoint_exprl in let is_rec = List.exists (is_rec fix_names) recdefs in let evd,pconstants = if register_built then register_struct is_rec fixpoint_exprl else (Evd.from_env (Global.env ()),pconstants) in let evd = ref evd in generate_principle (ref !evd) pconstants on_error false register_built fixpoint_exprl recdefs interactive_proof (Functional_principles_proofs.prove_princ_for_struct evd interactive_proof); if register_built then begin derive_inversion fix_names; end; true; in () let rec add_args id new_args = CAst.map (function | CRef (r,_) as b -> begin match r with | Libnames.Ident(loc,fname) when Id.equal fname id -> CAppExpl((None,r,None),new_args) | _ -> b end | CFix _ | CCoFix _ -> anomaly ~label:"add_args " (Pp.str "todo.") | CProdN(nal,b1) -> CProdN(List.map (fun (nal,k,b2) -> (nal,k,add_args id new_args b2)) nal, add_args id new_args b1) | CLambdaN(nal,b1) -> CLambdaN(List.map (fun (nal,k,b2) -> (nal,k,add_args id new_args b2)) nal, add_args id new_args b1) | CLetIn(na,b1,t,b2) -> CLetIn(na,add_args id new_args b1,Option.map (add_args id new_args) t,add_args id new_args b2) | CAppExpl((pf,r,us),exprl) -> begin match r with | Libnames.Ident(loc,fname) when Id.equal fname id -> CAppExpl((pf,r,us),new_args@(List.map (add_args id new_args) exprl)) | _ -> CAppExpl((pf,r,us),List.map (add_args id new_args) exprl) end | CApp((pf,b),bl) -> CApp((pf,add_args id new_args b), List.map (fun (e,o) -> add_args id new_args e,o) bl) | CCases(sty,b_option,cel,cal) -> CCases(sty,Option.map (add_args id new_args) b_option, List.map (fun (b,na,b_option) -> add_args id new_args b, na, b_option) cel, List.map (fun (loc,(cpl,e)) -> Loc.tag ?loc @@ (cpl,add_args id new_args e)) cal ) | CLetTuple(nal,(na,b_option),b1,b2) -> CLetTuple(nal,(na,Option.map (add_args id new_args) b_option), add_args id new_args b1, add_args id new_args b2 ) | CIf(b1,(na,b_option),b2,b3) -> CIf(add_args id new_args b1, (na,Option.map (add_args id new_args) b_option), add_args id new_args b2, add_args id new_args b3 ) | CHole _ | CPatVar _ | CEvar _ | CPrim _ | CSort _ as b -> b | CCast(b1,b2) -> CCast(add_args id new_args b1, Miscops.map_cast_type (add_args id new_args) b2) | CRecord pars -> CRecord (List.map (fun (e,o) -> e, add_args id new_args o) pars) | CNotation _ -> anomaly ~label:"add_args " (Pp.str "CNotation.") | CGeneralization _ -> anomaly ~label:"add_args " (Pp.str "CGeneralization.") | CDelimiters _ -> anomaly ~label:"add_args " (Pp.str "CDelimiters.") ) exception Stop of Constrexpr.constr_expr (* [chop_n_arrow n t] chops the [n] first arrows in [t] Acts on Constrexpr.constr_expr *) let rec chop_n_arrow n t = if n <= 0 then t (* If we have already removed all the arrows then return the type *) else (* If not we check the form of [t] *) match t.CAst.v with | Constrexpr.CProdN(nal_ta',t') -> (* If we have a forall, to result are possible : either we need to discard more than the number of arrows contained in this product declaration then we just recall [chop_n_arrow] on the remaining number of arrow to chop and [t'] we discard it and recall [chop_n_arrow], either this product contains more arrows than the number we need to chop and then we return the new type *) begin try let new_n = let rec aux (n:int) = function [] -> n | (nal,k,t'')::nal_ta' -> let nal_l = List.length nal in if n >= nal_l then aux (n - nal_l) nal_ta' else let new_t' = CAst.make @@ Constrexpr.CProdN( ((snd (List.chop n nal)),k,t'')::nal_ta',t') in raise (Stop new_t') in aux n nal_ta' in chop_n_arrow new_n t' with Stop t -> t end | _ -> anomaly (Pp.str "Not enough products.") let rec get_args b t : Constrexpr.local_binder_expr list * Constrexpr.constr_expr * Constrexpr.constr_expr = match b.CAst.v with | Constrexpr.CLambdaN ((nal_ta), b') -> begin let n = (List.fold_left (fun n (nal,_,_) -> n+List.length nal) 0 nal_ta ) in let nal_tas,b'',t'' = get_args b' (chop_n_arrow n t) in (List.map (fun (nal,k,ta) -> (Constrexpr.CLocalAssum (nal,k,ta))) nal_ta)@nal_tas, b'',t'' end | _ -> [],b,t let make_graph (f_ref:global_reference) = let c,c_body = match f_ref with | ConstRef c -> begin try c,Global.lookup_constant c with Not_found -> let sigma, env = Pfedit.get_current_context () in raise (UserError (None,str "Cannot find " ++ Printer.pr_leconstr_env env sigma (mkConst c)) ) end | _ -> raise (UserError (None, str "Not a function reference") ) in (match Global.body_of_constant_body c_body with | None -> error "Cannot build a graph over an axiom!" | Some (body, _) -> let env = Global.env () in let sigma = Evd.from_env env in let extern_body,extern_type = with_full_print (fun () -> (Constrextern.extern_constr false env sigma (EConstr.of_constr body), Constrextern.extern_type false env sigma (EConstr.of_constr (*FIXME*) c_body.const_type) ) ) () in let (nal_tas,b,t) = get_args extern_body extern_type in let expr_list = match b.CAst.v with | Constrexpr.CFix(l_id,fixexprl) -> let l = List.map (fun (id,(n,recexp),bl,t,b) -> let loc, rec_id = Option.get n in let new_args = List.flatten (List.map (function | Constrexpr.CLocalDef (na,_,_)-> [] | Constrexpr.CLocalAssum (nal,_,_) -> List.map (fun (loc,n) -> CAst.make ?loc @@ CRef(Libnames.Ident(loc, Nameops.Name.get_id n),None)) nal | Constrexpr.CLocalPattern _ -> assert false ) nal_tas ) in let b' = add_args (snd id) new_args b in ((((id,None), ( Some (Loc.tag rec_id),CStructRec),nal_tas@bl,t,Some b'),[]):(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list)) ) fixexprl in l | _ -> let id = Label.to_id (Constant.label c) in [(((Loc.tag id),None),(None,Constrexpr.CStructRec),nal_tas,t,Some b),[]] in let mp,dp,_ = Constant.repr3 c in do_generate_principle [c,Univ.Instance.empty] error_error false false expr_list; (* We register the infos *) List.iter (fun ((((_,id),_),_,_,_,_),_) -> add_Function false (Constant.make3 mp dp (Label.of_id id))) expr_list) let do_generate_principle = do_generate_principle [] warning_error true