1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i camlp4deps: "grammar/grammar.cma" i*)

open Pp
open Genarg
open Stdarg
open Tacarg
open Extraargs
open Pcoq.Prim
open Pltac
open Mod_subst
open Names
open Tacexpr
open Glob_ops
open CErrors
open Util
open Termops
open Equality
open Misctypes
open Proofview.Notations

DECLARE PLUGIN "ltac_plugin"

(**********************************************************************)
(* replace, discriminate, injection, simplify_eq                      *)
(* cutrewrite, dependent rewrite                                      *)

let with_delayed_uconstr ist c tac =
  let flags = {
    Pretyping.use_typeclasses = false;
    solve_unification_constraints = true;
    use_hook = Pfedit.solve_by_implicit_tactic ();
    fail_evar = false;
    expand_evars = true
  } in
  let c = Tacinterp.type_uconstr ~flags ist c in
  Tacticals.New.tclDELAYEDWITHHOLES false c tac

let replace_in_clause_maybe_by ist c1 c2 cl tac =
  with_delayed_uconstr ist c1
  (fun c1 -> replace_in_clause_maybe_by c1 c2 cl (Option.map (Tacinterp.tactic_of_value ist) tac))

let replace_term ist dir_opt c cl =
  with_delayed_uconstr ist c (fun c -> replace_term dir_opt c cl)

TACTIC EXTEND replace
   ["replace" uconstr(c1) "with" constr(c2) clause(cl) by_arg_tac(tac) ]
-> [ replace_in_clause_maybe_by ist c1 c2 cl tac ]
END

TACTIC EXTEND replace_term_left
  [ "replace"  "->" uconstr(c) clause(cl) ]
  -> [ replace_term ist (Some true) c cl ]
END

TACTIC EXTEND replace_term_right
  [ "replace"  "<-" uconstr(c) clause(cl) ]
  -> [ replace_term ist (Some false) c cl ]
END

TACTIC EXTEND replace_term
  [ "replace" uconstr(c) clause(cl) ]
  -> [ replace_term ist None c cl ]
END

let induction_arg_of_quantified_hyp = function
  | AnonHyp n -> None,ElimOnAnonHyp n
  | NamedHyp id -> None,ElimOnIdent (Loc.tag id)

(* Versions *_main must come first!! so that "1" is interpreted as a
   ElimOnAnonHyp and not as a "constr", and "id" is interpreted as a
   ElimOnIdent and not as "constr" *)

let mytclWithHoles tac with_evars c =
  Proofview.Goal.enter begin fun gl ->
    let env = Tacmach.New.pf_env gl in
    let sigma = Tacmach.New.project gl in
    let sigma',c = Tactics.force_destruction_arg with_evars env sigma c in
    Tacticals.New.tclWITHHOLES with_evars (tac with_evars (Some c)) sigma'
  end

let elimOnConstrWithHoles tac with_evars c =
  Tacticals.New.tclDELAYEDWITHHOLES with_evars c
    (fun c -> tac with_evars (Some (None,ElimOnConstr c)))

TACTIC EXTEND simplify_eq
  [ "simplify_eq" ] -> [ dEq ~keep_proofs:None false None ]
| [ "simplify_eq" destruction_arg(c) ] -> [ mytclWithHoles (dEq ~keep_proofs:None) false c ]
END
TACTIC EXTEND esimplify_eq
| [ "esimplify_eq" ] -> [ dEq ~keep_proofs:None true None ]
| [ "esimplify_eq" destruction_arg(c) ] -> [ mytclWithHoles (dEq ~keep_proofs:None) true c ]
END

let discr_main c = elimOnConstrWithHoles discr_tac false c

TACTIC EXTEND discriminate
| [ "discriminate" ] -> [ discr_tac false None ]
| [ "discriminate" destruction_arg(c) ] ->
    [ mytclWithHoles discr_tac false c ]
END
TACTIC EXTEND ediscriminate
| [ "ediscriminate" ] -> [ discr_tac true None ]
| [ "ediscriminate" destruction_arg(c) ] ->
    [ mytclWithHoles discr_tac true c ]
END

let discrHyp id =
  Proofview.tclEVARMAP >>= fun sigma ->
  discr_main (fun env sigma -> (sigma, (EConstr.mkVar id, NoBindings)))

let injection_main with_evars c =
 elimOnConstrWithHoles (injClause None None) with_evars c

TACTIC EXTEND injection
| [ "injection" ] -> [ injClause None None false None ]
| [ "injection" destruction_arg(c) ] -> [ mytclWithHoles (injClause None None) false c ]
END
TACTIC EXTEND einjection
| [ "einjection" ] -> [ injClause None None true None ]
| [ "einjection" destruction_arg(c) ] -> [ mytclWithHoles (injClause None None) true c ]
END
TACTIC EXTEND injection_as
| [ "injection" "as" intropattern_list(ipat)] ->
    [ injClause None (Some ipat) false None ]
| [ "injection" destruction_arg(c) "as" intropattern_list(ipat)] ->
    [ mytclWithHoles (injClause None (Some ipat)) false c ]
END
TACTIC EXTEND einjection_as
| [ "einjection" "as" intropattern_list(ipat)] ->
    [ injClause None (Some ipat) true None ]
| [ "einjection" destruction_arg(c) "as" intropattern_list(ipat)] ->
    [ mytclWithHoles (injClause None (Some ipat)) true c ]
END
TACTIC EXTEND simple_injection
| [ "simple" "injection" ] -> [ simpleInjClause None false None ]
| [ "simple" "injection" destruction_arg(c) ] -> [ mytclWithHoles (simpleInjClause None) false c ]
END

let injHyp id =
  Proofview.tclEVARMAP >>= fun sigma ->
  injection_main false (fun env sigma -> (sigma, (EConstr.mkVar id, NoBindings)))

TACTIC EXTEND dependent_rewrite
| [ "dependent" "rewrite" orient(b) constr(c) ] -> [ rewriteInConcl b c ]
| [ "dependent" "rewrite" orient(b) constr(c) "in" hyp(id) ]
    -> [ rewriteInHyp b c id ]
END

(** To be deprecated?, "cutrewrite (t=u) as <-" is equivalent to
    "replace u with t" or "enough (t=u) as <-" and 
    "cutrewrite (t=u) as ->" is equivalent to "enough (t=u) as ->". *)

TACTIC EXTEND cut_rewrite
| [ "cutrewrite" orient(b) constr(eqn) ] -> [ cutRewriteInConcl b eqn ]
| [ "cutrewrite" orient(b) constr(eqn) "in" hyp(id) ]
    -> [ cutRewriteInHyp b eqn id ]
END

(**********************************************************************)
(* Decompose                                                          *)

TACTIC EXTEND decompose_sum
| [ "decompose" "sum" constr(c) ] -> [ Elim.h_decompose_or c ]
END

TACTIC EXTEND decompose_record
| [ "decompose" "record" constr(c) ] -> [ Elim.h_decompose_and c ]
END

(**********************************************************************)
(* Contradiction                                                      *)

open Contradiction

TACTIC EXTEND absurd
 [ "absurd" constr(c) ] -> [ absurd c ]
END

let onSomeWithHoles tac = function
  | None -> tac None
  | Some c -> Tacticals.New.tclDELAYEDWITHHOLES false c (fun c -> tac (Some c))

TACTIC EXTEND contradiction
 [ "contradiction" constr_with_bindings_opt(c) ] ->
    [ onSomeWithHoles contradiction c ]
END

(**********************************************************************)
(* AutoRewrite                                                        *)

open Autorewrite

let pr_orient _prc _prlc _prt = function
  | true -> Pp.mt ()
  | false -> Pp.str " <-"

let pr_orient_string _prc _prlc _prt (orient, s) =
  pr_orient _prc _prlc _prt orient ++ Pp.spc () ++ Pp.str s

ARGUMENT EXTEND orient_string TYPED AS (bool * string) PRINTED BY pr_orient_string
| [ orient(r) preident(i) ] -> [ r, i ]
END

TACTIC EXTEND autorewrite
| [ "autorewrite" "with" ne_preident_list(l) clause(cl) ] ->
    [ auto_multi_rewrite  l ( cl) ]
| [ "autorewrite" "with" ne_preident_list(l) clause(cl) "using" tactic(t) ] ->
    [
      auto_multi_rewrite_with (Tacinterp.tactic_of_value ist t) l cl
    ]
END

TACTIC EXTEND autorewrite_star
| [ "autorewrite" "*" "with" ne_preident_list(l) clause(cl) ] ->
    [ auto_multi_rewrite ~conds:AllMatches l cl ]
| [ "autorewrite" "*" "with" ne_preident_list(l) clause(cl) "using" tactic(t) ] ->
  [ auto_multi_rewrite_with ~conds:AllMatches (Tacinterp.tactic_of_value ist t) l cl ]
END

(**********************************************************************)
(* Rewrite star                                                       *)

let rewrite_star ist clause orient occs c (tac : Geninterp.Val.t option) =
  let tac' = Option.map (fun t -> Tacinterp.tactic_of_value ist t, FirstSolved) tac in
  with_delayed_uconstr ist c
    (fun c -> general_rewrite_ebindings_clause clause orient occs ?tac:tac' true true (c,NoBindings) true)

TACTIC EXTEND rewrite_star
| [ "rewrite" "*" orient(o) uconstr(c) "in" hyp(id) "at" occurrences(occ) by_arg_tac(tac) ] ->
    [ rewrite_star ist (Some id) o (occurrences_of occ) c tac ]
| [ "rewrite" "*" orient(o) uconstr(c) "at" occurrences(occ) "in" hyp(id) by_arg_tac(tac) ] ->
    [ rewrite_star ist (Some id) o (occurrences_of occ) c tac ]
| [ "rewrite" "*" orient(o) uconstr(c) "in" hyp(id) by_arg_tac(tac) ] ->
    [ rewrite_star ist (Some id) o Locus.AllOccurrences c tac ]
| [ "rewrite" "*" orient(o) uconstr(c) "at" occurrences(occ) by_arg_tac(tac) ] ->
    [ rewrite_star ist None o (occurrences_of occ) c tac ]
| [ "rewrite" "*" orient(o) uconstr(c) by_arg_tac(tac) ] ->
    [ rewrite_star ist None o Locus.AllOccurrences c tac ]
    END

(**********************************************************************)
(* Hint Rewrite                                                       *)

let add_rewrite_hint bases ort t lcsr =
  let env = Global.env() in
  let sigma = Evd.from_env env in
  let poly = Flags.use_polymorphic_flag () in
  let f ce = 
    let c, ctx = Constrintern.interp_constr env sigma ce in
    let ctx =
      let ctx = UState.context_set ctx in
        if poly then ctx
        else (** This is a global universe context that shouldn't be
               refreshed at every use of the hint, declare it globally. *)
          (Declare.declare_universe_context false ctx;
           Univ.ContextSet.empty)
    in
      Loc.tag ?loc:(Constrexpr_ops.constr_loc ce) ((c, ctx), ort, Option.map (in_gen (rawwit wit_ltac)) t) in
  let eqs = List.map f lcsr in
  let add_hints base = add_rew_rules base eqs in
  List.iter add_hints bases

let classify_hint _ = Vernacexpr.VtSideff [], Vernacexpr.VtLater

VERNAC COMMAND EXTEND HintRewrite CLASSIFIED BY classify_hint
  [ "Hint" "Rewrite" orient(o) ne_constr_list(l) ":" preident_list(bl) ] ->
  [ add_rewrite_hint bl o None l ]
| [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t)
    ":" preident_list(bl) ] ->
  [ add_rewrite_hint bl o (Some t) l ]
| [ "Hint" "Rewrite" orient(o) ne_constr_list(l) ] ->
  [ add_rewrite_hint ["core"] o None l ]
| [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t) ] ->
  [ add_rewrite_hint ["core"] o (Some t) l ]
END

(**********************************************************************)
(* Hint Resolve                                                       *)

open Term
open EConstr
open Vars
open Coqlib

let project_hint pri l2r r =
  let gr = Smartlocate.global_with_alias r in
  let env = Global.env() in
  let sigma = Evd.from_env env in
  let sigma, c = Evd.fresh_global env sigma gr in
  let c = EConstr.of_constr c in
  let t = Retyping.get_type_of env sigma c in
  let t =
    Tacred.reduce_to_quantified_ref env sigma (Lazy.force coq_iff_ref) t in
  let sign,ccl = decompose_prod_assum sigma t in
  let (a,b) = match snd (decompose_app sigma ccl) with
    | [a;b] -> (a,b)
    | _ -> assert false in
  let p =
    if l2r then build_coq_iff_left_proj () else build_coq_iff_right_proj () in
  let sigma, p = Evd.fresh_global env sigma p in
  let p = EConstr.of_constr p in
  let c = Reductionops.whd_beta sigma (mkApp (c, Context.Rel.to_extended_vect mkRel 0 sign)) in
  let c = it_mkLambda_or_LetIn
    (mkApp (p,[|mkArrow a (lift 1 b);mkArrow b (lift 1 a);c|])) sign in
  let id =
    Nameops.add_suffix (Nametab.basename_of_global gr) ("_proj_" ^ (if l2r then "l2r" else "r2l"))
  in
  let poly = Flags.use_polymorphic_flag () in
  let ctx = Evd.const_univ_entry ~poly sigma in
  let c = EConstr.to_constr sigma c in
  let c = Declare.declare_definition ~internal:Declare.InternalTacticRequest id (c,ctx) in
  let info = {Vernacexpr.hint_priority = pri; hint_pattern = None} in
    (info,false,true,Hints.PathAny, Hints.IsGlobRef (Globnames.ConstRef c))

let add_hints_iff ?locality l2r lc n bl =
  Hints.add_hints (Locality.make_module_locality locality) bl
    (Hints.HintsResolveEntry (List.map (project_hint n l2r) lc))

VERNAC COMMAND FUNCTIONAL EXTEND HintResolveIffLR CLASSIFIED AS SIDEFF
  [ "Hint" "Resolve" "->" ne_global_list(lc) natural_opt(n)
    ":" preident_list(bl) ] ->
  [ fun ~atts ~st -> begin
        let open Vernacinterp in
        add_hints_iff ?locality:atts.locality true lc n bl;
        st
      end
  ]
| [ "Hint" "Resolve" "->" ne_global_list(lc) natural_opt(n) ] ->
  [ fun ~atts ~st -> begin
        let open Vernacinterp in
        add_hints_iff ?locality:atts.locality true lc n ["core"];
        st
      end
  ]
END

VERNAC COMMAND FUNCTIONAL EXTEND HintResolveIffRL CLASSIFIED AS SIDEFF
  [ "Hint" "Resolve" "<-" ne_global_list(lc) natural_opt(n)
    ":" preident_list(bl) ] ->
  [ fun ~atts ~st -> begin
        let open Vernacinterp in
        add_hints_iff ?locality:atts.locality false lc n bl;
        st
      end
  ]
| [ "Hint" "Resolve" "<-" ne_global_list(lc) natural_opt(n) ] ->
  [ fun ~atts ~st -> begin
        let open Vernacinterp in
        add_hints_iff ?locality:atts.locality false lc n ["core"];
        st
      end
  ]
END

(**********************************************************************)
(* Refine                                                             *)

open EConstr
open Vars

let constr_flags () = {
  Pretyping.use_typeclasses = true;
  Pretyping.solve_unification_constraints = true;
  Pretyping.use_hook = Pfedit.solve_by_implicit_tactic ();
  Pretyping.fail_evar = false;
  Pretyping.expand_evars = true }

let refine_tac ist simple with_classes c =
  Proofview.Goal.enter begin fun gl ->
    let concl = Proofview.Goal.concl gl in
    let env = Proofview.Goal.env gl in
    let flags =
      { constr_flags () with Pretyping.use_typeclasses = with_classes } in
    let expected_type = Pretyping.OfType concl in
    let c = Tacinterp.type_uconstr ~flags ~expected_type ist c in
    let update = begin fun sigma ->
      c env sigma
    end in
    let refine = Refine.refine ~typecheck:false update in
    if simple then refine
    else refine <*>
           Tactics.New.reduce_after_refine <*>
           Proofview.shelve_unifiable
  end

TACTIC EXTEND refine
| [ "refine" uconstr(c) ] ->
   [ refine_tac ist false true c ]
END

TACTIC EXTEND simple_refine
| [ "simple" "refine" uconstr(c) ] ->
   [ refine_tac ist true true c ]
END

TACTIC EXTEND notcs_refine
| [ "notypeclasses" "refine" uconstr(c) ] ->
   [ refine_tac ist false false c ]
END

TACTIC EXTEND notcs_simple_refine
| [ "simple" "notypeclasses" "refine" uconstr(c) ] ->
   [ refine_tac ist true false c ]
END

(* Solve unification constraints using heuristics or fail if any remain *)
TACTIC EXTEND solve_constraints
[ "solve_constraints" ] -> [ Refine.solve_constraints ]
END

(**********************************************************************)
(* Inversion lemmas (Leminv)                                          *)

open Inv
open Leminv

let seff id = Vernacexpr.VtSideff [id], Vernacexpr.VtLater

(*VERNAC ARGUMENT EXTEND sort_family
| [ "Set" ] -> [ InSet ]
| [ "Prop" ] -> [ InProp ]
| [ "Type" ] -> [ InType ]
END*)

VERNAC COMMAND EXTEND DeriveInversionClear
| [ "Derive" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort_family(s) ]
  => [ seff na ]
  -> [ add_inversion_lemma_exn na c s false inv_clear_tac ]

| [ "Derive" "Inversion_clear" ident(na) "with" constr(c) ] => [ seff na ]
  -> [ add_inversion_lemma_exn na c Sorts.InProp false inv_clear_tac ]
END

VERNAC COMMAND EXTEND DeriveInversion
| [ "Derive" "Inversion" ident(na) "with" constr(c) "Sort" sort_family(s) ]
  => [ seff na ]
  -> [ add_inversion_lemma_exn na c s false inv_tac ]

| [ "Derive" "Inversion" ident(na) "with" constr(c) ] => [ seff na ]
  -> [ add_inversion_lemma_exn na c Sorts.InProp false inv_tac ]
END

VERNAC COMMAND EXTEND DeriveDependentInversion
| [ "Derive" "Dependent" "Inversion" ident(na) "with" constr(c) "Sort" sort_family(s) ]
  => [ seff na ]
  -> [ add_inversion_lemma_exn na c s true dinv_tac ]
END

VERNAC COMMAND EXTEND DeriveDependentInversionClear
| [ "Derive" "Dependent" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort_family(s) ]
  => [ seff na ]
  -> [ add_inversion_lemma_exn na c s true dinv_clear_tac ]
END

(**********************************************************************)
(* Subst                                                              *)

TACTIC EXTEND subst
| [ "subst" ne_var_list(l) ] -> [ subst l ]
| [ "subst" ] -> [ subst_all () ]
END

let simple_subst_tactic_flags =
  { only_leibniz = true; rewrite_dependent_proof = false }

TACTIC EXTEND simple_subst
| [ "simple" "subst" ] -> [ subst_all ~flags:simple_subst_tactic_flags () ]
END

open Evar_tactics

(**********************************************************************)
(* Evar creation                                                      *)

(* TODO: add support for some test similar to g_constr.name_colon so that
   expressions like "evar (list A)" do not raise a syntax error *)
TACTIC EXTEND evar
  [ "evar" test_lpar_id_colon "(" ident(id) ":" lconstr(typ) ")" ] -> [ let_evar (Name.Name id) typ ]
| [ "evar" constr(typ) ] -> [ let_evar Name.Anonymous typ ]
END

TACTIC EXTEND instantiate
  [ "instantiate" "(" ident(id) ":=" lglob(c) ")" ] ->
    [ Tacticals.New.tclTHEN (instantiate_tac_by_name id c) Proofview.V82.nf_evar_goals ]
| [ "instantiate" "(" integer(i) ":=" lglob(c) ")" hloc(hl) ] ->
    [ Tacticals.New.tclTHEN (instantiate_tac i c hl) Proofview.V82.nf_evar_goals ]
| [ "instantiate" ] -> [ Proofview.V82.nf_evar_goals ]
END

(**********************************************************************)
(** Nijmegen "step" tactic for setoid rewriting                       *)

open Tactics
open Glob_term
open Libobject
open Lib

(* Registered lemmas are expected to be of the form
     x R y -> y == z -> x R z    (in the right table)
     x R y -> x == z -> z R y    (in the left table)
*)

let transitivity_right_table = Summary.ref [] ~name:"transitivity-steps-r"
let transitivity_left_table = Summary.ref [] ~name:"transitivity-steps-l"

(* [step] tries to apply a rewriting lemma; then apply [tac] intended to
   complete to proof of the last hypothesis (assumed to state an equality) *)

let step left x tac =
  let l =
    List.map (fun lem ->
      let lem = EConstr.of_constr lem in
      Tacticals.New.tclTHENLAST
        (apply_with_bindings (lem, ImplicitBindings [x]))
        tac)
      !(if left then transitivity_left_table else transitivity_right_table)
  in
  Tacticals.New.tclFIRST l

(* Main function to push lemmas in persistent environment *)

let cache_transitivity_lemma (_,(left,lem)) =
  if left then
    transitivity_left_table  := lem :: !transitivity_left_table
  else
    transitivity_right_table := lem :: !transitivity_right_table

let subst_transitivity_lemma (subst,(b,ref)) = (b,subst_mps subst ref)

let inTransitivity : bool * Constr.t -> obj =
  declare_object {(default_object "TRANSITIVITY-STEPS") with
    cache_function = cache_transitivity_lemma;
    open_function = (fun i o -> if Int.equal i 1 then cache_transitivity_lemma o);
    subst_function = subst_transitivity_lemma;
    classify_function = (fun o -> Substitute o) }

(* Main entry points *)

let add_transitivity_lemma left lem =
  let env = Global.env () in
  let sigma = Evd.from_env env in
  let lem',ctx (*FIXME*) = Constrintern.interp_constr env sigma lem in
  add_anonymous_leaf (inTransitivity (left,lem'))

(* Vernacular syntax *)

TACTIC EXTEND stepl
| ["stepl" constr(c) "by" tactic(tac) ] -> [ step true c (Tacinterp.tactic_of_value ist tac) ]
| ["stepl" constr(c) ] -> [ step true c (Proofview.tclUNIT ()) ]
END

TACTIC EXTEND stepr
| ["stepr" constr(c) "by" tactic(tac) ] -> [ step false c (Tacinterp.tactic_of_value ist tac) ]
| ["stepr" constr(c) ] -> [ step false c (Proofview.tclUNIT ()) ]
END

VERNAC COMMAND EXTEND AddStepl CLASSIFIED AS SIDEFF
| [ "Declare" "Left" "Step" constr(t) ] ->
    [ add_transitivity_lemma true t ]
END

VERNAC COMMAND EXTEND AddStepr CLASSIFIED AS SIDEFF
| [ "Declare" "Right" "Step" constr(t) ] ->
    [ add_transitivity_lemma false t ]
END

let cache_implicit_tactic (_,tac) = match tac with
  | Some tac -> Pfedit.declare_implicit_tactic (Tacinterp.eval_tactic tac)
  | None -> Pfedit.clear_implicit_tactic ()

let subst_implicit_tactic (subst,tac) =
  Option.map (Tacsubst.subst_tactic subst) tac

let inImplicitTactic : glob_tactic_expr option -> obj =
  declare_object {(default_object "IMPLICIT-TACTIC") with
       open_function = (fun i o -> if Int.equal i 1 then cache_implicit_tactic o);
       cache_function = cache_implicit_tactic;
       subst_function = subst_implicit_tactic;
       classify_function = (fun o -> Dispose)}

let declare_implicit_tactic tac =
  Lib.add_anonymous_leaf (inImplicitTactic (Some (Tacintern.glob_tactic tac)))

let clear_implicit_tactic () =
  Lib.add_anonymous_leaf (inImplicitTactic None)

VERNAC COMMAND EXTEND ImplicitTactic CLASSIFIED AS SIDEFF
| [ "Declare" "Implicit" "Tactic" tactic(tac) ] -> [ declare_implicit_tactic tac ]
| [ "Clear" "Implicit" "Tactic" ] -> [ clear_implicit_tactic () ]
END




(**********************************************************************)
(*spiwack : Vernac commands for retroknowledge                        *)

VERNAC COMMAND EXTEND RetroknowledgeRegister CLASSIFIED AS SIDEFF
 | [ "Register" constr(c) "as" retroknowledge_field(f) "by" constr(b)] ->
           [ let tc,ctx = Constrintern.interp_constr (Global.env ()) Evd.empty c in
             let tb,ctx(*FIXME*) = Constrintern.interp_constr (Global.env ()) Evd.empty b in
             Global.register f tc tb ]
END



(**********************************************************************)
(* sozeau: abs/gen for induction on instantiated dependent inductives, using "Ford" induction as
  defined by Conor McBride *)
TACTIC EXTEND generalize_eqs
| ["generalize_eqs" hyp(id) ] -> [ abstract_generalize ~generalize_vars:false id ]
END
TACTIC EXTEND dep_generalize_eqs
| ["dependent" "generalize_eqs" hyp(id) ] -> [ abstract_generalize ~generalize_vars:false ~force_dep:true id ]
END
TACTIC EXTEND generalize_eqs_vars
| ["generalize_eqs_vars" hyp(id) ] -> [ abstract_generalize ~generalize_vars:true id ]
END
TACTIC EXTEND dep_generalize_eqs_vars
| ["dependent" "generalize_eqs_vars" hyp(id) ] -> [ abstract_generalize ~force_dep:true ~generalize_vars:true id ]
END

(** Tactic to automatically simplify hypotheses of the form [Π Δ, x_i = t_i -> T] 
    where [t_i] is closed w.r.t. Δ. Such hypotheses are automatically generated
    during dependent induction. For internal use. *)

TACTIC EXTEND specialize_eqs
[ "specialize_eqs" hyp(id) ] -> [ specialize_eqs id ]
END

(**********************************************************************)
(* A tactic that considers a given occurrence of [c] in [t] and       *)
(* abstract the minimal set of all the occurrences of [c] so that the *)
(* abstraction [fun x -> t[x/c]] is well-typed                        *)
(*                                                                    *)
(* Contributed by Chung-Kil Hur (Winter 2009)                         *)
(**********************************************************************)

let subst_var_with_hole occ tid t = 
  let occref = if occ > 0 then ref occ else Find_subterm.error_invalid_occurrence [occ] in
  let locref = ref 0 in
  let rec substrec x = match DAst.get x with
    | GVar id ->
        if Id.equal id tid 
        then
          (decr occref;
           if Int.equal !occref 0 then x
           else
             (incr locref;
              DAst.make ~loc:(Loc.make_loc (!locref,0)) @@
              GHole (Evar_kinds.QuestionMark(Evar_kinds.Define true,Anonymous),
                     Misctypes.IntroAnonymous, None)))
        else x
    | _ -> map_glob_constr_left_to_right substrec x in
  let t' = substrec t
  in
  if !occref > 0 then Find_subterm.error_invalid_occurrence [occ] else t'

let subst_hole_with_term occ tc t =
  let locref = ref 0 in
  let occref = ref occ in
  let rec substrec c = match DAst.get c with
    | GHole (Evar_kinds.QuestionMark(Evar_kinds.Define true,Anonymous),Misctypes.IntroAnonymous,s) ->
        decr occref;
        if Int.equal !occref 0 then tc
        else
          (incr locref;
           DAst.make ~loc:(Loc.make_loc (!locref,0)) @@
           GHole (Evar_kinds.QuestionMark(Evar_kinds.Define true,Anonymous),Misctypes.IntroAnonymous,s))
    | _ -> map_glob_constr_left_to_right substrec c
  in
  substrec t

open Tacmach

let hResolve id c occ t =
  Proofview.Goal.enter begin fun gl ->
  let sigma = Proofview.Goal.sigma gl in
  let env = Termops.clear_named_body id (Proofview.Goal.env gl) in
  let concl = Proofview.Goal.concl gl in
  let env_ids = Termops.vars_of_env env in
  let c_raw = Detyping.detype Detyping.Now true env_ids env sigma c in
  let t_raw = Detyping.detype Detyping.Now true env_ids env sigma t in
  let rec resolve_hole t_hole =
    try 
      Pretyping.understand env sigma t_hole
    with
      | Pretype_errors.PretypeError (_,_,Pretype_errors.UnsolvableImplicit _) as e ->
          let (e, info) = CErrors.push e in
          let loc_begin = Option.cata (fun l -> fst (Loc.unloc l)) 0 (Loc.get_loc info) in
          resolve_hole (subst_hole_with_term loc_begin c_raw t_hole)
  in
  let t_constr,ctx = resolve_hole (subst_var_with_hole occ id t_raw) in
  let t_constr = EConstr.of_constr t_constr in
  let sigma = Evd.merge_universe_context sigma ctx in
  let t_constr_type = Retyping.get_type_of env sigma t_constr in
  Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma)
    (change_concl (mkLetIn (Name.Anonymous,t_constr,t_constr_type,concl)))
  end

let hResolve_auto id c t =
  let rec resolve_auto n = 
    try
      hResolve id c n t
    with
    | UserError _ as e -> raise e
    | e when CErrors.noncritical e -> resolve_auto (n+1)
  in
  resolve_auto 1

TACTIC EXTEND hresolve_core
| [ "hresolve_core" "(" ident(id) ":=" constr(c) ")" "at" int_or_var(occ) "in" constr(t) ] -> [ hResolve id c occ t ]
| [ "hresolve_core" "(" ident(id) ":=" constr(c) ")" "in" constr(t) ] -> [ hResolve_auto id c t ]
END

(**
   hget_evar
*)

TACTIC EXTEND hget_evar
| [ "hget_evar" int_or_var(n) ] -> [ Evar_tactics.hget_evar n ]
END

(**********************************************************************)

(**********************************************************************)
(* A tactic that reduces one match t with ... by doing destruct t.    *)
(* if t is not a variable, the tactic does                            *)
(* case_eq t;intros ... heq;rewrite heq in *|-. (but heq itself is    *)
(* preserved).                                                        *)
(* Contributed by Julien Forest and Pierre Courtieu (july 2010)       *)
(**********************************************************************)

exception Found of unit Proofview.tactic

let rewrite_except h =
  Proofview.Goal.enter begin fun gl ->
  let hyps = Tacmach.New.pf_ids_of_hyps gl in
  Tacticals.New.tclMAP (fun id -> if Id.equal id h then Proofview.tclUNIT () else 
      Tacticals.New.tclTRY (Equality.general_rewrite_in true Locus.AllOccurrences true true id (mkVar h) false))
    hyps
  end


let refl_equal = 
  let coq_base_constant s =
    Coqlib.gen_reference_in_modules "RecursiveDefinition"
      (Coqlib.init_modules @ [["Coq";"Arith";"Le"];["Coq";"Arith";"Lt"]]) s in
  function () -> (coq_base_constant "eq_refl")


(* This is simply an implementation of the case_eq tactic.  this code
  should be replaced by a call to the tactic but I don't know how to
  call it before it is defined. *)
let  mkCaseEq a  : unit Proofview.tactic =
  Proofview.Goal.enter begin fun gl ->
    let type_of_a = Tacmach.New.pf_unsafe_type_of gl a in
    Tacticals.New.pf_constr_of_global (delayed_force refl_equal) >>= fun req ->
    Tacticals.New.tclTHENLIST
         [Tactics.generalize [(mkApp(req, [| type_of_a; a|]))];
          Proofview.Goal.enter begin fun gl ->
            let concl = Proofview.Goal.concl gl in
            let env = Proofview.Goal.env gl in
            (** FIXME: this looks really wrong. Does anybody really use this tactic? *)
            let (_, c) = Tacred.pattern_occs [Locus.OnlyOccurrences [1], a] env Evd.empty concl in
            change_concl c
          end;
          simplest_case a]
  end


let case_eq_intros_rewrite x =
  Proofview.Goal.enter begin fun gl ->
  let n = nb_prod (Tacmach.New.project gl) (Proofview.Goal.concl gl) in
  (* Pp.msgnl (Printer.pr_lconstr x); *)
  Tacticals.New.tclTHENLIST [
      mkCaseEq x;
    Proofview.Goal.enter begin fun gl ->
      let concl = Proofview.Goal.concl gl in
      let hyps = Tacmach.New.pf_ids_set_of_hyps gl in
      let n' = nb_prod (Tacmach.New.project gl) concl in
      let h = fresh_id_in_env hyps (Id.of_string "heq") (Proofview.Goal.env gl)  in
      Tacticals.New.tclTHENLIST [
                    Tacticals.New.tclDO (n'-n-1) intro;
                    introduction h;
                    rewrite_except h]
    end
  ]
  end

let rec find_a_destructable_match sigma t =
  let cl = induction_arg_of_quantified_hyp (NamedHyp (Id.of_string "x")) in
  let cl = [cl, (None, None), None], None in
  let dest = TacAtom (Loc.tag @@ TacInductionDestruct(false, false, cl)) in
  match EConstr.kind sigma t with
    | Case (_,_,x,_) when closed0 sigma x ->
        if isVar sigma x then
          (* TODO check there is no rel n. *)
          raise (Found (Tacinterp.eval_tactic dest))
        else
          (* let _ = Pp.msgnl (Printer.pr_lconstr x)  in *)
          raise (Found (case_eq_intros_rewrite x))
    | _ -> EConstr.iter sigma (fun c -> find_a_destructable_match sigma c) t
        

let destauto t =
  Proofview.tclEVARMAP >>= fun sigma ->
  try find_a_destructable_match sigma t;
    Tacticals.New.tclZEROMSG (str "No destructable match found")
  with Found tac -> tac

let destauto_in id = 
  Proofview.Goal.enter begin fun gl ->
  let ctype = Tacmach.New.pf_unsafe_type_of gl (mkVar id) in
(*  Pp.msgnl (Printer.pr_lconstr (mkVar id)); *)
(*  Pp.msgnl (Printer.pr_lconstr (ctype)); *)
  destauto ctype
  end

TACTIC EXTEND destauto
| [ "destauto" ] -> [ Proofview.Goal.enter begin fun gl -> destauto (Proofview.Goal.concl gl) end ]
| [ "destauto" "in" hyp(id) ] -> [ destauto_in id ]
END

(**********************************************************************)

(**********************************************************************)
(* A version of abstract constructing transparent terms               *)
(* Introduced by Jason Gross and Benjamin Delaware in June 2016       *)
(**********************************************************************)

TACTIC EXTEND transparent_abstract
| [ "transparent_abstract" tactic3(t) ] -> [ Proofview.Goal.nf_enter begin fun gl ->
      Tactics.tclABSTRACT ~opaque:false None (Tacinterp.tactic_of_value ist t) end ]
| [ "transparent_abstract" tactic3(t) "using" ident(id) ] -> [ Proofview.Goal.nf_enter begin fun gl ->
      Tactics.tclABSTRACT ~opaque:false (Some id) (Tacinterp.tactic_of_value ist t) end ]
END

(* ********************************************************************* *)

let eq_constr x y = 
  Proofview.Goal.enter begin fun gl ->
    let evd = Tacmach.New.project gl in
      match EConstr.eq_constr_universes evd x y with
      | Some _ -> Proofview.tclUNIT () 
      | None -> Tacticals.New.tclFAIL 0 (str "Not equal")
  end

TACTIC EXTEND constr_eq
| [ "constr_eq" constr(x) constr(y) ] -> [ eq_constr x y ]
END

TACTIC EXTEND constr_eq_nounivs
| [ "constr_eq_nounivs" constr(x) constr(y) ] -> [
    Proofview.tclEVARMAP >>= fun sigma ->
    if eq_constr_nounivs sigma x y then Proofview.tclUNIT () else Tacticals.New.tclFAIL 0 (str "Not equal") ]
END

TACTIC EXTEND is_evar
| [ "is_evar" constr(x) ] -> [
    Proofview.tclEVARMAP >>= fun sigma ->
    match EConstr.kind sigma x with
      | Evar _ -> Proofview.tclUNIT ()
      | _ -> Tacticals.New.tclFAIL 0 (str "Not an evar")
    ]
END

TACTIC EXTEND has_evar
| [ "has_evar" constr(x) ] -> [
  Proofview.tclEVARMAP >>= fun sigma ->
  if Evarutil.has_undefined_evars sigma x
  then Proofview.tclUNIT ()
  else Tacticals.New.tclFAIL 0 (str "No evars")
]
END

TACTIC EXTEND is_hyp
| [ "is_var" constr(x) ] -> [
  Proofview.tclEVARMAP >>= fun sigma ->
  match EConstr.kind sigma x with
    | Var _ ->  Proofview.tclUNIT ()
    | _ -> Tacticals.New.tclFAIL 0 (str "Not a variable or hypothesis") ]
END

TACTIC EXTEND is_fix
| [ "is_fix" constr(x) ] -> [
  Proofview.tclEVARMAP >>= fun sigma ->
  match EConstr.kind sigma x with
    | Fix _ -> Proofview.tclUNIT ()
    | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not a fix definition") ]
END;;

TACTIC EXTEND is_cofix
| [ "is_cofix" constr(x) ] -> [
  Proofview.tclEVARMAP >>= fun sigma ->
  match EConstr.kind sigma x with
    | CoFix _ -> Proofview.tclUNIT ()
    | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not a cofix definition") ]
END;;

TACTIC EXTEND is_ind
| [ "is_ind" constr(x) ] -> [
  Proofview.tclEVARMAP >>= fun sigma ->
  match EConstr.kind sigma x with
    | Ind _ -> Proofview.tclUNIT ()
    | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not an (co)inductive datatype") ]
END;;

TACTIC EXTEND is_constructor
| [ "is_constructor" constr(x) ] -> [
  Proofview.tclEVARMAP >>= fun sigma ->
  match EConstr.kind sigma x with
    | Construct _ -> Proofview.tclUNIT ()
    | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not a constructor") ]
END;;

TACTIC EXTEND is_proj
| [ "is_proj" constr(x) ] -> [
  Proofview.tclEVARMAP >>= fun sigma ->
  match EConstr.kind sigma x with
    | Proj _ -> Proofview.tclUNIT ()
    | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not a primitive projection") ]
END;;

TACTIC EXTEND is_const
| [ "is_const" constr(x) ] -> [
  Proofview.tclEVARMAP >>= fun sigma ->
  match EConstr.kind sigma x with
    | Const _ -> Proofview.tclUNIT ()
    | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not a constant") ]
END;;

(* Command to grab the evars left unresolved at the end of a proof. *)
(* spiwack: I put it in extratactics because it is somewhat tied with
   the semantics of the LCF-style tactics, hence with the classic tactic
   mode. *)
VERNAC COMMAND EXTEND GrabEvars
[ "Grab" "Existential" "Variables" ]
  => [ Vernac_classifier.classify_as_proofstep ]
  -> [ Proof_global.simple_with_current_proof (fun _ p  -> Proof.V82.grab_evars p) ]
END

(* Shelves all the goals under focus. *)
TACTIC EXTEND shelve
| [ "shelve" ] ->
    [ Proofview.shelve ]
END

(* Shelves the unifiable goals under focus, i.e. the goals which
   appear in other goals under focus (the unfocused goals are not
   considered). *)
TACTIC EXTEND shelve_unifiable
| [ "shelve_unifiable" ] ->
    [ Proofview.shelve_unifiable ]
END

(* Unshelves the goal shelved by the tactic. *)
TACTIC EXTEND unshelve
| [ "unshelve" tactic1(t) ] ->
    [
      Proofview.with_shelf (Tacinterp.tactic_of_value ist t) >>= fun (gls, ()) ->
      Proofview.Unsafe.tclGETGOALS >>= fun ogls ->
      Proofview.Unsafe.tclSETGOALS (gls @ ogls)
    ]
END

(* Command to add every unshelved variables to the focus *)
VERNAC COMMAND EXTEND Unshelve
[ "Unshelve" ]
  => [ Vernac_classifier.classify_as_proofstep ]
  -> [ Proof_global.simple_with_current_proof (fun _ p  -> Proof.unshelve p) ]
END

(* Gives up on the goals under focus: the goals are considered solved,
   but the proof cannot be closed until the user goes back and solve
   these goals. *)
TACTIC EXTEND give_up
| [ "give_up" ] ->
    [ Proofview.give_up ]
END

(* cycles [n] goals *)
TACTIC EXTEND cycle
| [ "cycle" int_or_var(n) ] -> [ Proofview.cycle n ]
END

(* swaps goals number [i] and [j] *)
TACTIC EXTEND swap
| [ "swap" int_or_var(i) int_or_var(j) ] -> [ Proofview.swap i j ]
END

(* reverses the list of focused goals *)
TACTIC EXTEND revgoals
| [ "revgoals" ] -> [ Proofview.revgoals ]
END

type cmp =
  | Eq
  | Lt | Le
  | Gt | Ge

type 'i test =
  | Test of cmp * 'i * 'i

let pr_cmp = function
  | Eq -> Pp.str"="
  | Lt -> Pp.str"<"
  | Le -> Pp.str"<="
  | Gt -> Pp.str">"
  | Ge -> Pp.str">="

let pr_cmp' _prc _prlc _prt = pr_cmp

let pr_test_gen f (Test(c,x,y)) =
  Pp.(f x ++ pr_cmp c ++ f y)

let pr_test = pr_test_gen (Pputils.pr_or_var Pp.int)

let pr_test' _prc _prlc _prt = pr_test

let pr_itest = pr_test_gen Pp.int

let pr_itest' _prc _prlc _prt = pr_itest



ARGUMENT EXTEND comparison PRINTED BY pr_cmp'
| [ "="  ] -> [ Eq ]
| [ "<"  ] -> [ Lt ]
| [ "<=" ] -> [ Le ]
| [ ">"  ] -> [ Gt ]
| [ ">=" ] -> [ Ge ]
    END

let interp_test ist gls = function
  | Test (c,x,y) ->
      project gls ,
      Test(c,Tacinterp.interp_int_or_var ist x,Tacinterp.interp_int_or_var ist y)

ARGUMENT EXTEND test
  PRINTED BY pr_itest'
  INTERPRETED BY interp_test
  RAW_PRINTED BY pr_test'
  GLOB_PRINTED BY pr_test'
| [ int_or_var(x) comparison(c) int_or_var(y) ] -> [ Test(c,x,y) ]
END

let interp_cmp = function
  | Eq -> Int.equal
  | Lt -> ((<):int->int->bool)
  | Le -> ((<=):int->int->bool)
  | Gt -> ((>):int->int->bool)
  | Ge -> ((>=):int->int->bool)

let run_test = function
  | Test(c,x,y) -> interp_cmp c x y

let guard tst =
  if run_test tst then
    Proofview.tclUNIT ()
  else
    let msg = Pp.(str"Condition not satisfied:"++ws 1++(pr_itest tst)) in
    Tacticals.New.tclZEROMSG msg


TACTIC EXTEND guard
| [ "guard" test(tst) ] -> [ guard tst ]
END

let decompose l c =
  Proofview.Goal.enter begin fun gl ->
    let sigma = Tacmach.New.project gl in
    let to_ind c =
      if isInd sigma c then fst (destInd sigma c)
      else user_err Pp.(str "not an inductive type")
    in
    let l = List.map to_ind l in
    Elim.h_decompose l c
  end

TACTIC EXTEND decompose
| [ "decompose" "[" ne_constr_list(l) "]" constr(c) ] -> [ decompose l c ]
END

(** library/keys *)

VERNAC COMMAND EXTEND Declare_keys CLASSIFIED AS SIDEFF
| [ "Declare" "Equivalent" "Keys" constr(c) constr(c') ] -> [
  let get_key c =
    let (evd, c) = Constrintern.interp_open_constr (Global.env ()) Evd.empty c in
    let kind c = EConstr.kind evd c in
    Keys.constr_key kind c
  in
  let k1 = get_key c in
  let k2 = get_key c' in
    match k1, k2 with
    | Some k1, Some k2 -> Keys.declare_equiv_keys k1 k2
    | _ -> () ]
END

VERNAC COMMAND EXTEND Print_keys CLASSIFIED AS QUERY
| [ "Print" "Equivalent" "Keys" ] -> [ Feedback.msg_info (Keys.pr_keys Printer.pr_global) ]
END


VERNAC COMMAND EXTEND OptimizeProof
| [ "Optimize" "Proof" ] => [ Vernac_classifier.classify_as_proofstep ] ->
  [ Proof_global.compact_the_proof () ]
| [ "Optimize" "Heap" ] => [ Vernac_classifier.classify_as_proofstep ] ->
  [ Gc.compact () ]
END