1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (*i camlp4deps: "grammar/grammar.cma" i*) open Pp open Genarg open Stdarg open Tacarg open Extraargs open Pcoq.Prim open Pltac open Mod_subst open Names open Tacexpr open Glob_ops open CErrors open Util open Termops open Equality open Misctypes open Proofview.Notations DECLARE PLUGIN "ltac_plugin" (**********************************************************************) (* replace, discriminate, injection, simplify_eq *) (* cutrewrite, dependent rewrite *) let with_delayed_uconstr ist c tac = let flags = { Pretyping.use_typeclasses = false; solve_unification_constraints = true; use_hook = Pfedit.solve_by_implicit_tactic (); fail_evar = false; expand_evars = true } in let c = Tacinterp.type_uconstr ~flags ist c in Tacticals.New.tclDELAYEDWITHHOLES false c tac let replace_in_clause_maybe_by ist c1 c2 cl tac = with_delayed_uconstr ist c1 (fun c1 -> replace_in_clause_maybe_by c1 c2 cl (Option.map (Tacinterp.tactic_of_value ist) tac)) let replace_term ist dir_opt c cl = with_delayed_uconstr ist c (fun c -> replace_term dir_opt c cl) TACTIC EXTEND replace ["replace" uconstr(c1) "with" constr(c2) clause(cl) by_arg_tac(tac) ] -> [ replace_in_clause_maybe_by ist c1 c2 cl tac ] END TACTIC EXTEND replace_term_left [ "replace" "->" uconstr(c) clause(cl) ] -> [ replace_term ist (Some true) c cl ] END TACTIC EXTEND replace_term_right [ "replace" "<-" uconstr(c) clause(cl) ] -> [ replace_term ist (Some false) c cl ] END TACTIC EXTEND replace_term [ "replace" uconstr(c) clause(cl) ] -> [ replace_term ist None c cl ] END let induction_arg_of_quantified_hyp = function | AnonHyp n -> None,ElimOnAnonHyp n | NamedHyp id -> None,ElimOnIdent (Loc.tag id) (* Versions *_main must come first!! so that "1" is interpreted as a ElimOnAnonHyp and not as a "constr", and "id" is interpreted as a ElimOnIdent and not as "constr" *) let mytclWithHoles tac with_evars c = Proofview.Goal.enter begin fun gl -> let env = Tacmach.New.pf_env gl in let sigma = Tacmach.New.project gl in let sigma',c = Tactics.force_destruction_arg with_evars env sigma c in Tacticals.New.tclWITHHOLES with_evars (tac with_evars (Some c)) sigma' end let elimOnConstrWithHoles tac with_evars c = Tacticals.New.tclDELAYEDWITHHOLES with_evars c (fun c -> tac with_evars (Some (None,ElimOnConstr c))) TACTIC EXTEND simplify_eq [ "simplify_eq" ] -> [ dEq ~keep_proofs:None false None ] | [ "simplify_eq" destruction_arg(c) ] -> [ mytclWithHoles (dEq ~keep_proofs:None) false c ] END TACTIC EXTEND esimplify_eq | [ "esimplify_eq" ] -> [ dEq ~keep_proofs:None true None ] | [ "esimplify_eq" destruction_arg(c) ] -> [ mytclWithHoles (dEq ~keep_proofs:None) true c ] END let discr_main c = elimOnConstrWithHoles discr_tac false c TACTIC EXTEND discriminate | [ "discriminate" ] -> [ discr_tac false None ] | [ "discriminate" destruction_arg(c) ] -> [ mytclWithHoles discr_tac false c ] END TACTIC EXTEND ediscriminate | [ "ediscriminate" ] -> [ discr_tac true None ] | [ "ediscriminate" destruction_arg(c) ] -> [ mytclWithHoles discr_tac true c ] END let discrHyp id = Proofview.tclEVARMAP >>= fun sigma -> discr_main (fun env sigma -> (sigma, (EConstr.mkVar id, NoBindings))) let injection_main with_evars c = elimOnConstrWithHoles (injClause None None) with_evars c TACTIC EXTEND injection | [ "injection" ] -> [ injClause None None false None ] | [ "injection" destruction_arg(c) ] -> [ mytclWithHoles (injClause None None) false c ] END TACTIC EXTEND einjection | [ "einjection" ] -> [ injClause None None true None ] | [ "einjection" destruction_arg(c) ] -> [ mytclWithHoles (injClause None None) true c ] END TACTIC EXTEND injection_as | [ "injection" "as" intropattern_list(ipat)] -> [ injClause None (Some ipat) false None ] | [ "injection" destruction_arg(c) "as" intropattern_list(ipat)] -> [ mytclWithHoles (injClause None (Some ipat)) false c ] END TACTIC EXTEND einjection_as | [ "einjection" "as" intropattern_list(ipat)] -> [ injClause None (Some ipat) true None ] | [ "einjection" destruction_arg(c) "as" intropattern_list(ipat)] -> [ mytclWithHoles (injClause None (Some ipat)) true c ] END TACTIC EXTEND simple_injection | [ "simple" "injection" ] -> [ simpleInjClause None false None ] | [ "simple" "injection" destruction_arg(c) ] -> [ mytclWithHoles (simpleInjClause None) false c ] END let injHyp id = Proofview.tclEVARMAP >>= fun sigma -> injection_main false (fun env sigma -> (sigma, (EConstr.mkVar id, NoBindings))) TACTIC EXTEND dependent_rewrite | [ "dependent" "rewrite" orient(b) constr(c) ] -> [ rewriteInConcl b c ] | [ "dependent" "rewrite" orient(b) constr(c) "in" hyp(id) ] -> [ rewriteInHyp b c id ] END (** To be deprecated?, "cutrewrite (t=u) as <-" is equivalent to "replace u with t" or "enough (t=u) as <-" and "cutrewrite (t=u) as ->" is equivalent to "enough (t=u) as ->". *) TACTIC EXTEND cut_rewrite | [ "cutrewrite" orient(b) constr(eqn) ] -> [ cutRewriteInConcl b eqn ] | [ "cutrewrite" orient(b) constr(eqn) "in" hyp(id) ] -> [ cutRewriteInHyp b eqn id ] END (**********************************************************************) (* Decompose *) TACTIC EXTEND decompose_sum | [ "decompose" "sum" constr(c) ] -> [ Elim.h_decompose_or c ] END TACTIC EXTEND decompose_record | [ "decompose" "record" constr(c) ] -> [ Elim.h_decompose_and c ] END (**********************************************************************) (* Contradiction *) open Contradiction TACTIC EXTEND absurd [ "absurd" constr(c) ] -> [ absurd c ] END let onSomeWithHoles tac = function | None -> tac None | Some c -> Tacticals.New.tclDELAYEDWITHHOLES false c (fun c -> tac (Some c)) TACTIC EXTEND contradiction [ "contradiction" constr_with_bindings_opt(c) ] -> [ onSomeWithHoles contradiction c ] END (**********************************************************************) (* AutoRewrite *) open Autorewrite let pr_orient _prc _prlc _prt = function | true -> Pp.mt () | false -> Pp.str " <-" let pr_orient_string _prc _prlc _prt (orient, s) = pr_orient _prc _prlc _prt orient ++ Pp.spc () ++ Pp.str s ARGUMENT EXTEND orient_string TYPED AS (bool * string) PRINTED BY pr_orient_string | [ orient(r) preident(i) ] -> [ r, i ] END TACTIC EXTEND autorewrite | [ "autorewrite" "with" ne_preident_list(l) clause(cl) ] -> [ auto_multi_rewrite l ( cl) ] | [ "autorewrite" "with" ne_preident_list(l) clause(cl) "using" tactic(t) ] -> [ auto_multi_rewrite_with (Tacinterp.tactic_of_value ist t) l cl ] END TACTIC EXTEND autorewrite_star | [ "autorewrite" "*" "with" ne_preident_list(l) clause(cl) ] -> [ auto_multi_rewrite ~conds:AllMatches l cl ] | [ "autorewrite" "*" "with" ne_preident_list(l) clause(cl) "using" tactic(t) ] -> [ auto_multi_rewrite_with ~conds:AllMatches (Tacinterp.tactic_of_value ist t) l cl ] END (**********************************************************************) (* Rewrite star *) let rewrite_star ist clause orient occs c (tac : Geninterp.Val.t option) = let tac' = Option.map (fun t -> Tacinterp.tactic_of_value ist t, FirstSolved) tac in with_delayed_uconstr ist c (fun c -> general_rewrite_ebindings_clause clause orient occs ?tac:tac' true true (c,NoBindings) true) TACTIC EXTEND rewrite_star | [ "rewrite" "*" orient(o) uconstr(c) "in" hyp(id) "at" occurrences(occ) by_arg_tac(tac) ] -> [ rewrite_star ist (Some id) o (occurrences_of occ) c tac ] | [ "rewrite" "*" orient(o) uconstr(c) "at" occurrences(occ) "in" hyp(id) by_arg_tac(tac) ] -> [ rewrite_star ist (Some id) o (occurrences_of occ) c tac ] | [ "rewrite" "*" orient(o) uconstr(c) "in" hyp(id) by_arg_tac(tac) ] -> [ rewrite_star ist (Some id) o Locus.AllOccurrences c tac ] | [ "rewrite" "*" orient(o) uconstr(c) "at" occurrences(occ) by_arg_tac(tac) ] -> [ rewrite_star ist None o (occurrences_of occ) c tac ] | [ "rewrite" "*" orient(o) uconstr(c) by_arg_tac(tac) ] -> [ rewrite_star ist None o Locus.AllOccurrences c tac ] END (**********************************************************************) (* Hint Rewrite *) let add_rewrite_hint bases ort t lcsr = let env = Global.env() in let sigma = Evd.from_env env in let poly = Flags.use_polymorphic_flag () in let f ce = let c, ctx = Constrintern.interp_constr env sigma ce in let ctx = let ctx = UState.context_set ctx in if poly then ctx else (** This is a global universe context that shouldn't be refreshed at every use of the hint, declare it globally. *) (Declare.declare_universe_context false ctx; Univ.ContextSet.empty) in Loc.tag ?loc:(Constrexpr_ops.constr_loc ce) ((c, ctx), ort, Option.map (in_gen (rawwit wit_ltac)) t) in let eqs = List.map f lcsr in let add_hints base = add_rew_rules base eqs in List.iter add_hints bases let classify_hint _ = Vernacexpr.VtSideff [], Vernacexpr.VtLater VERNAC COMMAND EXTEND HintRewrite CLASSIFIED BY classify_hint [ "Hint" "Rewrite" orient(o) ne_constr_list(l) ":" preident_list(bl) ] -> [ add_rewrite_hint bl o None l ] | [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t) ":" preident_list(bl) ] -> [ add_rewrite_hint bl o (Some t) l ] | [ "Hint" "Rewrite" orient(o) ne_constr_list(l) ] -> [ add_rewrite_hint ["core"] o None l ] | [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t) ] -> [ add_rewrite_hint ["core"] o (Some t) l ] END (**********************************************************************) (* Hint Resolve *) open Term open EConstr open Vars open Coqlib let project_hint pri l2r r = let gr = Smartlocate.global_with_alias r in let env = Global.env() in let sigma = Evd.from_env env in let sigma, c = Evd.fresh_global env sigma gr in let c = EConstr.of_constr c in let t = Retyping.get_type_of env sigma c in let t = Tacred.reduce_to_quantified_ref env sigma (Lazy.force coq_iff_ref) t in let sign,ccl = decompose_prod_assum sigma t in let (a,b) = match snd (decompose_app sigma ccl) with | [a;b] -> (a,b) | _ -> assert false in let p = if l2r then build_coq_iff_left_proj () else build_coq_iff_right_proj () in let sigma, p = Evd.fresh_global env sigma p in let p = EConstr.of_constr p in let c = Reductionops.whd_beta sigma (mkApp (c, Context.Rel.to_extended_vect mkRel 0 sign)) in let c = it_mkLambda_or_LetIn (mkApp (p,[|mkArrow a (lift 1 b);mkArrow b (lift 1 a);c|])) sign in let id = Nameops.add_suffix (Nametab.basename_of_global gr) ("_proj_" ^ (if l2r then "l2r" else "r2l")) in let poly = Flags.use_polymorphic_flag () in let ctx = Evd.const_univ_entry ~poly sigma in let c = EConstr.to_constr sigma c in let c = Declare.declare_definition ~internal:Declare.InternalTacticRequest id (c,ctx) in let info = {Vernacexpr.hint_priority = pri; hint_pattern = None} in (info,false,true,Hints.PathAny, Hints.IsGlobRef (Globnames.ConstRef c)) let add_hints_iff ?locality l2r lc n bl = Hints.add_hints (Locality.make_module_locality locality) bl (Hints.HintsResolveEntry (List.map (project_hint n l2r) lc)) VERNAC COMMAND FUNCTIONAL EXTEND HintResolveIffLR CLASSIFIED AS SIDEFF [ "Hint" "Resolve" "->" ne_global_list(lc) natural_opt(n) ":" preident_list(bl) ] -> [ fun ~atts ~st -> begin let open Vernacinterp in add_hints_iff ?locality:atts.locality true lc n bl; st end ] | [ "Hint" "Resolve" "->" ne_global_list(lc) natural_opt(n) ] -> [ fun ~atts ~st -> begin let open Vernacinterp in add_hints_iff ?locality:atts.locality true lc n ["core"]; st end ] END VERNAC COMMAND FUNCTIONAL EXTEND HintResolveIffRL CLASSIFIED AS SIDEFF [ "Hint" "Resolve" "<-" ne_global_list(lc) natural_opt(n) ":" preident_list(bl) ] -> [ fun ~atts ~st -> begin let open Vernacinterp in add_hints_iff ?locality:atts.locality false lc n bl; st end ] | [ "Hint" "Resolve" "<-" ne_global_list(lc) natural_opt(n) ] -> [ fun ~atts ~st -> begin let open Vernacinterp in add_hints_iff ?locality:atts.locality false lc n ["core"]; st end ] END (**********************************************************************) (* Refine *) open EConstr open Vars let constr_flags () = { Pretyping.use_typeclasses = true; Pretyping.solve_unification_constraints = true; Pretyping.use_hook = Pfedit.solve_by_implicit_tactic (); Pretyping.fail_evar = false; Pretyping.expand_evars = true } let refine_tac ist simple with_classes c = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let flags = { constr_flags () with Pretyping.use_typeclasses = with_classes } in let expected_type = Pretyping.OfType concl in let c = Tacinterp.type_uconstr ~flags ~expected_type ist c in let update = begin fun sigma -> c env sigma end in let refine = Refine.refine ~typecheck:false update in if simple then refine else refine <*> Tactics.New.reduce_after_refine <*> Proofview.shelve_unifiable end TACTIC EXTEND refine | [ "refine" uconstr(c) ] -> [ refine_tac ist false true c ] END TACTIC EXTEND simple_refine | [ "simple" "refine" uconstr(c) ] -> [ refine_tac ist true true c ] END TACTIC EXTEND notcs_refine | [ "notypeclasses" "refine" uconstr(c) ] -> [ refine_tac ist false false c ] END TACTIC EXTEND notcs_simple_refine | [ "simple" "notypeclasses" "refine" uconstr(c) ] -> [ refine_tac ist true false c ] END (* Solve unification constraints using heuristics or fail if any remain *) TACTIC EXTEND solve_constraints [ "solve_constraints" ] -> [ Refine.solve_constraints ] END (**********************************************************************) (* Inversion lemmas (Leminv) *) open Inv open Leminv let seff id = Vernacexpr.VtSideff [id], Vernacexpr.VtLater (*VERNAC ARGUMENT EXTEND sort_family | [ "Set" ] -> [ InSet ] | [ "Prop" ] -> [ InProp ] | [ "Type" ] -> [ InType ] END*) VERNAC COMMAND EXTEND DeriveInversionClear | [ "Derive" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort_family(s) ] => [ seff na ] -> [ add_inversion_lemma_exn na c s false inv_clear_tac ] | [ "Derive" "Inversion_clear" ident(na) "with" constr(c) ] => [ seff na ] -> [ add_inversion_lemma_exn na c Sorts.InProp false inv_clear_tac ] END VERNAC COMMAND EXTEND DeriveInversion | [ "Derive" "Inversion" ident(na) "with" constr(c) "Sort" sort_family(s) ] => [ seff na ] -> [ add_inversion_lemma_exn na c s false inv_tac ] | [ "Derive" "Inversion" ident(na) "with" constr(c) ] => [ seff na ] -> [ add_inversion_lemma_exn na c Sorts.InProp false inv_tac ] END VERNAC COMMAND EXTEND DeriveDependentInversion | [ "Derive" "Dependent" "Inversion" ident(na) "with" constr(c) "Sort" sort_family(s) ] => [ seff na ] -> [ add_inversion_lemma_exn na c s true dinv_tac ] END VERNAC COMMAND EXTEND DeriveDependentInversionClear | [ "Derive" "Dependent" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort_family(s) ] => [ seff na ] -> [ add_inversion_lemma_exn na c s true dinv_clear_tac ] END (**********************************************************************) (* Subst *) TACTIC EXTEND subst | [ "subst" ne_var_list(l) ] -> [ subst l ] | [ "subst" ] -> [ subst_all () ] END let simple_subst_tactic_flags = { only_leibniz = true; rewrite_dependent_proof = false } TACTIC EXTEND simple_subst | [ "simple" "subst" ] -> [ subst_all ~flags:simple_subst_tactic_flags () ] END open Evar_tactics (**********************************************************************) (* Evar creation *) (* TODO: add support for some test similar to g_constr.name_colon so that expressions like "evar (list A)" do not raise a syntax error *) TACTIC EXTEND evar [ "evar" test_lpar_id_colon "(" ident(id) ":" lconstr(typ) ")" ] -> [ let_evar (Name.Name id) typ ] | [ "evar" constr(typ) ] -> [ let_evar Name.Anonymous typ ] END TACTIC EXTEND instantiate [ "instantiate" "(" ident(id) ":=" lglob(c) ")" ] -> [ Tacticals.New.tclTHEN (instantiate_tac_by_name id c) Proofview.V82.nf_evar_goals ] | [ "instantiate" "(" integer(i) ":=" lglob(c) ")" hloc(hl) ] -> [ Tacticals.New.tclTHEN (instantiate_tac i c hl) Proofview.V82.nf_evar_goals ] | [ "instantiate" ] -> [ Proofview.V82.nf_evar_goals ] END (**********************************************************************) (** Nijmegen "step" tactic for setoid rewriting *) open Tactics open Glob_term open Libobject open Lib (* Registered lemmas are expected to be of the form x R y -> y == z -> x R z (in the right table) x R y -> x == z -> z R y (in the left table) *) let transitivity_right_table = Summary.ref [] ~name:"transitivity-steps-r" let transitivity_left_table = Summary.ref [] ~name:"transitivity-steps-l" (* [step] tries to apply a rewriting lemma; then apply [tac] intended to complete to proof of the last hypothesis (assumed to state an equality) *) let step left x tac = let l = List.map (fun lem -> let lem = EConstr.of_constr lem in Tacticals.New.tclTHENLAST (apply_with_bindings (lem, ImplicitBindings [x])) tac) !(if left then transitivity_left_table else transitivity_right_table) in Tacticals.New.tclFIRST l (* Main function to push lemmas in persistent environment *) let cache_transitivity_lemma (_,(left,lem)) = if left then transitivity_left_table := lem :: !transitivity_left_table else transitivity_right_table := lem :: !transitivity_right_table let subst_transitivity_lemma (subst,(b,ref)) = (b,subst_mps subst ref) let inTransitivity : bool * Constr.t -> obj = declare_object {(default_object "TRANSITIVITY-STEPS") with cache_function = cache_transitivity_lemma; open_function = (fun i o -> if Int.equal i 1 then cache_transitivity_lemma o); subst_function = subst_transitivity_lemma; classify_function = (fun o -> Substitute o) } (* Main entry points *) let add_transitivity_lemma left lem = let env = Global.env () in let sigma = Evd.from_env env in let lem',ctx (*FIXME*) = Constrintern.interp_constr env sigma lem in add_anonymous_leaf (inTransitivity (left,lem')) (* Vernacular syntax *) TACTIC EXTEND stepl | ["stepl" constr(c) "by" tactic(tac) ] -> [ step true c (Tacinterp.tactic_of_value ist tac) ] | ["stepl" constr(c) ] -> [ step true c (Proofview.tclUNIT ()) ] END TACTIC EXTEND stepr | ["stepr" constr(c) "by" tactic(tac) ] -> [ step false c (Tacinterp.tactic_of_value ist tac) ] | ["stepr" constr(c) ] -> [ step false c (Proofview.tclUNIT ()) ] END VERNAC COMMAND EXTEND AddStepl CLASSIFIED AS SIDEFF | [ "Declare" "Left" "Step" constr(t) ] -> [ add_transitivity_lemma true t ] END VERNAC COMMAND EXTEND AddStepr CLASSIFIED AS SIDEFF | [ "Declare" "Right" "Step" constr(t) ] -> [ add_transitivity_lemma false t ] END let cache_implicit_tactic (_,tac) = match tac with | Some tac -> Pfedit.declare_implicit_tactic (Tacinterp.eval_tactic tac) | None -> Pfedit.clear_implicit_tactic () let subst_implicit_tactic (subst,tac) = Option.map (Tacsubst.subst_tactic subst) tac let inImplicitTactic : glob_tactic_expr option -> obj = declare_object {(default_object "IMPLICIT-TACTIC") with open_function = (fun i o -> if Int.equal i 1 then cache_implicit_tactic o); cache_function = cache_implicit_tactic; subst_function = subst_implicit_tactic; classify_function = (fun o -> Dispose)} let declare_implicit_tactic tac = Lib.add_anonymous_leaf (inImplicitTactic (Some (Tacintern.glob_tactic tac))) let clear_implicit_tactic () = Lib.add_anonymous_leaf (inImplicitTactic None) VERNAC COMMAND EXTEND ImplicitTactic CLASSIFIED AS SIDEFF | [ "Declare" "Implicit" "Tactic" tactic(tac) ] -> [ declare_implicit_tactic tac ] | [ "Clear" "Implicit" "Tactic" ] -> [ clear_implicit_tactic () ] END (**********************************************************************) (*spiwack : Vernac commands for retroknowledge *) VERNAC COMMAND EXTEND RetroknowledgeRegister CLASSIFIED AS SIDEFF | [ "Register" constr(c) "as" retroknowledge_field(f) "by" constr(b)] -> [ let tc,ctx = Constrintern.interp_constr (Global.env ()) Evd.empty c in let tb,ctx(*FIXME*) = Constrintern.interp_constr (Global.env ()) Evd.empty b in Global.register f tc tb ] END (**********************************************************************) (* sozeau: abs/gen for induction on instantiated dependent inductives, using "Ford" induction as defined by Conor McBride *) TACTIC EXTEND generalize_eqs | ["generalize_eqs" hyp(id) ] -> [ abstract_generalize ~generalize_vars:false id ] END TACTIC EXTEND dep_generalize_eqs | ["dependent" "generalize_eqs" hyp(id) ] -> [ abstract_generalize ~generalize_vars:false ~force_dep:true id ] END TACTIC EXTEND generalize_eqs_vars | ["generalize_eqs_vars" hyp(id) ] -> [ abstract_generalize ~generalize_vars:true id ] END TACTIC EXTEND dep_generalize_eqs_vars | ["dependent" "generalize_eqs_vars" hyp(id) ] -> [ abstract_generalize ~force_dep:true ~generalize_vars:true id ] END (** Tactic to automatically simplify hypotheses of the form [Π Δ, x_i = t_i -> T] where [t_i] is closed w.r.t. Δ. Such hypotheses are automatically generated during dependent induction. For internal use. *) TACTIC EXTEND specialize_eqs [ "specialize_eqs" hyp(id) ] -> [ specialize_eqs id ] END (**********************************************************************) (* A tactic that considers a given occurrence of [c] in [t] and *) (* abstract the minimal set of all the occurrences of [c] so that the *) (* abstraction [fun x -> t[x/c]] is well-typed *) (* *) (* Contributed by Chung-Kil Hur (Winter 2009) *) (**********************************************************************) let subst_var_with_hole occ tid t = let occref = if occ > 0 then ref occ else Find_subterm.error_invalid_occurrence [occ] in let locref = ref 0 in let rec substrec x = match DAst.get x with | GVar id -> if Id.equal id tid then (decr occref; if Int.equal !occref 0 then x else (incr locref; DAst.make ~loc:(Loc.make_loc (!locref,0)) @@ GHole (Evar_kinds.QuestionMark(Evar_kinds.Define true,Anonymous), Misctypes.IntroAnonymous, None))) else x | _ -> map_glob_constr_left_to_right substrec x in let t' = substrec t in if !occref > 0 then Find_subterm.error_invalid_occurrence [occ] else t' let subst_hole_with_term occ tc t = let locref = ref 0 in let occref = ref occ in let rec substrec c = match DAst.get c with | GHole (Evar_kinds.QuestionMark(Evar_kinds.Define true,Anonymous),Misctypes.IntroAnonymous,s) -> decr occref; if Int.equal !occref 0 then tc else (incr locref; DAst.make ~loc:(Loc.make_loc (!locref,0)) @@ GHole (Evar_kinds.QuestionMark(Evar_kinds.Define true,Anonymous),Misctypes.IntroAnonymous,s)) | _ -> map_glob_constr_left_to_right substrec c in substrec t open Tacmach let hResolve id c occ t = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Termops.clear_named_body id (Proofview.Goal.env gl) in let concl = Proofview.Goal.concl gl in let env_ids = Termops.vars_of_env env in let c_raw = Detyping.detype Detyping.Now true env_ids env sigma c in let t_raw = Detyping.detype Detyping.Now true env_ids env sigma t in let rec resolve_hole t_hole = try Pretyping.understand env sigma t_hole with | Pretype_errors.PretypeError (_,_,Pretype_errors.UnsolvableImplicit _) as e -> let (e, info) = CErrors.push e in let loc_begin = Option.cata (fun l -> fst (Loc.unloc l)) 0 (Loc.get_loc info) in resolve_hole (subst_hole_with_term loc_begin c_raw t_hole) in let t_constr,ctx = resolve_hole (subst_var_with_hole occ id t_raw) in let t_constr = EConstr.of_constr t_constr in let sigma = Evd.merge_universe_context sigma ctx in let t_constr_type = Retyping.get_type_of env sigma t_constr in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (change_concl (mkLetIn (Name.Anonymous,t_constr,t_constr_type,concl))) end let hResolve_auto id c t = let rec resolve_auto n = try hResolve id c n t with | UserError _ as e -> raise e | e when CErrors.noncritical e -> resolve_auto (n+1) in resolve_auto 1 TACTIC EXTEND hresolve_core | [ "hresolve_core" "(" ident(id) ":=" constr(c) ")" "at" int_or_var(occ) "in" constr(t) ] -> [ hResolve id c occ t ] | [ "hresolve_core" "(" ident(id) ":=" constr(c) ")" "in" constr(t) ] -> [ hResolve_auto id c t ] END (** hget_evar *) TACTIC EXTEND hget_evar | [ "hget_evar" int_or_var(n) ] -> [ Evar_tactics.hget_evar n ] END (**********************************************************************) (**********************************************************************) (* A tactic that reduces one match t with ... by doing destruct t. *) (* if t is not a variable, the tactic does *) (* case_eq t;intros ... heq;rewrite heq in *|-. (but heq itself is *) (* preserved). *) (* Contributed by Julien Forest and Pierre Courtieu (july 2010) *) (**********************************************************************) exception Found of unit Proofview.tactic let rewrite_except h = Proofview.Goal.enter begin fun gl -> let hyps = Tacmach.New.pf_ids_of_hyps gl in Tacticals.New.tclMAP (fun id -> if Id.equal id h then Proofview.tclUNIT () else Tacticals.New.tclTRY (Equality.general_rewrite_in true Locus.AllOccurrences true true id (mkVar h) false)) hyps end let refl_equal = let coq_base_constant s = Coqlib.gen_reference_in_modules "RecursiveDefinition" (Coqlib.init_modules @ [["Coq";"Arith";"Le"];["Coq";"Arith";"Lt"]]) s in function () -> (coq_base_constant "eq_refl") (* This is simply an implementation of the case_eq tactic. this code should be replaced by a call to the tactic but I don't know how to call it before it is defined. *) let mkCaseEq a : unit Proofview.tactic = Proofview.Goal.enter begin fun gl -> let type_of_a = Tacmach.New.pf_unsafe_type_of gl a in Tacticals.New.pf_constr_of_global (delayed_force refl_equal) >>= fun req -> Tacticals.New.tclTHENLIST [Tactics.generalize [(mkApp(req, [| type_of_a; a|]))]; Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in (** FIXME: this looks really wrong. Does anybody really use this tactic? *) let (_, c) = Tacred.pattern_occs [Locus.OnlyOccurrences [1], a] env Evd.empty concl in change_concl c end; simplest_case a] end let case_eq_intros_rewrite x = Proofview.Goal.enter begin fun gl -> let n = nb_prod (Tacmach.New.project gl) (Proofview.Goal.concl gl) in (* Pp.msgnl (Printer.pr_lconstr x); *) Tacticals.New.tclTHENLIST [ mkCaseEq x; Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let hyps = Tacmach.New.pf_ids_set_of_hyps gl in let n' = nb_prod (Tacmach.New.project gl) concl in let h = fresh_id_in_env hyps (Id.of_string "heq") (Proofview.Goal.env gl) in Tacticals.New.tclTHENLIST [ Tacticals.New.tclDO (n'-n-1) intro; introduction h; rewrite_except h] end ] end let rec find_a_destructable_match sigma t = let cl = induction_arg_of_quantified_hyp (NamedHyp (Id.of_string "x")) in let cl = [cl, (None, None), None], None in let dest = TacAtom (Loc.tag @@ TacInductionDestruct(false, false, cl)) in match EConstr.kind sigma t with | Case (_,_,x,_) when closed0 sigma x -> if isVar sigma x then (* TODO check there is no rel n. *) raise (Found (Tacinterp.eval_tactic dest)) else (* let _ = Pp.msgnl (Printer.pr_lconstr x) in *) raise (Found (case_eq_intros_rewrite x)) | _ -> EConstr.iter sigma (fun c -> find_a_destructable_match sigma c) t let destauto t = Proofview.tclEVARMAP >>= fun sigma -> try find_a_destructable_match sigma t; Tacticals.New.tclZEROMSG (str "No destructable match found") with Found tac -> tac let destauto_in id = Proofview.Goal.enter begin fun gl -> let ctype = Tacmach.New.pf_unsafe_type_of gl (mkVar id) in (* Pp.msgnl (Printer.pr_lconstr (mkVar id)); *) (* Pp.msgnl (Printer.pr_lconstr (ctype)); *) destauto ctype end TACTIC EXTEND destauto | [ "destauto" ] -> [ Proofview.Goal.enter begin fun gl -> destauto (Proofview.Goal.concl gl) end ] | [ "destauto" "in" hyp(id) ] -> [ destauto_in id ] END (**********************************************************************) (**********************************************************************) (* A version of abstract constructing transparent terms *) (* Introduced by Jason Gross and Benjamin Delaware in June 2016 *) (**********************************************************************) TACTIC EXTEND transparent_abstract | [ "transparent_abstract" tactic3(t) ] -> [ Proofview.Goal.nf_enter begin fun gl -> Tactics.tclABSTRACT ~opaque:false None (Tacinterp.tactic_of_value ist t) end ] | [ "transparent_abstract" tactic3(t) "using" ident(id) ] -> [ Proofview.Goal.nf_enter begin fun gl -> Tactics.tclABSTRACT ~opaque:false (Some id) (Tacinterp.tactic_of_value ist t) end ] END (* ********************************************************************* *) let eq_constr x y = Proofview.Goal.enter begin fun gl -> let evd = Tacmach.New.project gl in match EConstr.eq_constr_universes evd x y with | Some _ -> Proofview.tclUNIT () | None -> Tacticals.New.tclFAIL 0 (str "Not equal") end TACTIC EXTEND constr_eq | [ "constr_eq" constr(x) constr(y) ] -> [ eq_constr x y ] END TACTIC EXTEND constr_eq_nounivs | [ "constr_eq_nounivs" constr(x) constr(y) ] -> [ Proofview.tclEVARMAP >>= fun sigma -> if eq_constr_nounivs sigma x y then Proofview.tclUNIT () else Tacticals.New.tclFAIL 0 (str "Not equal") ] END TACTIC EXTEND is_evar | [ "is_evar" constr(x) ] -> [ Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma x with | Evar _ -> Proofview.tclUNIT () | _ -> Tacticals.New.tclFAIL 0 (str "Not an evar") ] END TACTIC EXTEND has_evar | [ "has_evar" constr(x) ] -> [ Proofview.tclEVARMAP >>= fun sigma -> if Evarutil.has_undefined_evars sigma x then Proofview.tclUNIT () else Tacticals.New.tclFAIL 0 (str "No evars") ] END TACTIC EXTEND is_hyp | [ "is_var" constr(x) ] -> [ Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma x with | Var _ -> Proofview.tclUNIT () | _ -> Tacticals.New.tclFAIL 0 (str "Not a variable or hypothesis") ] END TACTIC EXTEND is_fix | [ "is_fix" constr(x) ] -> [ Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma x with | Fix _ -> Proofview.tclUNIT () | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not a fix definition") ] END;; TACTIC EXTEND is_cofix | [ "is_cofix" constr(x) ] -> [ Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma x with | CoFix _ -> Proofview.tclUNIT () | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not a cofix definition") ] END;; TACTIC EXTEND is_ind | [ "is_ind" constr(x) ] -> [ Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma x with | Ind _ -> Proofview.tclUNIT () | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not an (co)inductive datatype") ] END;; TACTIC EXTEND is_constructor | [ "is_constructor" constr(x) ] -> [ Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma x with | Construct _ -> Proofview.tclUNIT () | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not a constructor") ] END;; TACTIC EXTEND is_proj | [ "is_proj" constr(x) ] -> [ Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma x with | Proj _ -> Proofview.tclUNIT () | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not a primitive projection") ] END;; TACTIC EXTEND is_const | [ "is_const" constr(x) ] -> [ Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma x with | Const _ -> Proofview.tclUNIT () | _ -> Tacticals.New.tclFAIL 0 (Pp.str "not a constant") ] END;; (* Command to grab the evars left unresolved at the end of a proof. *) (* spiwack: I put it in extratactics because it is somewhat tied with the semantics of the LCF-style tactics, hence with the classic tactic mode. *) VERNAC COMMAND EXTEND GrabEvars [ "Grab" "Existential" "Variables" ] => [ Vernac_classifier.classify_as_proofstep ] -> [ Proof_global.simple_with_current_proof (fun _ p -> Proof.V82.grab_evars p) ] END (* Shelves all the goals under focus. *) TACTIC EXTEND shelve | [ "shelve" ] -> [ Proofview.shelve ] END (* Shelves the unifiable goals under focus, i.e. the goals which appear in other goals under focus (the unfocused goals are not considered). *) TACTIC EXTEND shelve_unifiable | [ "shelve_unifiable" ] -> [ Proofview.shelve_unifiable ] END (* Unshelves the goal shelved by the tactic. *) TACTIC EXTEND unshelve | [ "unshelve" tactic1(t) ] -> [ Proofview.with_shelf (Tacinterp.tactic_of_value ist t) >>= fun (gls, ()) -> Proofview.Unsafe.tclGETGOALS >>= fun ogls -> Proofview.Unsafe.tclSETGOALS (gls @ ogls) ] END (* Command to add every unshelved variables to the focus *) VERNAC COMMAND EXTEND Unshelve [ "Unshelve" ] => [ Vernac_classifier.classify_as_proofstep ] -> [ Proof_global.simple_with_current_proof (fun _ p -> Proof.unshelve p) ] END (* Gives up on the goals under focus: the goals are considered solved, but the proof cannot be closed until the user goes back and solve these goals. *) TACTIC EXTEND give_up | [ "give_up" ] -> [ Proofview.give_up ] END (* cycles [n] goals *) TACTIC EXTEND cycle | [ "cycle" int_or_var(n) ] -> [ Proofview.cycle n ] END (* swaps goals number [i] and [j] *) TACTIC EXTEND swap | [ "swap" int_or_var(i) int_or_var(j) ] -> [ Proofview.swap i j ] END (* reverses the list of focused goals *) TACTIC EXTEND revgoals | [ "revgoals" ] -> [ Proofview.revgoals ] END type cmp = | Eq | Lt | Le | Gt | Ge type 'i test = | Test of cmp * 'i * 'i let pr_cmp = function | Eq -> Pp.str"=" | Lt -> Pp.str"<" | Le -> Pp.str"<=" | Gt -> Pp.str">" | Ge -> Pp.str">=" let pr_cmp' _prc _prlc _prt = pr_cmp let pr_test_gen f (Test(c,x,y)) = Pp.(f x ++ pr_cmp c ++ f y) let pr_test = pr_test_gen (Pputils.pr_or_var Pp.int) let pr_test' _prc _prlc _prt = pr_test let pr_itest = pr_test_gen Pp.int let pr_itest' _prc _prlc _prt = pr_itest ARGUMENT EXTEND comparison PRINTED BY pr_cmp' | [ "=" ] -> [ Eq ] | [ "<" ] -> [ Lt ] | [ "<=" ] -> [ Le ] | [ ">" ] -> [ Gt ] | [ ">=" ] -> [ Ge ] END let interp_test ist gls = function | Test (c,x,y) -> project gls , Test(c,Tacinterp.interp_int_or_var ist x,Tacinterp.interp_int_or_var ist y) ARGUMENT EXTEND test PRINTED BY pr_itest' INTERPRETED BY interp_test RAW_PRINTED BY pr_test' GLOB_PRINTED BY pr_test' | [ int_or_var(x) comparison(c) int_or_var(y) ] -> [ Test(c,x,y) ] END let interp_cmp = function | Eq -> Int.equal | Lt -> ((<):int->int->bool) | Le -> ((<=):int->int->bool) | Gt -> ((>):int->int->bool) | Ge -> ((>=):int->int->bool) let run_test = function | Test(c,x,y) -> interp_cmp c x y let guard tst = if run_test tst then Proofview.tclUNIT () else let msg = Pp.(str"Condition not satisfied:"++ws 1++(pr_itest tst)) in Tacticals.New.tclZEROMSG msg TACTIC EXTEND guard | [ "guard" test(tst) ] -> [ guard tst ] END let decompose l c = Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in let to_ind c = if isInd sigma c then fst (destInd sigma c) else user_err Pp.(str "not an inductive type") in let l = List.map to_ind l in Elim.h_decompose l c end TACTIC EXTEND decompose | [ "decompose" "[" ne_constr_list(l) "]" constr(c) ] -> [ decompose l c ] END (** library/keys *) VERNAC COMMAND EXTEND Declare_keys CLASSIFIED AS SIDEFF | [ "Declare" "Equivalent" "Keys" constr(c) constr(c') ] -> [ let get_key c = let (evd, c) = Constrintern.interp_open_constr (Global.env ()) Evd.empty c in let kind c = EConstr.kind evd c in Keys.constr_key kind c in let k1 = get_key c in let k2 = get_key c' in match k1, k2 with | Some k1, Some k2 -> Keys.declare_equiv_keys k1 k2 | _ -> () ] END VERNAC COMMAND EXTEND Print_keys CLASSIFIED AS QUERY | [ "Print" "Equivalent" "Keys" ] -> [ Feedback.msg_info (Keys.pr_keys Printer.pr_global) ] END VERNAC COMMAND EXTEND OptimizeProof | [ "Optimize" "Proof" ] => [ Vernac_classifier.classify_as_proofstep ] -> [ Proof_global.compact_the_proof () ] | [ "Optimize" "Heap" ] => [ Vernac_classifier.classify_as_proofstep ] -> [ Gc.compact () ] END