1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
open Printer open CErrors open Term open Sorts open Util open Constr open Vars open Namegen open Names open Pp open Entries open Tactics open Context.Rel.Declaration open Indfun_common open Functional_principles_proofs module RelDecl = Context.Rel.Declaration exception Toberemoved_with_rel of int*constr exception Toberemoved let observe s = if do_observe () then Feedback.msg_debug s let pop t = Vars.lift (-1) t (* Transform an inductive induction principle into a functional one *) let compute_new_princ_type_from_rel rel_to_fun sorts princ_type = let princ_type = EConstr.of_constr princ_type in let princ_type_info = compute_elim_sig Evd.empty princ_type (** FIXME *) in let env = Global.env () in let env_with_params = EConstr.push_rel_context princ_type_info.params env in let tbl = Hashtbl.create 792 in let rec change_predicates_names (avoid:Id.t list) (predicates:EConstr.rel_context) : EConstr.rel_context = match predicates with | [] -> [] | decl :: predicates -> (match Context.Rel.Declaration.get_name decl with | Name x -> let id = Namegen.next_ident_away x (Id.Set.of_list avoid) in Hashtbl.add tbl id x; RelDecl.set_name (Name id) decl :: change_predicates_names (id::avoid) predicates | Anonymous -> anomaly (Pp.str "Anonymous property binder.")) in let avoid = (Termops.ids_of_context env_with_params ) in let princ_type_info = { princ_type_info with predicates = change_predicates_names avoid princ_type_info.predicates } in (* observe (str "starting princ_type := " ++ pr_lconstr_env env princ_type); *) (* observe (str "princ_infos : " ++ pr_elim_scheme princ_type_info); *) let change_predicate_sort i decl = let new_sort = sorts.(i) in let args,_ = decompose_prod (EConstr.Unsafe.to_constr (RelDecl.get_type decl)) in let real_args = if princ_type_info.indarg_in_concl then List.tl args else args in Context.Named.Declaration.LocalAssum (Nameops.Name.get_id (Context.Rel.Declaration.get_name decl), Term.compose_prod real_args (mkSort new_sort)) in let new_predicates = List.map_i change_predicate_sort 0 princ_type_info.predicates in let env_with_params_and_predicates = List.fold_right Environ.push_named new_predicates env_with_params in let rel_as_kn = fst (match princ_type_info.indref with | Some (Globnames.IndRef ind) -> ind | _ -> user_err Pp.(str "Not a valid predicate") ) in let ptes_vars = List.map Context.Named.Declaration.get_id new_predicates in let is_pte = let set = List.fold_right Id.Set.add ptes_vars Id.Set.empty in fun t -> match Constr.kind t with | Var id -> Id.Set.mem id set | _ -> false in let pre_princ = let open EConstr in it_mkProd_or_LetIn (it_mkProd_or_LetIn (Option.fold_right mkProd_or_LetIn princ_type_info.indarg princ_type_info.concl ) princ_type_info.args ) princ_type_info.branches in let pre_princ = EConstr.Unsafe.to_constr pre_princ in let pre_princ = substl (List.map mkVar ptes_vars) pre_princ in let is_dom c = match Constr.kind c with | Ind((u,_),_) -> MutInd.equal u rel_as_kn | Construct(((u,_),_),_) -> MutInd.equal u rel_as_kn | _ -> false in let get_fun_num c = match Constr.kind c with | Ind((_,num),_) -> num | Construct(((_,num),_),_) -> num | _ -> assert false in let dummy_var = mkVar (Id.of_string "________") in let mk_replacement c i args = let res = mkApp(rel_to_fun.(i), Array.map pop (array_get_start args)) in observe (str "replacing " ++ pr_lconstr_env env Evd.empty c ++ str " by " ++ pr_lconstr_env env Evd.empty res); res in let rec compute_new_princ_type remove env pre_princ : types*(constr list) = let (new_princ_type,_) as res = match Constr.kind pre_princ with | Rel n -> begin try match Environ.lookup_rel n env with | LocalAssum (_,t) | LocalDef (_,_,t) when is_dom t -> raise Toberemoved | _ -> pre_princ,[] with Not_found -> assert false end | Prod(x,t,b) -> compute_new_princ_type_for_binder remove mkProd env x t b | Lambda(x,t,b) -> compute_new_princ_type_for_binder remove mkLambda env x t b | Ind _ | Construct _ when is_dom pre_princ -> raise Toberemoved | App(f,args) when is_dom f -> let var_to_be_removed = destRel (Array.last args) in let num = get_fun_num f in raise (Toberemoved_with_rel (var_to_be_removed,mk_replacement pre_princ num args)) | App(f,args) -> let args = if is_pte f && remove then array_get_start args else args in let new_args,binders_to_remove = Array.fold_right (compute_new_princ_type_with_acc remove env) args ([],[]) in let new_f,binders_to_remove_from_f = compute_new_princ_type remove env f in applistc new_f new_args, list_union_eq Constr.equal binders_to_remove_from_f binders_to_remove | LetIn(x,v,t,b) -> compute_new_princ_type_for_letin remove env x v t b | _ -> pre_princ,[] in (* let _ = match Constr.kind pre_princ with *) (* | Prod _ -> *) (* observe(str "compute_new_princ_type for "++ *) (* pr_lconstr_env env pre_princ ++ *) (* str" is "++ *) (* pr_lconstr_env env new_princ_type ++ fnl ()) *) (* | _ -> () in *) res and compute_new_princ_type_for_binder remove bind_fun env x t b = begin try let new_t,binders_to_remove_from_t = compute_new_princ_type remove env t in let new_x : Name.t = get_name (Termops.ids_of_context env) x in let new_env = Environ.push_rel (LocalAssum (x,t)) env in let new_b,binders_to_remove_from_b = compute_new_princ_type remove new_env b in if List.exists (Constr.equal (mkRel 1)) binders_to_remove_from_b then (pop new_b), filter_map (Constr.equal (mkRel 1)) pop binders_to_remove_from_b else ( bind_fun(new_x,new_t,new_b), list_union_eq Constr.equal binders_to_remove_from_t (List.map pop binders_to_remove_from_b) ) with | Toberemoved -> (* observe (str "Decl of "++Ppconstr.Name.print x ++ str " is removed "); *) let new_b,binders_to_remove_from_b = compute_new_princ_type remove env (substnl [dummy_var] 1 b) in new_b, List.map pop binders_to_remove_from_b | Toberemoved_with_rel (n,c) -> (* observe (str "Decl of "++Ppconstr.Name.print x ++ str " is removed "); *) let new_b,binders_to_remove_from_b = compute_new_princ_type remove env (substnl [c] n b) in new_b, list_add_set_eq Constr.equal (mkRel n) (List.map pop binders_to_remove_from_b) end and compute_new_princ_type_for_letin remove env x v t b = begin try let new_t,binders_to_remove_from_t = compute_new_princ_type remove env t in let new_v,binders_to_remove_from_v = compute_new_princ_type remove env v in let new_x : Name.t = get_name (Termops.ids_of_context env) x in let new_env = Environ.push_rel (LocalDef (x,v,t)) env in let new_b,binders_to_remove_from_b = compute_new_princ_type remove new_env b in if List.exists (Constr.equal (mkRel 1)) binders_to_remove_from_b then (pop new_b),filter_map (Constr.equal (mkRel 1)) pop binders_to_remove_from_b else ( mkLetIn(new_x,new_v,new_t,new_b), list_union_eq Constr.equal (list_union_eq Constr.equal binders_to_remove_from_t binders_to_remove_from_v) (List.map pop binders_to_remove_from_b) ) with | Toberemoved -> (* observe (str "Decl of "++Ppconstr.Name.print x ++ str " is removed "); *) let new_b,binders_to_remove_from_b = compute_new_princ_type remove env (substnl [dummy_var] 1 b) in new_b, List.map pop binders_to_remove_from_b | Toberemoved_with_rel (n,c) -> (* observe (str "Decl of "++Ppconstr.Name.print x ++ str " is removed "); *) let new_b,binders_to_remove_from_b = compute_new_princ_type remove env (substnl [c] n b) in new_b, list_add_set_eq Constr.equal (mkRel n) (List.map pop binders_to_remove_from_b) end and compute_new_princ_type_with_acc remove env e (c_acc,to_remove_acc) = let new_e,to_remove_from_e = compute_new_princ_type remove env e in new_e::c_acc,list_union_eq Constr.equal to_remove_from_e to_remove_acc in (* observe (str "Computing new principe from " ++ pr_lconstr_env env_with_params_and_predicates pre_princ); *) let pre_res,_ = compute_new_princ_type princ_type_info.indarg_in_concl env_with_params_and_predicates pre_princ in let pre_res = replace_vars (List.map_i (fun i id -> (id, mkRel i)) 1 ptes_vars) (lift (List.length ptes_vars) pre_res) in it_mkProd_or_LetIn (it_mkProd_or_LetIn pre_res (List.map (function Context.Named.Declaration.LocalAssum (id,b) -> LocalAssum (Name (Hashtbl.find tbl id), b) | Context.Named.Declaration.LocalDef (id,t,b) -> LocalDef (Name (Hashtbl.find tbl id), t, b)) new_predicates) ) (List.map (fun d -> Termops.map_rel_decl EConstr.Unsafe.to_constr d) princ_type_info.params) let change_property_sort evd toSort princ princName = let open Context.Rel.Declaration in let princ = EConstr.of_constr princ in let princ_info = compute_elim_sig evd princ in let change_sort_in_predicate decl = LocalAssum (get_name decl, let args,ty = decompose_prod (EConstr.Unsafe.to_constr (get_type decl)) in let s = destSort ty in Global.add_constraints (Univ.enforce_leq (univ_of_sort toSort) (univ_of_sort s) Univ.Constraint.empty); Term.compose_prod args (mkSort toSort) ) in let evd,princName_as_constr = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident princName)) in let init = let nargs = (princ_info.nparams + (List.length princ_info.predicates)) in mkApp(princName_as_constr, Array.init nargs (fun i -> mkRel (nargs - i ))) in evd, it_mkLambda_or_LetIn (it_mkLambda_or_LetIn init (List.map change_sort_in_predicate princ_info.predicates) ) (List.map (fun d -> Termops.map_rel_decl EConstr.Unsafe.to_constr d) princ_info.params) let build_functional_principle (evd:Evd.evar_map ref) interactive_proof old_princ_type sorts funs i proof_tac hook = (* First we get the type of the old graph principle *) let mutr_nparams = (compute_elim_sig !evd (EConstr.of_constr old_princ_type)).nparams in (* let time1 = System.get_time () in *) let new_principle_type = compute_new_princ_type_from_rel (Array.map mkConstU funs) sorts old_princ_type in (* let time2 = System.get_time () in *) (* Pp.msgnl (str "computing principle type := " ++ System.fmt_time_difference time1 time2); *) let new_princ_name = next_ident_away_in_goal (Id.of_string "___________princ_________") Id.Set.empty in let _ = Typing.e_type_of ~refresh:true (Global.env ()) evd (EConstr.of_constr new_principle_type) in let hook = Lemmas.mk_hook (hook new_principle_type) in begin Lemmas.start_proof new_princ_name (Decl_kinds.Global,Flags.is_universe_polymorphism (),(Decl_kinds.Proof Decl_kinds.Theorem)) !evd (EConstr.of_constr new_principle_type) hook ; (* let _tim1 = System.get_time () in *) let map (c, u) = EConstr.mkConstU (c, EConstr.EInstance.make u) in ignore (Pfedit.by (Proofview.V82.tactic (proof_tac (Array.map map funs) mutr_nparams))); (* let _tim2 = System.get_time () in *) (* begin *) (* let dur1 = System.time_difference tim1 tim2 in *) (* Pp.msgnl (str ("Time to compute proof: ") ++ str (string_of_float dur1)); *) (* end; *) get_proof_clean true, CEphemeron.create hook end let generate_functional_principle (evd: Evd.evar_map ref) interactive_proof old_princ_type sorts new_princ_name funs i proof_tac = try let f = funs.(i) in let env = Global.env () in let type_sort = Evarutil.evd_comb1 (Evd.fresh_sort_in_family env) evd InType in let new_sorts = match sorts with | None -> Array.make (Array.length funs) (type_sort) | Some a -> a in let base_new_princ_name,new_princ_name = match new_princ_name with | Some (id) -> id,id | None -> let id_of_f = Label.to_id (Constant.label (fst f)) in id_of_f,Indrec.make_elimination_ident id_of_f (Sorts.family type_sort) in let names = ref [new_princ_name] in let hook = fun new_principle_type _ _ -> if Option.is_empty sorts then (* let id_of_f = Label.to_id (con_label f) in *) let register_with_sort fam_sort = let evd' = Evd.from_env (Global.env ()) in let evd',s = Evd.fresh_sort_in_family env evd' fam_sort in let name = Indrec.make_elimination_ident base_new_princ_name fam_sort in let evd',value = change_property_sort evd' s new_principle_type new_princ_name in let evd' = fst (Typing.type_of ~refresh:true (Global.env ()) evd' (EConstr.of_constr value)) in (* Pp.msgnl (str "new principle := " ++ pr_lconstr value); *) let univs = let poly = Flags.is_universe_polymorphism () in Evd.const_univ_entry ~poly evd' in let ce = Declare.definition_entry ~univs value in ignore( Declare.declare_constant name (DefinitionEntry ce, Decl_kinds.IsDefinition (Decl_kinds.Scheme)) ); Declare.definition_message name; names := name :: !names in register_with_sort InProp; register_with_sort InSet in let ((id,(entry,g_kind)),hook) = build_functional_principle evd interactive_proof old_princ_type new_sorts funs i proof_tac hook in (* Pr 1278 : Don't forget to close the goal if an error is raised !!!! *) save false new_princ_name entry g_kind hook with e when CErrors.noncritical e -> begin begin try let id = Proof_global.get_current_proof_name () in let s = Id.to_string id in let n = String.length "___________princ_________" in if String.length s >= n then if String.equal (String.sub s 0 n) "___________princ_________" then Proof_global.discard_current () else () else () with e when CErrors.noncritical e -> () end; raise (Defining_principle e) end (* defined () *) exception Not_Rec let get_funs_constant mp dp = let get_funs_constant const e : (Names.Constant.t*int) array = match Constr.kind ((strip_lam e)) with | Fix((_,(na,_,_))) -> Array.mapi (fun i na -> match na with | Name id -> let const = Constant.make3 mp dp (Label.of_id id) in const,i | Anonymous -> anomaly (Pp.str "Anonymous fix.") ) na | _ -> [|const,0|] in function const -> let find_constant_body const = match Global.body_of_constant const with | Some (body, _) -> let body = Tacred.cbv_norm_flags (CClosure.RedFlags.mkflags [CClosure.RedFlags.fZETA]) (Global.env ()) (Evd.from_env (Global.env ())) (EConstr.of_constr body) in let body = EConstr.Unsafe.to_constr body in body | None -> user_err Pp.(str ( "Cannot define a principle over an axiom ")) in let f = find_constant_body const in let l_const = get_funs_constant const f in (* We need to check that all the functions found are in the same block to prevent Reset stange thing *) let l_bodies = List.map find_constant_body (Array.to_list (Array.map fst l_const)) in let l_params,l_fixes = List.split (List.map decompose_lam l_bodies) in (* all the paremeter must be equal*) let _check_params = let first_params = List.hd l_params in List.iter (fun params -> if not (List.equal (fun (n1, c1) (n2, c2) -> Name.equal n1 n2 && Constr.equal c1 c2) first_params params) then user_err Pp.(str "Not a mutal recursive block") ) l_params in (* The bodies has to be very similar *) let _check_bodies = try let extract_info is_first body = match Constr.kind body with | Fix((idxs,_),(na,ta,ca)) -> (idxs,na,ta,ca) | _ -> if is_first && Int.equal (List.length l_bodies) 1 then raise Not_Rec else user_err Pp.(str "Not a mutal recursive block") in let first_infos = extract_info true (List.hd l_bodies) in let check body = (* Hope this is correct *) let eq_infos (ia1, na1, ta1, ca1) (ia2, na2, ta2, ca2) = Array.equal Int.equal ia1 ia2 && Array.equal Name.equal na1 na2 && Array.equal Constr.equal ta1 ta2 && Array.equal Constr.equal ca1 ca2 in if not (eq_infos first_infos (extract_info false body)) then user_err Pp.(str "Not a mutal recursive block") in List.iter check l_bodies with Not_Rec -> () in l_const exception No_graph_found exception Found_type of int let make_scheme evd (fas : (pconstant*Sorts.family) list) : Safe_typing.private_constants definition_entry list = let env = Global.env () in let funs = List.map fst fas in let first_fun = List.hd funs in let funs_mp,funs_dp,_ = KerName.repr (Constant.canonical (fst first_fun)) in let first_fun_kn = try fst (find_Function_infos (fst first_fun)).graph_ind with Not_found -> raise No_graph_found in let this_block_funs_indexes = get_funs_constant funs_mp funs_dp (fst first_fun) in let this_block_funs = Array.map (fun (c,_) -> (c,snd first_fun)) this_block_funs_indexes in let prop_sort = InProp in let funs_indexes = let this_block_funs_indexes = Array.to_list this_block_funs_indexes in List.map (function cst -> List.assoc_f Constant.equal (fst cst) this_block_funs_indexes) funs in let ind_list = List.map (fun (idx) -> let ind = first_fun_kn,idx in (ind,snd first_fun),true,prop_sort ) funs_indexes in let sigma, schemes = Indrec.build_mutual_induction_scheme env !evd ind_list in let _ = evd := sigma in let l_schemes = List.map (EConstr.of_constr %> Typing.unsafe_type_of env sigma %> EConstr.Unsafe.to_constr) schemes in let i = ref (-1) in let sorts = List.rev_map (fun (_,x) -> Evarutil.evd_comb1 (Evd.fresh_sort_in_family env) evd x ) fas in (* We create the first priciple by tactic *) let first_type,other_princ_types = match l_schemes with s::l_schemes -> s,l_schemes | _ -> anomaly (Pp.str "") in let ((_,(const,_)),_) = try build_functional_principle evd false first_type (Array.of_list sorts) this_block_funs 0 (prove_princ_for_struct evd false 0 (Array.of_list (List.map fst funs))) (fun _ _ _ -> ()) with e when CErrors.noncritical e -> begin begin try let id = Proof_global.get_current_proof_name () in let s = Id.to_string id in let n = String.length "___________princ_________" in if String.length s >= n then if String.equal (String.sub s 0 n) "___________princ_________" then Proof_global.discard_current () else () else () with e when CErrors.noncritical e -> () end; raise (Defining_principle e) end in incr i; let opacity = let finfos = find_Function_infos (fst first_fun) in try let equation = Option.get finfos.equation_lemma in Declareops.is_opaque (Global.lookup_constant equation) with Option.IsNone -> (* non recursive definition *) false in let const = {const with const_entry_opaque = opacity } in (* The others are just deduced *) if List.is_empty other_princ_types then [const] else let other_fun_princ_types = let funs = Array.map mkConstU this_block_funs in let sorts = Array.of_list sorts in List.map (compute_new_princ_type_from_rel funs sorts) other_princ_types in let first_princ_body,first_princ_type = const.const_entry_body, const.const_entry_type in let ctxt,fix = decompose_lam_assum (fst(fst(Future.force first_princ_body))) in (* the principle has for forall ...., fix .*) let (idxs,_),(_,ta,_ as decl) = destFix fix in let other_result = List.map (* we can now compute the other principles *) (fun scheme_type -> incr i; observe (Printer.pr_lconstr_env env sigma scheme_type); let type_concl = (strip_prod_assum scheme_type) in let applied_f = List.hd (List.rev (snd (decompose_app type_concl))) in let f = fst (decompose_app applied_f) in try (* we search the number of the function in the fix block (name of the function) *) Array.iteri (fun j t -> let t = (strip_prod_assum t) in let applied_g = List.hd (List.rev (snd (decompose_app t))) in let g = fst (decompose_app applied_g) in if Constr.equal f g then raise (Found_type j); observe (Printer.pr_lconstr_env env sigma f ++ str " <> " ++ Printer.pr_lconstr_env env sigma g) ) ta; (* If we reach this point, the two principle are not mutually recursive We fall back to the previous method *) let ((_,(const,_)),_) = build_functional_principle evd false (List.nth other_princ_types (!i - 1)) (Array.of_list sorts) this_block_funs !i (prove_princ_for_struct evd false !i (Array.of_list (List.map fst funs))) (fun _ _ _ -> ()) in const with Found_type i -> let princ_body = Termops.it_mkLambda_or_LetIn (mkFix((idxs,i),decl)) ctxt in {const with const_entry_body = (Future.from_val (Safe_typing.mk_pure_proof princ_body)); const_entry_type = Some scheme_type } ) other_fun_princ_types in const::other_result let build_scheme fas = let evd = (ref (Evd.from_env (Global.env ()))) in let pconstants = (List.map (fun (_,f,sort) -> let f_as_constant = try Smartlocate.global_with_alias f with Not_found -> user_err ~hdr:"FunInd.build_scheme" (str "Cannot find " ++ Libnames.pr_reference f) in let evd',f = Evd.fresh_global (Global.env ()) !evd f_as_constant in let _ = evd := evd' in let _ = Typing.e_type_of ~refresh:true (Global.env ()) evd (EConstr.of_constr f) in (destConst f,sort) ) fas ) in let bodies_types = make_scheme evd pconstants in List.iter2 (fun (princ_id,_,_) def_entry -> ignore (Declare.declare_constant princ_id (DefinitionEntry def_entry,Decl_kinds.IsProof Decl_kinds.Theorem)); Declare.definition_message princ_id ) fas bodies_types let build_case_scheme fa = let env = Global.env () and sigma = (Evd.from_env (Global.env ())) in (* let id_to_constr id = *) (* Constrintern.global_reference id *) (* in *) let funs = let (_,f,_) = fa in try fst (Global.constr_of_global_in_context (Global.env ()) (Smartlocate.global_with_alias f)) with Not_found -> user_err ~hdr:"FunInd.build_case_scheme" (str "Cannot find " ++ Libnames.pr_reference f) in let first_fun,u = destConst funs in let funs_mp,funs_dp,_ = Constant.repr3 first_fun in let first_fun_kn = try fst (find_Function_infos first_fun).graph_ind with Not_found -> raise No_graph_found in let this_block_funs_indexes = get_funs_constant funs_mp funs_dp first_fun in let this_block_funs = Array.map (fun (c,_) -> (c,u)) this_block_funs_indexes in let prop_sort = InProp in let funs_indexes = let this_block_funs_indexes = Array.to_list this_block_funs_indexes in List.assoc_f Constant.equal (fst (destConst funs)) this_block_funs_indexes in let (ind, sf) = let ind = first_fun_kn,funs_indexes in (ind,Univ.Instance.empty)(*FIXME*),prop_sort in let (sigma, scheme) = Indrec.build_case_analysis_scheme_default env sigma ind sf in let scheme_type = EConstr.Unsafe.to_constr ((Typing.unsafe_type_of env sigma) (EConstr.of_constr scheme)) in let sorts = (fun (_,_,x) -> Universes.new_sort_in_family x ) fa in let princ_name = (fun (x,_,_) -> x) fa in let _ = (* Pp.msgnl (str "Generating " ++ Ppconstr.pr_id princ_name ++str " with " ++ pr_lconstr scheme_type ++ str " and " ++ (fun a -> prlist_with_sep spc (fun c -> pr_lconstr (mkConst c)) (Array.to_list a)) this_block_funs ); *) generate_functional_principle (ref (Evd.from_env (Global.env ()))) false scheme_type (Some ([|sorts|])) (Some princ_name) this_block_funs 0 (prove_princ_for_struct (ref (Evd.from_env (Global.env ()))) false 0 [|fst (destConst funs)|]) in ()