1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open CErrors open Util open Names open Univ open Term open Constr open Vars open Termops open Declarations open Declareops open Environ open Reductionops open Context.Rel.Declaration (* The following three functions are similar to the ones defined in Inductive, but they expect an env *) let type_of_inductive env (ind,u) = let (mib,_ as specif) = Inductive.lookup_mind_specif env ind in Typeops.check_hyps_inclusion env mkInd ind mib.mind_hyps; Inductive.type_of_inductive env (specif,u) (* Return type as quoted by the user *) let type_of_constructor env (cstr,u) = let (mib,_ as specif) = Inductive.lookup_mind_specif env (inductive_of_constructor cstr) in Typeops.check_hyps_inclusion env mkConstruct cstr mib.mind_hyps; Inductive.type_of_constructor (cstr,u) specif (* Return constructor types in user form *) let type_of_constructors env (ind,u as indu) = let specif = Inductive.lookup_mind_specif env ind in Inductive.type_of_constructors indu specif (* Return constructor types in normal form *) let arities_of_constructors env (ind,u as indu) = let specif = Inductive.lookup_mind_specif env ind in Inductive.arities_of_constructors indu specif (* [inductive_family] = [inductive_instance] applied to global parameters *) type inductive_family = pinductive * constr list let make_ind_family (mis, params) = (mis,params) let dest_ind_family (mis,params) = (mis,params) let map_ind_family f (mis,params) = (mis, List.map f params) let liftn_inductive_family n d = map_ind_family (liftn n d) let lift_inductive_family n = liftn_inductive_family n 1 let substnl_ind_family l n = map_ind_family (substnl l n) type inductive_type = IndType of inductive_family * EConstr.constr list let make_ind_type (indf, realargs) = IndType (indf,realargs) let dest_ind_type (IndType (indf,realargs)) = (indf,realargs) let map_inductive_type f (IndType (indf, realargs)) = let f' c = EConstr.Unsafe.to_constr (f (EConstr.of_constr c)) in IndType (map_ind_family f' indf, List.map f realargs) let liftn_inductive_type n d = map_inductive_type (EConstr.Vars.liftn n d) let lift_inductive_type n = liftn_inductive_type n 1 let substnl_ind_type l n = map_inductive_type (EConstr.Vars.substnl l n) let mkAppliedInd (IndType ((ind,params), realargs)) = let open EConstr in let ind = on_snd EInstance.make ind in applist (mkIndU ind, (List.map EConstr.of_constr params)@realargs) (* Does not consider imbricated or mutually recursive types *) let mis_is_recursive_subset listind rarg = let one_is_rec rvec = List.exists (fun ra -> match dest_recarg ra with | Mrec (_,i) -> Int.List.mem i listind | _ -> false) rvec in Array.exists one_is_rec (dest_subterms rarg) let mis_is_recursive (ind,mib,mip) = mis_is_recursive_subset (List.interval 0 (mib.mind_ntypes - 1)) mip.mind_recargs let mis_nf_constructor_type ((ind,u),mib,mip) j = let specif = mip.mind_nf_lc and ntypes = mib.mind_ntypes and nconstr = Array.length mip.mind_consnames in let make_Ik k = mkIndU (((fst ind),ntypes-k-1),u) in if j > nconstr then user_err Pp.(str "Not enough constructors in the type."); substl (List.init ntypes make_Ik) (subst_instance_constr u specif.(j-1)) (* Number of constructors *) let nconstructors ind = let (_,mip) = Global.lookup_inductive ind in Array.length mip.mind_consnames let nconstructors_env env ind = let (_,mip) = Inductive.lookup_mind_specif env ind in Array.length mip.mind_consnames (* Arity of constructors excluding parameters, excluding local defs *) let constructors_nrealargs ind = let (_,mip) = Global.lookup_inductive ind in mip.mind_consnrealargs let constructors_nrealargs_env env ind = let (_,mip) = Inductive.lookup_mind_specif env ind in mip.mind_consnrealargs (* Arity of constructors excluding parameters, including local defs *) let constructors_nrealdecls ind = let (_,mip) = Global.lookup_inductive ind in mip.mind_consnrealdecls let constructors_nrealdecls_env env ind = let (_,mip) = Inductive.lookup_mind_specif env ind in mip.mind_consnrealdecls (* Arity of constructors including parameters, excluding local defs *) let constructor_nallargs (indsp,j) = let (mib,mip) = Global.lookup_inductive indsp in mip.mind_consnrealargs.(j-1) + mib.mind_nparams let constructor_nallargs_env env ((kn,i),j) = let mib = Environ.lookup_mind kn env in let mip = mib.mind_packets.(i) in mip.mind_consnrealargs.(j-1) + mib.mind_nparams (* Arity of constructors including params, including local defs *) let constructor_nalldecls (indsp,j) = (* TOCHANGE en decls *) let (mib,mip) = Global.lookup_inductive indsp in mip.mind_consnrealdecls.(j-1) + Context.Rel.length (mib.mind_params_ctxt) let constructor_nalldecls_env env ((kn,i),j) = (* TOCHANGE en decls *) let mib = Environ.lookup_mind kn env in let mip = mib.mind_packets.(i) in mip.mind_consnrealdecls.(j-1) + Context.Rel.length (mib.mind_params_ctxt) (* Arity of constructors excluding params, excluding local defs *) let constructor_nrealargs (ind,j) = let (_,mip) = Global.lookup_inductive ind in mip.mind_consnrealargs.(j-1) let constructor_nrealargs_env env (ind,j) = let (_,mip) = Inductive.lookup_mind_specif env ind in mip.mind_consnrealargs.(j-1) (* Arity of constructors excluding params, including local defs *) let constructor_nrealdecls (ind,j) = (* TOCHANGE en decls *) let (_,mip) = Global.lookup_inductive ind in mip.mind_consnrealdecls.(j-1) let constructor_nrealdecls_env env (ind,j) = (* TOCHANGE en decls *) let (_,mip) = Inductive.lookup_mind_specif env ind in mip.mind_consnrealdecls.(j-1) (* Length of arity, excluding params, excluding local defs *) let inductive_nrealargs ind = let (_,mip) = Global.lookup_inductive ind in mip.mind_nrealargs let inductive_nrealargs_env env ind = let (_,mip) = Inductive.lookup_mind_specif env ind in mip.mind_nrealargs (* Length of arity, excluding params, including local defs *) let inductive_nrealdecls ind = let (_,mip) = Global.lookup_inductive ind in mip.mind_nrealdecls let inductive_nrealdecls_env env ind = let (_,mip) = Inductive.lookup_mind_specif env ind in mip.mind_nrealdecls (* Full length of arity (w/o local defs) *) let inductive_nallargs ind = let (mib,mip) = Global.lookup_inductive ind in mib.mind_nparams + mip.mind_nrealargs let inductive_nallargs_env env ind = let (mib,mip) = Inductive.lookup_mind_specif env ind in mib.mind_nparams + mip.mind_nrealargs (* Length of arity (w/o local defs) *) let inductive_nparams ind = let (mib,mip) = Global.lookup_inductive ind in mib.mind_nparams let inductive_nparams_env env ind = let (mib,mip) = Inductive.lookup_mind_specif env ind in mib.mind_nparams (* Length of arity (with local defs) *) let inductive_nparamdecls ind = let (mib,mip) = Global.lookup_inductive ind in Context.Rel.length mib.mind_params_ctxt let inductive_nparamdecls_env env ind = let (mib,mip) = Inductive.lookup_mind_specif env ind in Context.Rel.length mib.mind_params_ctxt (* Full length of arity (with local defs) *) let inductive_nalldecls ind = let (mib,mip) = Global.lookup_inductive ind in Context.Rel.length (mib.mind_params_ctxt) + mip.mind_nrealdecls let inductive_nalldecls_env env ind = let (mib,mip) = Inductive.lookup_mind_specif env ind in Context.Rel.length (mib.mind_params_ctxt) + mip.mind_nrealdecls (* Others *) let inductive_paramdecls (ind,u) = let (mib,mip) = Global.lookup_inductive ind in Inductive.inductive_paramdecls (mib,u) let inductive_paramdecls_env env (ind,u) = let (mib,mip) = Inductive.lookup_mind_specif env ind in Inductive.inductive_paramdecls (mib,u) let inductive_alldecls (ind,u) = let (mib,mip) = Global.lookup_inductive ind in Vars.subst_instance_context u mip.mind_arity_ctxt let inductive_alldecls_env env (ind,u) = let (mib,mip) = Inductive.lookup_mind_specif env ind in Vars.subst_instance_context u mip.mind_arity_ctxt let constructor_has_local_defs (indsp,j) = let (mib,mip) = Global.lookup_inductive indsp in let l1 = mip.mind_consnrealdecls.(j-1) + Context.Rel.length (mib.mind_params_ctxt) in let l2 = recarg_length mip.mind_recargs j + mib.mind_nparams in not (Int.equal l1 l2) let inductive_has_local_defs ind = let (mib,mip) = Global.lookup_inductive ind in let l1 = Context.Rel.length (mib.mind_params_ctxt) + mip.mind_nrealdecls in let l2 = mib.mind_nparams + mip.mind_nrealargs in not (Int.equal l1 l2) let allowed_sorts env (kn,i as ind) = let (mib,mip) = Inductive.lookup_mind_specif env ind in mip.mind_kelim let projection_nparams_env env p = let pb = lookup_projection p env in pb.proj_npars let projection_nparams p = projection_nparams_env (Global.env ()) p let has_dependent_elim mib = match mib.mind_record with | Some (Some _) -> mib.mind_finite == Decl_kinds.BiFinite | _ -> true (* Annotation for cases *) let make_case_info env ind style = let (mib,mip) = Inductive.lookup_mind_specif env ind in let ind_tags = Context.Rel.to_tags (List.firstn mip.mind_nrealdecls mip.mind_arity_ctxt) in let cstr_tags = Array.map2 (fun c n -> let d,_ = decompose_prod_assum c in Context.Rel.to_tags (List.firstn n d)) mip.mind_nf_lc mip.mind_consnrealdecls in let print_info = { ind_tags; cstr_tags; style } in { ci_ind = ind; ci_npar = mib.mind_nparams; ci_cstr_ndecls = mip.mind_consnrealdecls; ci_cstr_nargs = mip.mind_consnrealargs; ci_pp_info = print_info } (*s Useful functions *) type constructor_summary = { cs_cstr : pconstructor; cs_params : constr list; cs_nargs : int; cs_args : Context.Rel.t; cs_concl_realargs : constr array } let lift_constructor n cs = { cs_cstr = cs.cs_cstr; cs_params = List.map (lift n) cs.cs_params; cs_nargs = cs.cs_nargs; cs_args = lift_rel_context n cs.cs_args; cs_concl_realargs = Array.map (liftn n (cs.cs_nargs+1)) cs.cs_concl_realargs } (* Accept either all parameters or only recursively uniform ones *) let instantiate_params t params sign = let nnonrecpar = Context.Rel.nhyps sign - List.length params in (* Adjust the signature if recursively non-uniform parameters are not here *) let _,sign = context_chop nnonrecpar sign in let _,t = decompose_prod_n_assum (Context.Rel.length sign) t in let subst = subst_of_rel_context_instance sign params in substl subst t let get_constructor ((ind,u as indu),mib,mip,params) j = assert (j <= Array.length mip.mind_consnames); let typi = mis_nf_constructor_type (indu,mib,mip) j in let ctx = Vars.subst_instance_context u mib.mind_params_ctxt in let typi = instantiate_params typi params ctx in let (args,ccl) = decompose_prod_assum typi in let (_,allargs) = decompose_app ccl in let vargs = List.skipn (List.length params) allargs in { cs_cstr = (ith_constructor_of_inductive ind j,u); cs_params = params; cs_nargs = Context.Rel.length args; cs_args = args; cs_concl_realargs = Array.of_list vargs } let get_constructors env (ind,params) = let (mib,mip) = Inductive.lookup_mind_specif env (fst ind) in Array.init (Array.length mip.mind_consnames) (fun j -> get_constructor (ind,mib,mip,params) (j+1)) let get_projections env (ind,params) = let (mib,mip) = Inductive.lookup_mind_specif env (fst ind) in match mib.mind_record with | Some (Some (id, projs, pbs)) -> Some projs | _ -> None let make_case_or_project env sigma indf ci pred c branches = let open EConstr in let projs = get_projections env indf in match projs with | None -> (mkCase (ci, pred, c, branches)) | Some ps -> assert(Array.length branches == 1); let () = let _, _, t = destLambda sigma pred in let (ind, _), _ = dest_ind_family indf in let mib, _ = Inductive.lookup_mind_specif env ind in if (* dependent *) not (Vars.noccurn sigma 1 t) && not (has_dependent_elim mib) then user_err ~hdr:"make_case_or_project" Pp.(str"Dependent case analysis not allowed" ++ str" on inductive type " ++ Names.MutInd.print (fst ind)) in let branch = branches.(0) in let ctx, br = decompose_lam_n_assum sigma (Array.length ps) branch in let n, subst = List.fold_right (fun decl (i, subst) -> match decl with | LocalAssum (na, t) -> let t = mkProj (Projection.make ps.(i) true, c) in (i + 1, t :: subst) | LocalDef (na, b, t) -> (i, Vars.substl subst b :: subst)) ctx (0, []) in Vars.substl subst br (* substitution in a signature *) let substnl_rel_context subst n sign = let rec aux n = function | d::sign -> substnl_decl subst n d :: aux (n+1) sign | [] -> [] in List.rev (aux n (List.rev sign)) let substl_rel_context subst = substnl_rel_context subst 0 let get_arity env ((ind,u),params) = let (mib,mip) = Inductive.lookup_mind_specif env ind in let parsign = (* Dynamically detect if called with an instance of recursively uniform parameter only or also of recursively non-uniform parameters *) let nparams = List.length params in if Int.equal nparams mib.mind_nparams then mib.mind_params_ctxt else begin assert (Int.equal nparams mib.mind_nparams_rec); let nnonrecparamdecls = mib.mind_nparams - mib.mind_nparams_rec in snd (Termops.context_chop nnonrecparamdecls mib.mind_params_ctxt) end in let parsign = Vars.subst_instance_context u parsign in let arproperlength = List.length mip.mind_arity_ctxt - List.length parsign in let arsign,_ = List.chop arproperlength mip.mind_arity_ctxt in let subst = subst_of_rel_context_instance parsign params in let arsign = Vars.subst_instance_context u arsign in (substl_rel_context subst arsign, Inductive.inductive_sort_family mip) (* Functions to build standard types related to inductive *) let build_dependent_constructor cs = applist (mkConstructU cs.cs_cstr, (List.map (lift cs.cs_nargs) cs.cs_params) @(Context.Rel.to_extended_list mkRel 0 cs.cs_args)) let build_dependent_inductive env ((ind, params) as indf) = let arsign,_ = get_arity env indf in let nrealargs = List.length arsign in applist (mkIndU ind, (List.map (lift nrealargs) params)@(Context.Rel.to_extended_list mkRel 0 arsign)) (* builds the arity of an elimination predicate in sort [s] *) let make_arity_signature env sigma dep indf = let (arsign,_) = get_arity env indf in let arsign = List.map (fun d -> Termops.map_rel_decl EConstr.of_constr d) arsign in if dep then (* We need names everywhere *) Namegen.name_context env sigma ((LocalAssum (Anonymous,EConstr.of_constr (build_dependent_inductive env indf)))::arsign) (* Costly: would be better to name once for all at definition time *) else (* No need to enforce names *) arsign let make_arity env sigma dep indf s = let open EConstr in it_mkProd_or_LetIn (mkSort s) (make_arity_signature env sigma dep indf) (* [p] is the predicate and [cs] a constructor summary *) let build_branch_type env sigma dep p cs = let base = appvect (lift cs.cs_nargs p, cs.cs_concl_realargs) in if dep then EConstr.Unsafe.to_constr (Namegen.it_mkProd_or_LetIn_name env sigma (EConstr.of_constr (applist (base,[build_dependent_constructor cs]))) (List.map (fun d -> Termops.map_rel_decl EConstr.of_constr d) cs.cs_args)) else Term.it_mkProd_or_LetIn base cs.cs_args (**************************************************) let extract_mrectype sigma t = let open EConstr in let (t, l) = decompose_app sigma t in match EConstr.kind sigma t with | Ind ind -> (ind, l) | _ -> raise Not_found let find_mrectype_vect env sigma c = let (t, l) = Termops.decompose_app_vect sigma (whd_all env sigma c) in match EConstr.kind sigma t with | Ind ind -> (ind, l) | _ -> raise Not_found let find_mrectype env sigma c = let (ind, v) = find_mrectype_vect env sigma c in (ind, Array.to_list v) let find_rectype env sigma c = let open EConstr in let (t, l) = decompose_app sigma (whd_all env sigma c) in match EConstr.kind sigma t with | Ind (ind,u) -> let (mib,mip) = Inductive.lookup_mind_specif env ind in if mib.mind_nparams > List.length l then raise Not_found; let l = List.map EConstr.Unsafe.to_constr l in let (par,rargs) = List.chop mib.mind_nparams l in let indu = (ind, EInstance.kind sigma u) in IndType((indu, par),List.map EConstr.of_constr rargs) | _ -> raise Not_found let find_inductive env sigma c = let open EConstr in let (t, l) = decompose_app sigma (whd_all env sigma c) in match EConstr.kind sigma t with | Ind ind when (fst (Inductive.lookup_mind_specif env (fst ind))).mind_finite <> Decl_kinds.CoFinite -> let l = List.map EConstr.Unsafe.to_constr l in (ind, l) | _ -> raise Not_found let find_coinductive env sigma c = let open EConstr in let (t, l) = decompose_app sigma (whd_all env sigma c) in match EConstr.kind sigma t with | Ind ind when (fst (Inductive.lookup_mind_specif env (fst ind))).mind_finite == Decl_kinds.CoFinite -> let l = List.map EConstr.Unsafe.to_constr l in (ind, l) | _ -> raise Not_found (***********************************************) (* find appropriate names for pattern variables. Useful in the Case and Inversion (case_then_using et case_nodep_then_using) tactics. *) let is_predicate_explicitly_dep env sigma pred arsign = let rec srec env pval arsign = let pv' = whd_all env sigma pval in match EConstr.kind sigma pv', arsign with | Lambda (na,t,b), (LocalAssum _)::arsign -> srec (push_rel_assum (na, t) env) b arsign | Lambda (na,_,t), _ -> (* The following code has an impact on the introduction names given by the tactics "case" and "inversion": when the elimination is not dependent, "case" uses Anonymous for inductive types in Prop and names created by mkProd_name for inductive types in Set/Type while "inversion" uses anonymous for inductive types both in Prop and Set/Type !! Previously, whether names were created or not relied on whether the predicate created in Indrec.make_case_com had a dependent arity or not. To avoid different predicates printed the same in v8, all predicates built in indrec.ml got a dependent arity (Aug 2004). The new way to decide whether names have to be created or not is to use an Anonymous or Named variable to enforce the expected dependency status (of course, Anonymous implies non dependent, but not conversely). From Coq > 8.2, using or not the the effective dependency of the predicate is parametrable! *) begin match na with | Anonymous -> false | Name _ -> true end | _ -> anomaly (Pp.str "Non eta-expanded dep-expanded \"match\" predicate.") in srec env (EConstr.of_constr pred) arsign let is_elim_predicate_explicitly_dependent env sigma pred indf = let arsign,_ = get_arity env indf in is_predicate_explicitly_dep env sigma pred arsign let set_names env sigma n brty = let open EConstr in let (ctxt,cl) = decompose_prod_n_assum sigma n brty in EConstr.Unsafe.to_constr (Namegen.it_mkProd_or_LetIn_name env sigma cl ctxt) let set_pattern_names env sigma ind brv = let (mib,mip) = Inductive.lookup_mind_specif env ind in let arities = Array.map (fun c -> Context.Rel.length ((prod_assum c)) - mib.mind_nparams) mip.mind_nf_lc in Array.map2 (set_names env sigma) arities brv let type_case_branches_with_names env sigma indspec p c = let (ind,args) = indspec in let args = List.map EConstr.Unsafe.to_constr args in let (mib,mip as specif) = Inductive.lookup_mind_specif env (fst ind) in let nparams = mib.mind_nparams in let (params,realargs) = List.chop nparams args in let lbrty = Inductive.build_branches_type ind specif params p in (* Build case type *) let conclty = lambda_appvect_assum (mip.mind_nrealdecls+1) p (Array.of_list (realargs@[c])) in (* Adjust names *) if is_elim_predicate_explicitly_dependent env sigma p (ind,params) then (set_pattern_names env sigma (fst ind) (Array.map EConstr.of_constr lbrty), conclty) else (lbrty, conclty) (* Type of Case predicates *) let arity_of_case_predicate env (ind,params) dep k = let arsign,_ = get_arity env (ind,params) in let mind = build_dependent_inductive env (ind,params) in let concl = if dep then mkArrow mind (mkSort k) else mkSort k in Term.it_mkProd_or_LetIn concl arsign (***********************************************) (* Inferring the sort of parameters of a polymorphic inductive type knowing the sort of the conclusion *) (* Compute the inductive argument types: replace the sorts that appear in the type of the inductive by the sort of the conclusion, and the other ones by fresh universes. *) let rec instantiate_universes env evdref scl is = function | (LocalDef _ as d)::sign, exp -> d :: instantiate_universes env evdref scl is (sign, exp) | d::sign, None::exp -> d :: instantiate_universes env evdref scl is (sign, exp) | (LocalAssum (na,ty))::sign, Some l::exp -> let ctx,_ = Reduction.dest_arity env ty in let u = Univ.Universe.make l in let s = (* Does the sort of parameter [u] appear in (or equal) the sort of inductive [is] ? *) if univ_level_mem l is then scl (* constrained sort: replace by scl *) else (* unconstrained sort: replace by fresh universe *) let evm, s = Evd.new_sort_variable Evd.univ_flexible !evdref in let evm = Evd.set_leq_sort env evm s (Sorts.sort_of_univ u) in evdref := evm; s in (LocalAssum (na,mkArity(ctx,s))) :: instantiate_universes env evdref scl is (sign, exp) | sign, [] -> sign (* Uniform parameters are exhausted *) | [], _ -> assert false let type_of_inductive_knowing_conclusion env sigma ((mib,mip),u) conclty = match mip.mind_arity with | RegularArity s -> sigma, EConstr.of_constr (subst_instance_constr u s.mind_user_arity) | TemplateArity ar -> let _,scl = splay_arity env sigma conclty in let scl = EConstr.ESorts.kind sigma scl in let ctx = List.rev mip.mind_arity_ctxt in let evdref = ref sigma in let ctx = instantiate_universes env evdref scl ar.template_level (ctx,ar.template_param_levels) in !evdref, EConstr.of_constr (mkArity (List.rev ctx,scl)) let type_of_projection_knowing_arg env sigma p c ty = let c = EConstr.Unsafe.to_constr c in let IndType(pars,realargs) = try find_rectype env sigma ty with Not_found -> raise (Invalid_argument "type_of_projection_knowing_arg_type: not an inductive type") in let (_,u), pars = dest_ind_family pars in substl (c :: List.rev pars) (Typeops.type_of_projection_constant env (p,u)) (***********************************************) (* Guard condition *) (* A function which checks that a term well typed verifies both syntactic conditions *) let control_only_guard env c = let check_fix_cofix e c = match kind c with | CoFix (_,(_,_,_) as cofix) -> Inductive.check_cofix e cofix | Fix (_,(_,_,_) as fix) -> Inductive.check_fix e fix | _ -> () in let rec iter env c = check_fix_cofix env c; iter_constr_with_full_binders push_rel iter env c in iter env c (* inference of subtyping condition for inductive types *) let infer_inductive_subtyping_arity_constructor (env, evd, csts) (subst : constr -> constr) (arcn : types) is_arity (params : Context.Rel.t) = let numchecked = ref 0 in let numparams = Context.Rel.nhyps params in let update_contexts (env, evd, csts) csts' = (Environ.add_constraints csts' env, Evd.add_constraints evd csts', Univ.Constraint.union csts csts') in let basic_check (env, evd, csts) tp = let result = if !numchecked >= numparams then let csts' = Reduction.infer_conv_leq ~evars:(Evd.existential_opt_value evd) env (Evd.universes evd) tp (subst tp) in update_contexts (env, evd, csts) csts' else (env, evd, csts) in numchecked := !numchecked + 1; result in let infer_typ typ ctxs = match typ with | LocalAssum (_, typ') -> begin try let (env, evd, csts) = basic_check ctxs typ' in (Environ.push_rel typ env, evd, csts) with Reduction.NotConvertible -> anomaly ~label:"inference of record/inductive subtyping relation failed" (Pp.str "Can't infer subtyping for record/inductive type") end | _ -> anomaly (Pp.str "") in let arcn' = Term.it_mkProd_or_LetIn arcn params in let typs, codom = Reduction.dest_prod env arcn' in let last_contexts = Context.Rel.fold_outside infer_typ typs ~init:(env, evd, csts) in if not is_arity then basic_check last_contexts codom else last_contexts let infer_inductive_subtyping env evd mind_ent = let { Entries.mind_entry_params = params; Entries.mind_entry_inds = entries; Entries.mind_entry_universes = ground_univs; } = mind_ent in let uinfind = match ground_univs with | Entries.Monomorphic_ind_entry _ | Entries.Polymorphic_ind_entry _ -> ground_univs | Entries.Cumulative_ind_entry cumi -> begin let uctx = Univ.CumulativityInfo.univ_context cumi in let sbsubst = Univ.CumulativityInfo.subtyping_susbst cumi in let dosubst = subst_univs_level_constr sbsubst in let instance_other = Univ.subst_univs_level_instance sbsubst (Univ.UContext.instance uctx) in let constraints_other = Univ.subst_univs_level_constraints sbsubst (Univ.UContext.constraints uctx) in let uctx_other = Univ.UContext.make (instance_other, constraints_other) in let env = Environ.push_context uctx env in let env = Environ.push_context uctx_other env in let evd = Evd.merge_universe_context evd (UState.of_context_set (Univ.ContextSet.of_context uctx_other)) in let (_, _, subtyp_constraints) = List.fold_left (fun ctxs indentry -> let _, params = Typeops.infer_local_decls env params in let ctxs' = infer_inductive_subtyping_arity_constructor ctxs dosubst indentry.Entries.mind_entry_arity true params in List.fold_left (fun ctxs cons -> infer_inductive_subtyping_arity_constructor ctxs dosubst cons false params ) ctxs' indentry.Entries.mind_entry_lc ) (env, evd, Univ.Constraint.empty) entries in Entries.Cumulative_ind_entry (Univ.CumulativityInfo.make (Univ.CumulativityInfo.univ_context cumi, Univ.UContext.make (Univ.UContext.instance (Univ.CumulativityInfo.subtyp_context cumi), subtyp_constraints))) end in {mind_ent with Entries.mind_entry_universes = uinfind;}